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Abstract—We propose a two greedy subspace Kaczmarz
algorithm for solving consistent systems of linear equations. At
each step, our proposed algorithm projects the current iterate
onto the solution space given by two greedily selected rows. It
is proved that this algorithm converges to the unique solution
of the consistent linear system. Numerical results on Gaussian
models as well as on image reconstruction problems show that
the proposed algorithm improves the convergence rate of the
greedy randomized Kaczmarz algorithm.

Index Terms—greedy randomized Kaczmarz algorithm, two
greedy subspace Kaczmarz algorithm, consistent linear systems,
image reconstruction.

I. INTRODUCTION

MANY applications in science [1], [2], [3] and en-
gineering [4], [5] require the solution of very large

consistent systems of linear equations of the form

Ax = b, (1)

where A ∈ Rm×n is a real m-by-n matrix, b ∈ Rm is
an m-dimensional real vector and x ∈ Rn denotes the n-
dimensional vector of unknowns. The Kaczmarz algorithm
[6] is a classic while powerful iterative solver for computing
an approximate solution for such equations (1), and it has
been widely used in the field of image reconstruction [7],
[8], [9], [10] as an algebraic reconstruction technique [11]
due to its simplicity and light computation. More precisely,
let A(i) represent the ith row of the matrix A, and b(i) the
ith entry of the vector b, then given an initial point x0, the
Kaczmarz algorithm can be formulated as

xk+1 = xk +
b(ik) −A(ik)xk
‖A(ik)‖22

(A(ik))T , k = 0, 1, · · · ,

where (·)T denotes the transpose of the corresponding vector
or matrix, ‖ · ‖2 denotes the Euclidean norm and ik =
(k mod m)+1. Although the Kaczmarz algorithm is popular
in practice, useful theoretical estimates of the convergence
rate of this algorithm are difficult to obtain [12], [13] and
the convergence of the algorithm is sometimes very slow
(see e.g., [14] and [15]). To improve the convergence of
the Kaczmarz algorithm, in 2009 Strohmer and Vershynin
[16] proposed the randomized Kaczmarz (RK) algorithm
by choosing the row index ik from the set {1, 2, · · · ,m}
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randomly with probability proportional to ‖A(ik)‖22 rather
than in their given order. Strohmer and Vershynin proved
that the RK algorithm converges with expected exponential
rate, known as “linear convergence”, for more details on con-
vergence theory for the RK algorithm, we refer to [17], [18],
[19] and the references therein. In 2018, Bai and Wu [20]
proposed the greedy randomized Kaczmarz (GRK) algorithm
by introducing a different but more effective probability
criterion, which can grasp larger entries of the residual vector
at each iteration; see also [21]. It is precisely because of the
introduction of this greedy probability criterion that the GRK
algorithm converges faster than the RK algorithm. The GRK
algorithm is a valuable development of the RK algorithm, and
was extended to ridge regression problem [22], generalized
to so-called relaxed versions [23] and accelerated in block
version [24]. The block version of the GRK algorithm can
effectively reduce the executing time of the original algorith-
m, but it will require more computational cost per iteration
than GRK, since it needs to solve a least squares problem at
each iteration, which is the most expensive (arithmetic) step
in block GRK algorithm.

In this paper, we present another accelerated iterative
formula of the GRK algorithm, that is, two greedy sub-
space Kaczmarz (2GSK) algorithm, which, likes the GRK
algorithm, requires the calculation of the residual vector
corresponding to the linear system (1) at each iteration
step. The difference between the two is that the 2GSK
algorithm selects two distinct row indices sk and tk that
corresponding to the first two distinct entries in the ordered
residual vector (i.e., we order the absolute values of the
entries of the residual vector rk = b − Axk from largest to
smallest) at each iteration k. In this way, we hope to make it
simple to implement and computationally inexpensive when
compared with the block version of the GRK algorithm. It
should be noted that, in 2013 Needell and Ward [25] also
proposed a two-subspace randomized Kaczmarz algorithm
for coherent overdetermined systems, which randomly selects
two different rows at each iteration step of the RK algorithm
to iterate, so it is different from our algorithm.

Our paper is organized as follows. In Section II we propose
the two greedy subspace Kaczmarz (2GSK) algorithm for
linear system (1) and present its convergence analysis. In
Section III, we report and discuss the numerical results. Fi-
nally, in Section IV we end the paper with brief conclusions.

II. 2GSK ALGORITHM

In this paper, λmin(·) is used to denote the smallest non-
zero eigenvalue of the corresponding matrix. We denote
the identity matrix by I , with the subscript denoting the
dimension when needed. In what follows, we always assume
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A(i) 6= 0 for all i ∈ {1, 2, · · · ,m}. Let ` be a prescribed
positive integer and x0 be a given initial point, then the 2GSK
algorithm can be algorithmically described as follows.

Algorithm 1 The 2GSK Algorithm

Require: A, b, ` and x0.
Ensure: x`.

1: for k = 0, 1, 2, · · · , `− 1 do
2: Compute rk = b−Axk
3: Select rows sk and tk that satisfy

sk = arg min
1≤i≤m

|r(i)k | and tk = arg min
i∈[m]\sk

|r(i)k |

4: Set xk+1 = xk +
r
(sk)

k ·(A(sk))T

‖A(sk)‖22
+

r
(tk)

k ·(A(tk))T

‖A(tk)‖22
5: end for

For the convergence property of the 2GSK algorithm, we
can establish the following theorem.

Theorem 1. Consider the consistent linear system Ax = b,
where A ∈ Rm×n, A(1), A(2), · · · , A(m) are mutually non-
orthogonal and b ∈ Rm is a given vector. Then the iteration
sequence {xk}∞k=0 generated by the 2GSK algorithm starting
from any initial guess x0 ∈ Rn in the column space of AT ,
converges to the unique solution x? = A†b of Ax = b with
A† the Moore-Penrose pseudoinverse of A. Moreover, the
solution error for the iteration sequence {xk}∞k=0 obeys

‖xk+1 − x?‖22 ≤
k∏
q=0

(1− λmin(PqP
T
q ))‖x0 − x?‖22,

where Pk = Psk − Ptk with

Psk =
(A(sk))T

‖A(sk)‖2
· A(sk)

‖A(sk)‖2
and Ptk =

(A(tk))T

‖A(tk)‖2
· A(tk)

‖A(tk)‖2
.

(2)
Here sk and tk are two distinct rows of the coefficient matrix
A that selected at the kth iterate.

Proof: It is easy to verify that Psk and Ptk defined in (2)
are orthogonal projection matrices. Let ek = xk − x?, due
to the consistency of the linear system Ax = b, we have

‖ek+1‖22 = ‖(I − Psk − Ptk)ek‖22
= ‖ek‖22 − 〈ek, Pskek〉 − 〈ek, Ptkek〉

+ 〈Pskek, Ptkek〉+ 〈Ptkek, Pskek〉
= ‖ek‖22 − 〈Pskek, ek − Ptkek〉 − 〈Ptkek, ek
− Pskek〉

= ‖ek‖22 − eTk Psk(I − Ptk)ek − eTk Ptk(I − Psk)ek

= ‖ek‖22 − eTk (Psk − PskPtk + Ptk − PtkPsk)ek

= ‖ek‖22 − eTk (Psk − Ptk)(Psk − Ptk)ek. (3)

Denote Pk = Psk − Ptk and Hk = PkP
T
k , then

the matrix Hk is symmetric and positive semidefinite. Let
Hk = QkΛkQ

T
k be the spectral decomposition of the matrix

Hk, where Qk ∈ Rn×n is an orthogonal matrix, and
Λk = diag(λ1, λ2, · · · , λn) ∈ Rn×n is a diagonal matrix,
with its diagonal entries {λi}ni=1, or the eigenvalues of the
matrix Hk, being ordered such that

λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = · · · = λn = 0,

where r is the rank of matrix Hk. Then (3) can be rewritten
as

‖ek+1‖22 = ‖ek‖22 − eTkHkek = ‖ek‖22 − (QTk ek)TΛkQ
T
k ek.

Assume that

QTk ek = (q1, q2, · · · , qn)T ,

then it holds that

‖ek+1‖22 = ‖ek‖22 − (QTk ek)TΛkQ
T
k ek

= ‖ek‖22 −
n∑
i=1

λiq
2
i

≤ ‖ek‖22 − λr
n∑
i=1

q2i

= ‖ek‖22 − λr‖QTk ek‖22
= (1− λmin(Hk)) ‖ek‖22. (4)

On the other hand, by noticing that if λ is an eigenvalue
of Pk, then λ ∈ [−1, 1] (see, e.g., [26]), so λi ∈ [0, 1] for all
i ∈ {1, 2, · · · , n} and λmin(Hk) = λr ∈ (0, 1]. We further
claim that λmin(Hk) = 1 if and only if the coefficient matrix
A is orthogonal. More specifically, without loss of generality,
we assume that λ = 1, let α be an eigenvector corresponding
to λ, then

(Psk − Ptk)α = α.

Using the fact PskPsk = Psk and multiplying the above
equation by Psk we can obtain Pskα − PskPtkα = Pskα,
then PskPtkα = 0, i.e.,

(A(sk))T

‖A(sk)‖22‖A(tk)‖22
·A(sk)(A(tk))T ·A(tk)α = 0

which further implies that

A(sk)(A(tk))T = 0 or A(tk)α = 0.

If A(tk)α = 0 and A(sk)(A(tk))T 6= 0, then from the
following relationship

Ptk(Psk − Ptk)α = Ptkα,

we know that

PtkPskα = 2Ptkα = 2
(A(tk))T

‖A(tk)‖22
A(tk)α = 0,

i.e.,

(A(tk))T

‖A(tk)‖22‖A(sk)‖22
·A(tk)(A(sk))T ·A(sk)α = 0,

since A(sk)(A(tk))T 6= 0, there holds A(sk)α = 0 and

(Psk−Ptk)α =
(A(sk))T

‖A(sk)‖22
A(sk)α− (A(tk))T

‖A(tk)‖22
A(tk)α = 0 6= α,

which leads to a contradiction.
Hence, it holds that A(sk)(A(tk))T = 0 for different

sk, tk ∈ {1, 2, · · · ,m}. If A is an orthogonal matrix, then
we have PskPtk = 0, i.e., Psk − Ptk is also an orthogonal
projection matrix, which indicates that all eigenvalues of
Psk − Ptk are 0 or 1. Thus we have λmin(Hk) = 1.

Consequently

1− λmin(Hk) < 1
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is valid for all rows which are mutually non-orthogonal.
Then, iterating the inequality (4) recursively yields

‖xk+1 − x?‖22 ≤
k∏
q=0

(1− λmin(PqP
T
q ))‖x0 − x?‖22. �

From Theorem 1, we know that the upper bound for the
convergence rate of the 2GSK algorithm can be represented
as

%2GSK =

(
k−1∏
q=0

(1− λmin(PqP
T
q ))

)1/k

, (5)

where k is the total number of iteration steps when a certain
stopping rule is satisfied.

Remark 1. If all rows of the coefficient matrix A of the
linear system (1) are mutually orthogonal, then, according
to [23, Theorem 1], it is easy to show that

‖ek+1‖22 = ‖ek‖22 − ‖Pskek‖22 − ‖Ptkek‖22

≤
(

1− 2
λmin(ATA)

‖A‖2F

)
‖ek‖22.

As a result, the upper bound of the convergence rate of the
2GSK is smaller than that of the GRK algorithm, which can
be represented as [20]

%GRK = 1−1

2

 ‖A‖2F
‖A‖2F − min

1≤i≤m
‖A(i)‖22

+ 1

 λmin(ATA)

‖A‖2F
.

(6)
Hence, the former may converge much faster than the later.

III. NUMERICAL EXPERIMENTS

In this section, we are going to use the 2GSK and GRK
algorithms to solve linear system (1) with the coefficient
matrix A ∈ Rm×n being either generated randomly by
MATLAB function randn(m,n) with different m and
n, or taken from the University of Florida sparse matrix
collection [27], and with A being taken from the field of
2D tomography image reconstruction problems.

In our implementations, the starting point is always the
origin point, i.e., x0 = 0. We show the number of iteration
steps (denoted as ‘IT’) and the computing time (denoted
as ‘CPU’) in seconds of the above two iterative algorithms
for solving different linear systems. For GRK algorithm,
we compute the averaged results of IT and CPU over 50
independent simulations to reduce the statistical oscillations
in the results. All experiments are performed by using
MATLAB (R2016b) on a personal computer with 2.67 GHz
central processing unit (Intel(R) Core(TM) i5 CPU), 4.00 GB
memory, and Windows operating system (Windows 10).

Example 1. In this example, we compare the upper bound
defined in (5) of the convergence rate of the 2GSK with that of
the GRK defined in (6) for linear consistent system Ax = b.
The matrix A, solution, and the right-hand side given by
A = randn(1000,100), x? = randn(100,1) and
b = Ax?, respectively. Iterations of GRK and 2GSK are
terminated once the relative solution error (RSE) at the
current iterate xk, defined by

RSE =
‖xk − x?‖22
‖x?‖22

satisfies RSE < 10−6. In Figure 1, we plot the curves of
the RSE in base-10 logarithm, and the curves for the upper
bounds log10(%GRK)×IT and log10(%2GSK)×IT, versus the
iteration step.

0 50 100 150 200 250
IT

-6

-4

-2

0

Fig. 1. Picture of log10(RSE) for GRK and 2GSK,
log10(%GRK)×IT and log10(%2GSK)×IT versus IT when
A = randn(1000, 100). log10(RSE) for GRK: “◦ ◦ ◦”;
log10(RSE) for 2GSK: “III”; log10(%GRK)×IT: “-◦-”;
log10(%2GSK)×IT: “-I-”.

From Figure 1, we observe that the upper bound of the
convergence rate of the 2GSK algorithm is smaller than that
of the GRK algorithm, and the RSE of 2GSK is decaying
more quickly than that of GRK when the iteration step is
increasing. Hence, the 2GSK outperforms the GRK in terms
of iteration counts.

Example 2. We use 2GSK and GRK algorithms to solve
linear system (1) with the coefficient matrix A being dense
and of different size. We use randn(m,n) to generate A
with different m and n and x? = randn(n,1), and set b =
Ax?. All computations are terminated once RSE < 10−6.

We list the numbers of iteration steps and the computing
times for both GRK and 2GSK algorithms in Tables I-II, and
in these two tables we also report the speed-up of 2GSK
against GRK, which is defined as

speed-up =
CPU of GRK

CPU of 2GSK
.

TABLE I: IT and CPU of GRK and 2GSK for m-by-n
matrices A with m = 5000 and different n.

m× n 5000× 100 5000× 300 5000× 500

GRK
IT 164.9 529.9 998.3

CPU 0.1497 1.0422 2.5137

2GSK
IT 63.0 219.0 434.0

CPU 0.0715 0.6426 1.7937

speed-up 2.09 1.62 1.40

These numerical results in Tables I-II show that 2GSK
significantly outperforms GRK in terms of both iteration
counts and CPU times, whether the linear system (1) is
overdetermined or underdetermined. More specifically, the
speed-up is at least 1.40 and at most 2.09 for overdetermined
linear system, and it is at least 1.22 and at most 1.79 for un-
derdetermined linear system. The per iteration performance
of GRK and 2GSK on this example are shown in Figures
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TABLE II: IT and CPU of GRK and 2GSK for m-by-n
matrices A with n = 5000 and different m.

m× n 100× 5000 300× 5000 500× 5000

GRK
IT 220.8 823.1 1541.3

CPU 0.1713 1.4184 4.5000

2GSK
IT 109.0 409.0 772.0

CPU 0.0958 1.0843 3.7000

speed-up 1.79 1.31 1.22

2-7, in which we depict the curves of the RSE in base-
10 logarithm versus the iteration step. From this figure, we
see again that the RSE of 2GSK is decaying more quickly
than that of GRK when the iteration step is increasing. In
conclusion, our proposed algorithm is feasible and converges
faster than GRK algorithm for Gaussian models.

0 50 100 150 200
IT

-6

-5

-4

-3

-2

-1

0

lo
g 10

(R
SE

)

Fig. 2. log10(RSE) versus IT for 2GSK and GRK when A =
randn(5000, 100).

0 100 200 300 400 500 600
IT

-6

-5
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0

lo
g 10

(R
SE

)

Fig. 3. log10(RSE) versus IT for 2GSK and GRK when A =
randn(5000, 300).

Example 3. In this example, we use 2GSK and GRK algo-
rithms to compute an approximate solution to linear system
(1) with the coefficient matrix A ∈ Rm×n taken from the Uni-
versity of Florida sparse matrix collection [27], such as full-
rank sparse matrices ash958, Trefethen−300, abtaha1,
nemsafm, refine and bibd−16−8. We set solution vector
x? = randn(n,1), and the right-hand side b = Ax?. The
termination criterion for this example is exactly the same as
in Example 2. In Tables III-IV we report iteration counts and
CPU times for 2GSK and GRK algorithms.

From Tables III-IV, we see that the iteration counts and
CPU times of 2GSK are considerably smaller than those of

0 200 400 600 800 1000
IT

-6

-5

-4

-3

-2

-1

0

lo
g 10

(R
SE

)

Fig. 4. log10(RSE) versus IT for 2GSK and GRK when A =
randn(5000, 500).

0 50 100 150 200 250
IT

-6

-5

-4

-3

-2

-1

0

lo
g 10

(R
SE

)

Fig. 5. log10(RSE) versus IT for 2GSK and GRK when A =
randn(100, 5000).
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Fig. 6. log10(RSE) versus IT for 2GSK and GRK when A =
randn(300, 5000).
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-3
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0
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g 10
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Fig. 7. log10(RSE) versus IT for 2GSK and GRK when A =
randn(500, 5000).
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TABLE III: IT and CPU of GRK and 2GSK for m-by-n
matrices A with different m and n.

name ash958 Trefethen−300 abtaha1

m× n 958× 292 300× 300 14596× 209

density 0.68% 5.20% 1.68%

cond(A) 3.20 1772.69 12.23

GRK
IT 790.0 3220.9 1972.1

CPU 0.3086 0.7227 7.2000

2GSK
IT 373.0 1549.0 707.0

CPU 0.1038 0.1806 4.3000

speed-up 2.97 4.00 1.67

TABLE IV: IT and CPU of GRK and 2GSK for m-by-n
matrices A with different m and n.

name nemsafm refine bibd−16−8

m× n 334× 2348 29× 62 120× 12870

density 0.36% 8.51% 23.33%

cond(A) 4.77 66.67 9.54

GRK
IT 1199.3 669.7 1066.3

CPU 1.7000 0.0896 2.2000

2GSK
IT 572.0 374.0 332.0

CPU 0.9452 0.0116 1.0000

speed-up 1.79 7.72 2.20
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Fig. 8. log10(RSE) versus IT for 2GSK and GRK with
respect to the matrix ash958.
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Fig. 9. log10(RSE) versus IT for 2GSK and GRK with
respect to the matrix Trefethen−300.
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Fig. 10. log10(RSE) versus IT for 2GSK and GRK with
respect to the matrix abtaha1.
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Fig. 11. log10(RSE) versus IT for 2GSK and GRK with
respect to the matrix nemsafm.
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Fig. 12. log10(RSE) versus IT for 2GSK and GRK with
respect to the matrix refine.
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Fig. 13. log10(RSE) versus IT for 2GSK and GRK with
respect to the matrix bibd−16−8.
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GRK, and the speed-up is at least 1.67 (the matrix abtaha1)
and the biggest even reaches 7.72 (the matrix refine). The
above observations are intuitively shown in Figures 8-13, in
which we plot the curves of the RSE in base-10 logarithm
versus the iteration step for different matrices. This figure
also demonstrates that the 2GSK algorithm offers the most
improvement over the GRK algorithm in terms of iteration
step. Hence, the 2GSK algorithm significantly outperforms
the GRK algorithm for both iteration counts and CPU times.

Example 4. In this example, we use a test problem from
tomographic image reconstruction, implemented in the func-
tion paralleltomo(N ,θ,p) in the MATLAB package AIR
TOOLS [10], which generates a sparse matrix A, an exact
solution x? (which is shown as image in Figure 14(a)) and
right-hand side b = Ax?. We set N = 40, θ = 0 : 2 : 178◦

and p = 120, then the resulting matrix A is of size
10800 × 1600, and run 2GSK and GRK algorithms for
104 iterations on such linear consistent system Ax = b.
Reconstruction results and per iteration performance for
both 2GSK and GRK algorithms are shown in Figure 14.

Exact

(a)

GRK

(b)

2GSK

(c)

0 5000 10000
IT

-4

-3

-2

-1

0

lo
g 10

(R
SE

)

(d)

Fig. 14. Paralleltomo test problem: exact image x? (a),
restorations by GRK (b) and 2GSK (c). (d) log10(RSE)
versus IT for 2GSK and GRK for this restoration.

Admittedly, we see from Figure 14(b)-14(c) that under the
same number of iteration steps, 2GSK algorithm can achieve
better reconstruction results than GRK algorithm. Moreover,
from Figure 14(d), it is easy to see that 2GSK algorithm is
obviously faster than the GRK algorithm.

Example 5. We use an example from 2D seismic travel-
time tomography reconstruction, implemented in the func-
tion seismictomo(N ,s,p) in the MATLAB package AIR
TOOLS [10], which also generates a sparse matrix A, an
exact solution x? (which is shown as image in Figure 15(a))
and right-hand side b = Ax?. In this example, we set
N = 20, s = 60 and p = 100, then the resulting matrix
A is of size 6000 × 400. We run 2GSK and GRK on such
system Ax = b until the RSE is below 10−4. Reconstruction
results and per iteration performance for both 2GSK and

GRK algorithms are shown in Figure 15.

Exact

(a)

GRK

(b)

2GSK

(c)

0 5 10
IT 104

-4

-3

-2

-1

0

lo
g 10

(R
SE

)

(d)

Fig. 15. Seismictomo test problem: exact image x? (a),
restorations by GRK (b) and 2GSK (c). (d) log10(RSE)
versus IT for 2GSK and GRK for this restoration.

We should point out that for this test problem, GRK
algorithm and 2GSK algorithm require 80.5547 seconds and,
respectively 46.9917 seconds when they reach the same stop-
ping criterion RSE < 10−4. In addition, from Figure 15(d),
we know that 2GSK algorithm even requires much smaller
iteration step than GRK algorithm in achieving the same
reconstructions. Hence, the 2GSK algorithm significantly
outperforms the GRK algorithm in terms of both iteration
counts and CPU times, too.

IV. CONCLUSION

In this paper, we extended the GRK algorithm to the two
greedy subspace Kaczmarz (2GSK) algorithm to solve a large
consistent linear system of equations. We provide theoretical
guarantees for the convergence of 2GSK algorithm. In the
experiments section, we have shown some cases when 2GSK
algorithm work better than GRK algorithm in terms of both
iteration steps and computing times. Hence, when compared
with the GRK algorithm, the 2GSK algorithm can be a
useful tool for solving large-scale consistent linear systems.
One of the interesting future directions of the current work
would be to investigate three or multiple greedy subspace
Kaczmarz algorithm rather than block versions of the GRK
algorithm (since applying the pseudoinverse A†τ to a vector in
block versions is the most expensive arithmetic) and provide
theoretical estimates for it.
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