Resistance Distance and Kirchhoff Index of the Diamond Hierarchical Graph and the Generalized Corona Graph

Qun Liu ${ }^{a}$

Abstract

Given simple graphs G, H_{1}, \cdots, H_{n}, where $n=|V(G)|$, the generalized corona, denoted by $G \tilde{o} \wedge_{i=1}^{n} H_{i}$, is the graph obtained by taking one copy of graphs G, H_{1}, \cdots, H_{n} and joining the i th vertex of G to every vertex of H_{i}. The diamond hierarchical graph S_{G} is formed by adding two new vertices v_{e}, w_{e} for each edge $e=u v$ and then deleting edge e and adding in edges $u v_{e}, u w_{e}$ and $v_{e} v, w_{e} v$. In this paper, closed-form formulas for resistance distance and Kirchhoff index of $G \tilde{\circ} \wedge_{i=1}^{n} H_{i}$ whenever G and H_{i} are arbitrary graphs are obtained. And the resistance distance and Kirchhoff index of S_{G} whenever G is an arbitrary graph are obtained.

Index Terms-Kirchhoff index; Resistance distance; Diamond hierarchical graph; Generalized corona graph

I. Introduction

ALL graphs considered in this paper are simple and undirected. Let $G=(V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. Let d_{i} be the degree of vertex i in G and $D_{G}=\operatorname{diag}\left(d_{1}, d_{2}, \cdots, d_{|V(G)|}\right)$ be the diagonal matrix with all vertex degrees of G as its diagonal entries. For a graph G, let A_{G} and B_{G} denote the adjacency matrix and vertex-edge incidence matrix of G, respectively. The matrix $L_{G}=D_{G}-A_{G}$ is called the Laplacian matrix of G, where D_{G} is the diagonal matrix of vertex degrees of G. We use $\mu_{1}(G) \geq \mu_{2}(G) \geq \cdots \geq \mu_{n}(G)=0$ to denote the eigenvalues of L_{G}. The Kronecker product of matrices $A=\left(a_{i j}\right)$ and B, denoted by $A \otimes B$, is defined to be the partition matrix $\left(a_{i j} B\right)$.

The resistance distance is a tool motivated by ideas from electrical network theory and applications in chemistry that has proven valuable in the study of graphs. The resistance distance between vertices u and v of G was defined by Klein and Randić [8] to be the effective resistance between nodes u and v as computed with Ohm's law when all the edges of G are considered to be unit resistors. The Kirchhoff index $K f(G)$ was defined in [8] as $K f(G)=\sum_{u<v} r_{u v}(G)$, where $r_{u v}(G)$ denotes the resistance distance between u and v in G. Resistance distance are, in fact, intrinsic to the graph, with some nice purely mathematical interpretations and other interpretations. In complex networks, represented by graphs, the effective resistance characterizes the difficulty of transport in a network. As a robustness indicator, the effective

[^0]resistance allows to compare graphs and is applied in improving the robustness of complex networks, especially against cascading failures in electrical networks. The Kirchhoff index was introduced in chemistry as a better alternative to other parameters used for discriminating different molecules with similar shapes and structures. See [2]. For more information on resistance distance and Kirchhoff index of graphs, the readers are referred to Refs. ([8]- [10], [12]- [21]) and the references therein.

The resistance distance and Kirchhoff index of some composite operations between two graphs are studied, such as product, lexicographic product [15], corona [10], subdivision-vertex join and subdivision-edge join [4] and so on. Given a connected graph G with n vertices and m edges, the diamond hierarchical graph S_{G} [7] is formed by adding two new vertices v_{e}, w_{e} for each edge $e=u v$ in G and then deleting edge e and adding in edges $u v_{e}, u w_{e}$ and $v_{e} v$, $w_{e} v$. It is routine to check that the order of S_{G} is $n+2 m$ and the size of S_{G} is $4 m$. Figure 1 shows an example of the diamond hierarchical graph when G is K_{4} by deleting one edge.

In [6], the generalized corona are introduced, and their A-spectrum(resp., L-spectrum) are investigated. Let G and H_{i} be vertex-disjoint graphs. The generalized corona of G and H_{i} for $i=1,2, \ldots, n$, denoted by $G \tilde{o} \wedge_{i=1}^{n} H_{i}$, is the graph obtained by taking one copy of graphs G, H_{1}, \cdots, H_{n} and joining the i th vertex of G to every vertex of H_{i}. Figure 2 shows an example of the generalized corona graph $G \tilde{o} \wedge_{i=1}^{3} H_{i}$ when $G=K_{3}, H_{1}=K_{2}, H_{2}=P_{2}, H_{3}=K_{3}$. Bu et al. [4] investigated resistance distance in subdivisionvertex join and subdivision-edge join of graphs. Liu et al. [9] gave the resistance distance and Kirchhoff index of R vertex join and R-edge join of two graphs. Liu [10] obtained the resistance distance and Kirchhoff index of corona and edge corona of two graphs. Motivated by these, in this paper we consider the generalized corona to the case of n different graphs and we obtain the resistances distance and Kirchhoff index in terms of the corresponding parameters of the factors. And the resistance distance and Kirchhoff index of the diamond hierarchical graphs S_{G} whenever G is an arbitrary graph.

II. Preliminaries

The $\{1\}$-inverse of M is a matrix X such that $M X M=M$. If M is singular, then it has infinite $\{1\}$-inverse [1]. For a square matrix M, the group inverse of M, denoted by $M^{\#}$, is the unique matrix X such that $M X M=M, X M X=X$ and $M X=X M$. It is known that $M^{\#}$ exists if and only if
$\operatorname{rank}(M)=\operatorname{rank}\left(M^{2}\right)([1],[5])$. If M is real symmetric, then $M^{\#}$ exists and $M^{\#}$ is a symmetric $\{1\}$-inverse of M. Actually, $M^{\#}$ is equal to the Moore-Penrose inverse of M since M is symmetric [1].

It is known that resistance distance in a connected graph G can be obtained from any $\{1\}$-inverse of G ([2], [3]). We use $M^{(1)}$ to denote any $\{1\}$-inverse of a matrix M, and let $(M)_{u v}$ denote the (u, v)-entry of M.
Lemma 2.1 ([3], [5]) Let G be a connected graph. Then

$$
\begin{aligned}
r_{u v}(G)= & \left(L_{G}^{(1)}\right)_{u u}+\left(L_{G}^{(1)}\right)_{v v}-\left(L_{G}^{(1)}\right)_{u v}-\left(L_{G}^{(1)}\right)_{v u} \\
& =\left(L_{G}^{\#}\right)_{u u}+\left(L_{G}^{\#}\right)_{v v}-2\left(L_{G}^{\#}\right)_{u v} .
\end{aligned}
$$

Let 1_{n} denote the column vector of dimension n with all the entries equal one. We will often use 1 to denote an all-ones column vector if the dimension can be read from the context.
Lemma 2.2 [4] For any graph, we have $L_{G}^{\#} 1=0$.
For a square matrix M, let $\operatorname{tr}(M)$ denote the trace of M.
Lemma 2.3 [11] Let G be a connected graph with n vertices. Then

$$
K f(G)=n \operatorname{tr}\left(L_{G}^{(1)}\right)-1^{T} L_{G}^{(1)} 1=\operatorname{ntr}\left(L_{G}^{\#}\right)
$$

Lemma 2.4 [11] Let

$$
L=\left(\begin{array}{cc}
A & B \\
B^{T} & D
\end{array}\right)
$$

be the Laplacian matrix of a connected graph. If D is nonsingular, then

$$
X=\left(\begin{array}{cc}
H^{\#} & -H^{\#} B D^{-1} \\
-D^{-1} B^{T} H^{\#} & D^{-1}+D^{-1} B^{T} H^{\#} B D^{-1}
\end{array}\right)
$$

is a symmetric $\{1\}$-inverse of L, where $H=A-B D^{-1} B^{T}$.

G

Fig. 1: G and S_{G}
III. The resistance distance and Kirchhoff index OF THE DIAMOND HIERARCHICAL GRAPHS
In this section, we focus on determing the resistance distance and Kirchhoff index of the diamond hierarchical graphs S_{G} whenever G is an arbitrary graph. Let $V\left(S_{G}\right)=V \cup V_{1} \cup V_{2}$, where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is the set of all the inherited vertices from $G, V_{1}=\left\{v_{11}, v_{12}, \ldots, v_{1 m}\right\}$ is the set of all

Fig. 2: the generalized corona $G \tilde{o} \wedge_{i=1}^{3} H_{i}$
the subdivision vertices, whereas $V_{2}=\left\{v_{21}, v_{22}, \ldots, v_{2 m}\right\}$ is the set all the rest vertices, each vertex $v_{2 i}$ corresponds to edge e_{i} in $E(G)$.
Theorem 3.1 Let G be a graph with n vertices and m edges and let S_{G} be the graph obtained from G with $V\left(S_{G}\right)=$ $V \cup V_{1} \cup V_{2}$, where V, V_{1} and V_{2} are defined as above. Then S_{G} have the resistance distance and Kirchhoff index as follows:
(i) For any $i, j \in V(G)$, we have

$$
r_{i j}\left(S_{G}\right)=\left(L_{G}^{\#}\right)_{i i}+\left(L_{G}^{\#}\right)_{j j}-2\left(L_{G}^{\#}\right)_{i j}=r_{i j}(G)
$$

(ii) For any $i, j \in V_{l}(l=1,2)$, we have $r_{i j}\left(S_{G}\right)$

$$
\begin{aligned}
= & \left(\frac{1}{2} I_{m}+\frac{1}{4} B^{T} L_{G}^{\#} B\right)_{i i}+\left(\frac{1}{2} I_{m}+\frac{1}{4} B^{T} L_{G}^{\#} B\right)_{j j} \\
& -2\left(\frac{1}{2} I_{m}+\frac{1}{4} B^{T} L_{G}^{\#} B\right)_{i j}
\end{aligned}
$$

(iii) For any $i \in V(G), j \in V_{l}(l=1,2)$, we have $r_{i j}\left(S_{G}\right)$

$$
=\left(L_{G}^{\#}\right)_{i i}+\left(\frac{1}{2} I_{m}+\frac{1}{4} B^{T} L_{G}^{\#} B\right)_{j j}-2\left(L_{G}^{\#} B\right)_{i j}
$$

(iv) The Kirchhoff index of S_{G} is

$$
\begin{aligned}
K f\left(S_{G}\right)= & (n+2 m)\left(\frac{1}{n} K f(G)+\operatorname{tr}\left(D_{G} L_{G}^{\#}\right)\right) \\
& -\pi^{T} L_{G}^{\#} \pi-\frac{4 m^{2}-n^{2}+n}{2}
\end{aligned}
$$

where $\pi^{T}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
Proof Let D_{G} and B be the diagonal matrix and the incidence matrices of G, respectively. With a suitable labeling for vertices of S_{G}, the Laplacian matrix of S_{G} can be written as follows:

$$
L\left(S_{G}\right)=\left(\begin{array}{ccc}
2 D_{G} & -B & -B \\
-B^{T} & 2 I_{m} & 0 \\
-B^{T} & 0 & 2 I_{m}
\end{array}\right)
$$

By Lemma 2.4, we have

$$
\begin{aligned}
H= & 2 D_{G}-\left(\begin{array}{ll}
-B & -B
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} I_{m} & 0 \\
0 & \frac{1}{2} I_{m}
\end{array}\right) \\
& \binom{-B^{T}}{-B^{T}} \\
= & 2 D_{G}-\left(\frac{1}{2} B B^{T}+\frac{1}{2} B B^{T}\right) \\
= & 2 D_{G}-B B^{T} \\
= & 2 D_{G}-\left(D_{G}+A_{G}\right)=L_{G} .
\end{aligned}
$$

So $H^{\#}=L_{G}^{\#}$.
According to Lemma 2.4, we calculate $-H^{\#} B D^{-1}$ and $-D^{-1} B^{T} H^{\#}$.

$$
\left.\begin{array}{rl}
-H^{\#} B D^{-1} & =-L_{G}^{\#}\left(\begin{array}{ll}
-B & -B
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} I_{m} & 0 \\
0 & \frac{1}{2} I_{m}
\end{array}\right) \\
& =-L_{G}^{\#}\left(-\frac{1}{2} B\right.
\end{array}-\frac{1}{2} B\right) ~\left(\begin{array}{ll}
\frac{1}{2} L_{G}^{\#} B & \frac{1}{2} L_{G}^{\#} B
\end{array}\right)
$$

and

$$
\begin{aligned}
-D^{-1} B^{T} H^{\#} & =-\left(\begin{array}{cc}
\frac{1}{2} I_{m} & 0 \\
0 & \frac{1}{2} I_{m}
\end{array}\right)\binom{-B^{T}}{-B^{T}} L_{G}^{\#} \\
& =\binom{\frac{1}{2} B^{T}}{\frac{1}{2} B^{T}} L_{G}^{\#}=\binom{\frac{1}{2} B^{T} L_{G}^{\#}}{\frac{1}{2} B^{T} L_{G}^{\#}}
\end{aligned}
$$

We are ready to compute the $D^{-1} B^{T} H^{\#} B D^{-1}$. $D^{-1} B^{T} H^{\#} B D^{-1}$

$$
\begin{aligned}
= & -\binom{\frac{1}{2} B^{T} L_{G}^{\#}}{\frac{1}{2} B^{T} L_{G}^{\#}}\left(\begin{array}{ll}
-B & -B
\end{array}\right) \\
& \left(\begin{array}{cc}
\frac{1}{2} I_{m} & 0 \\
0 & \frac{1}{2} I_{m}
\end{array}\right) \\
= & \left(\begin{array}{cc}
\frac{1}{4} B^{T} L_{G}^{\#} B & \frac{1}{4} B^{T} L_{G}^{\#} B \\
\frac{1}{4} B^{T} L_{G}^{\#} B & \frac{1}{4} B^{T} L_{G}^{\#} B
\end{array}\right) .
\end{aligned}
$$

Based on Lemma 2.4, the following matrix

$$
N=\left(\begin{array}{ccc}
L_{G}^{\#} & \frac{1}{2} L_{G}^{\#} B & \frac{1}{2} L_{G}^{\#} B \tag{1}\\
\frac{1}{2} B^{T} L_{G}^{\#} & \frac{1}{2} I_{m}+\frac{1}{4} B^{T} L_{G}^{\#} B & \frac{1}{4} B^{T} L_{G}^{\#} B \\
\frac{1}{2} B^{T} L_{G}^{\#} & \frac{1}{4} B^{T} L_{G}^{\#} B & \frac{1}{2} I_{m}+\frac{1}{4} B^{T} L_{G}^{\#} B
\end{array}\right)
$$

is a symmetric $\{1\}$-inverse of $L_{S_{G}}$.
(i) For any $i, j \in V(G)$, by Lemma 2.1 and Equation (1), we have

$$
r_{i j}\left(S_{G}\right)=\left(L_{G}^{\#}\right)_{i i}+\left(L_{G}^{\#}\right)_{j j}-2\left(L_{G}^{\#}\right)_{i j}=r_{i j}(G)
$$

as stated in (i).
(ii) For any $i, j \in V_{l}(l=1,2)$, by Lemma 2.1 and Equation (1), we have

$$
\begin{aligned}
r_{i j}\left(S_{G}\right)= & \left(\left(L_{H_{i}}+I_{n_{i}}\right)^{-1} \otimes I_{n_{i}}\right)_{i i}+\left(\left(L_{H_{i}}+I_{n_{i}}\right)^{-1}\right. \\
& \left.\otimes I_{n_{i}}\right)_{j j}-2\left(\left(L_{H_{i}}+I_{n_{i}}\right)^{-1} \otimes I_{n_{i}}\right)_{i j}
\end{aligned}
$$

as stated in (ii).
(iii) For any $i \in V(G), j \in V\left(H_{l}\right)(l=1,2)$, by Lemma 2.1 and Equation (1), we have

$$
\begin{aligned}
r_{i j}\left(S_{G}\right)= & \left(L_{G}^{\#}\right)_{i i}+\left(\left(L_{H_{i}}+I_{n_{i}}\right)^{-1} \otimes I_{n_{i}}\right)_{j j} \\
& -2\left(L_{G}^{\#} B\right)_{i j},
\end{aligned}
$$

as stated in (iii).
Next we compute the Kirchhoff index of S_{G}.
By Lemma 2.3, we have
$K f\left(S_{G}\right)$

$$
\begin{aligned}
= & (n+2 m) \operatorname{tr}(N)-1^{T} N 1 \\
= & (n+2 m)\left(\operatorname{tr}\left(L_{G}^{\#}\right)+\operatorname{tr}\left(\frac{1}{2} I_{m}+\frac{1}{4} B^{T} L_{G}^{\#} B\right)\right. \\
& \left.+\operatorname{tr}\left(\frac{1}{2} I_{m}+\frac{1}{4} B^{T} L_{G}^{\#} B\right)\right)-1^{T} N 1 \\
= & (n+2 m)\left(\frac{1}{n} K f(G)+m+\frac{1}{2} \operatorname{tr}\left(B^{T} L_{G}^{\#} B\right)\right) \\
& -1^{T} N 1 \\
= & (n+2 m)\left(\frac{1}{n} K f(G)+m+\frac{1}{2} \sum_{i<j,\{i, j\} \in E(G)}\right. \\
& {\left.\left[\left(L_{G}^{\#}\right)_{i i}+\left(L_{G}^{\#}\right)_{j j}+2\left(L_{G}^{\#}\right)_{i j}\right]\right)-1^{T} N 1 } \\
= & (n+2 m)\left(\frac{1}{n} K f(G)+m+\frac{1}{2} \sum_{i<j,\{i, j\} \in E(G)}\right. \\
& {\left.\left[\left(2 L_{G}^{\#}\right)_{i i}+\left(2 L_{G}^{\#}\right)_{j j}-r_{i j}(G)\right]\right)-1^{T} N 1 } \\
= & (n+2 m)\left(\frac{1}{n} K f(G)+m+\operatorname{tr}\left(D_{G} L_{G}^{\#}\right)\right. \\
& \left.-\frac{n-1}{2}\right)-1^{T} N 1 .
\end{aligned}
$$

By Lemma 2.2, $L_{G}^{\#} 1=0$, then

$$
\begin{aligned}
1^{T} N 1= & 2 \times 1^{T}\left(\frac{1}{2} I_{m}+\frac{1}{4} B^{T} L_{G}^{\#} B\right) 1+ \\
& \frac{1}{2} \times 1^{T}\left(B^{T} L_{G}^{\#} B\right) 1
\end{aligned}
$$

Note that $B \mathbf{1}=\pi$, where $\pi^{T}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, then

$$
1^{T} N 1=m+\pi^{T} L_{G}^{\#} \pi
$$

Plugging the above equation into $K f\left(S_{G}\right)$, we obtain the required result in (iv).

IV. The resistance distance and Kirchhoff index OF $G \tilde{\circ} \wedge_{i=1}^{n} H_{i}$

In this section, we focus on determing the resistance distance and Kirchhoff index of the generalized corona $G \tilde{\circ} \wedge_{i=1}^{n} H_{i}$ whenever G and $H_{i}(i=1,2, \ldots, n)$ are arbitrary graphs.

Theorem 3.1 Let G be a graph with n vertices and m edges.
Let H_{i} be a graph with t_{i} vertices for $i=1,2, \ldots, n$. Then $G \tilde{\circ} \wedge_{i=1}^{n} H_{i}$ have the resistance distance and Kirchhoff index as follows:
(i) For any $i, j \in V(G)$, we have

$$
\begin{aligned}
r_{i j}\left(G \tilde{o} \wedge_{i=1}^{n} H_{i}\right) & =\left(L_{G}^{\#}\right)_{i i}+\left(L_{G}^{\#}\right)_{j j}-2\left(L_{G}^{\#}\right)_{i j} \\
& =r_{i j}(G) .
\end{aligned}
$$

(ii) For any $i, j \in V\left(H_{k}\right)(k=1,2, \ldots, n)$, we have $r_{i j}\left(G \tilde{o} \wedge_{i=1}^{n} H_{i}\right)$

$$
\begin{aligned}
= & \left(\left(L_{H_{i}}+I_{n_{i}}\right)^{-1} \otimes I_{n_{i}}\right)_{i i}+\left(\left(L_{H_{k}}+I_{n_{j}}\right)^{-1} \otimes I_{n_{i}}\right)_{j j} \\
& -2\left(\left(L_{H_{k}}+I_{n_{i}}\right)^{-1} \otimes I_{n_{i}}\right)_{i j} .
\end{aligned}
$$

(iii) For any $i \in V(G), j \in V\left(H_{k}\right)(k=1,2, \ldots, n)$, we have
$r_{i j}\left(G \tilde{o} \wedge_{i=1}^{n} H_{i}\right)$

$$
=\left(L_{G}^{\#}\right)_{i i}+\left(\left(L_{H_{k}}+I_{n_{i}}\right)^{-1} \otimes I_{n_{i}}\right)_{j j}-2\left(L_{G}^{\#}\right)_{i j}
$$

(iv) The Kirchhoff index of $G \tilde{o} \wedge_{i=1}^{n} H_{i}$ is $K f\left(G \tilde{\circ} \wedge_{i=1}^{n} H_{i}\right)$

$$
\begin{aligned}
= & \left(n+\sum_{i=1}^{n} t_{i}\right)\left(\frac{1}{n} K f(G)+n \sum_{i=1}^{n} \sum_{t_{i}}^{j=1} \frac{1}{\mu_{j}\left(H_{i}\right)+1}\right. \\
& \left.+\operatorname{tr}\left(C^{T} L_{G}^{\#} C\right)\right)-\sum_{i=1}^{n} t_{i}-\delta^{T} L_{G}^{\#} \delta
\end{aligned}
$$

where $\mu_{j}\left(H_{i}\right)\left(j=1,2, \ldots, t_{i}\right)$ denote the Laplacian eigenvalues of H_{i}, C equals (1), $\delta^{T}=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.
Proof Let A and B_{i} be the adjacency matrices of G and H_{i}, respectively, for $i=1,2, \cdots, n$. Let $V=$ $\operatorname{diag}\left(t_{1}, t_{2}, \cdots, t_{n}\right)$. With a suitable labeling for vertices of $G \tilde{\circ} \wedge_{i=1}^{n} H_{i}$, the Laplacian matrix of $G \tilde{\circ} \wedge_{i=1}^{n} H_{i}$ can be written as follows:

$$
L_{G \tilde{\circ} \wedge_{i=1}^{n} H_{i}}=\left(\begin{array}{cc}
V+D_{G}-A & -C \\
-C^{T} & \Delta+I-Q
\end{array}\right)
$$

where $\Delta=\operatorname{diag}\left(D\left(H_{1}\right), D\left(H_{2}\right), \cdots, D\left(H_{n}\right)\right)$ and

$$
\begin{gather*}
Q=\left(\begin{array}{ccccc}
B_{1} & 0 & 0 & \ldots & 0 \\
0 & B_{2} & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & B_{n}
\end{array}\right), \\
C=\left(\begin{array}{ccccc}
1_{t_{1}}^{T} & 0 & 0 & \ldots & 0 \\
0 & 1_{t_{2}}^{T} & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & 1_{t_{n}}^{T}
\end{array}\right) . \tag{2}
\end{gather*}
$$

Let $T_{i}=L_{H_{i}}+I_{t_{i}}(i=1,2, \ldots, n)$, then

$$
T=\Delta+I-Q=\left(\begin{array}{ccccc}
T_{1} & 0 & 0 & \ldots & 0 \\
0 & T_{2} & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & T_{n}
\end{array}\right)
$$

First we begin with the computation of $\{1\}$-inverse of $L_{G \tilde{\wedge} \wedge_{i=1}^{n} H_{i}}$. By Lemma 2.4, we have

$$
\begin{aligned}
& H=V+D_{G}-A-C T^{-1} C^{T} \\
& \begin{aligned}
= & \left(\begin{array}{cccc}
t_{1}+d_{1} & 0 & \ldots & 0 \\
0 & t_{2}+d_{2} & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & t_{n}+d_{n}
\end{array}\right)-A \\
& -C\left(\begin{array}{ccccc}
T_{1}^{-1} & 0 & 0 & \ldots & 0 \\
0 & T_{2}^{-1} & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & T_{n}^{-1}
\end{array}\right) C^{T}
\end{aligned} \\
& =\left(\begin{array}{cccc}
t_{1}+d_{1} & 0 & \ldots & 0 \\
0 & t_{2}+d_{2} & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & t_{n}+d_{n}
\end{array}\right)-A \\
& -\left(\begin{array}{cccc}
{ }_{1}^{T} T_{1} T_{1}^{-1} 1_{t_{1}} & 0 & \cdots & 0 \\
0 & 1_{t_{2}}^{T} T_{2}^{-1} 1_{1_{2}} & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 1_{t_{n}}^{T} T_{n}^{-1} 1_{t_{n}}
\end{array}\right) \\
& =D_{G}-A=L_{G} .
\end{aligned}
$$

So $H^{\#}=L_{G}^{\#}$.
According to Lemma 2.4, we calculate $-H^{\#} B D^{-1}$ and $-D^{-1} B^{T} H^{\#}$.
$-H^{\#} B D^{-1}$

$$
\begin{aligned}
= & -L_{G}^{\#}\left(\begin{array}{ccccc}
-1_{t_{1}}^{T} & 0 & 0 & \ldots & 0 \\
0 & -1_{t_{2}}^{T} & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & -1_{t_{n}}^{T}
\end{array}\right) \\
& \left(\begin{array}{ccccc}
T_{1}^{-1} & 0 & 0 & \ldots & 0 \\
0 & T_{2}^{-1} & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ldots & 0 \\
0 & 0 & \ldots & T_{n}^{-1}
\end{array}\right) \\
= & -L_{G}^{\#}\left(\begin{array}{ccccc}
-1_{t_{1}}^{T} & 0 & 0 & \ldots & 0 \\
0 & -1_{t_{2}}^{T} & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & -1_{t_{n}}^{T}
\end{array}\right) \\
= & L_{G}^{\#} C
\end{aligned}
$$

and
$-D^{-1} B^{T} H^{\#}=-\left(H^{\#} B D^{-1}\right)^{T}=C^{T} L_{G}^{\#}$.
We are ready to compute the $D^{-1} B^{T} H^{\#}{ }^{G} D^{-1}$.
$D^{-1} B^{T} H^{\#} B D^{-1}$

$$
\begin{aligned}
&=\left(\begin{array}{ccccc}
T_{1}^{-1} 1_{t_{1}} & 0 & 0 & \ldots & 0 \\
0 & T_{2}^{-1} 1_{t_{2}} & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ldots & 0 \\
0 & & 0 & 0 & \ldots \\
L_{n}-1 & 1_{t_{n}}
\end{array}\right) \\
& L_{G}^{\#}\left(\begin{array}{ccccc}
1_{t_{1}}^{T} & 0 & 0 & \ldots & 0 \\
0 & 1_{t_{2}}^{T} & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & 1_{t_{n}}^{T} \\
T_{1} & 0 & 0 & \ldots & 0 \\
0 & T_{2}^{-1} & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & T_{n}^{-1}
\end{array}\right) \\
&=\left(\begin{array}{ccccc}
1_{t_{1}}^{-1} & 0 & 0 & \ldots & 0 \\
0 & 1_{t_{2}} & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & 1_{t_{n}} \\
1_{t_{1}}^{T} & 0 & 0 & \ldots & 0 \\
0 & 1_{t_{2}}^{T} & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & 1_{t_{n}}^{T}
\end{array}\right) L_{G}^{\#} \\
&= C^{T} L_{G}^{\#} C .
\end{aligned}
$$

Based on Lemma 2.4, the following matrix

$$
N=\left(\begin{array}{cc}
L_{G}^{\#} & L_{G}^{\#} C \tag{3}\\
C^{T} L_{G}^{\#} & T^{-1}+C^{T} L_{G}^{\#} C
\end{array}\right)
$$

is a symmetric $\{1\}$-inverse of $L_{G \tilde{\circ} \wedge{ }_{i=1}^{n} H_{i}}$.
(i) For any $i, j \in V(G)$, by Lemma 2.1 and Equation (2), we have

$$
\begin{aligned}
r_{i j}\left(G o ̃ \wedge_{i=1}^{n} H_{i}\right) & =\left(L_{G}^{\#}\right)_{i i}+\left(L_{G}^{\#}\right)_{j j}-2\left(L_{G}^{\#}\right)_{i j} \\
& =r_{i j}(G),
\end{aligned}
$$

as stated in (i).
(ii) For any $i, j \in V\left(H_{k}\right)(k=1,2, \ldots, n)$, by Lemma 2.1 and Equation (2), we have
$r_{i j}\left(G \tilde{o} \wedge_{i=1}^{n} H_{i}\right)$

$$
\begin{aligned}
= & \left(\left(L_{H_{i}}+I_{n_{i}}\right)^{-1} \otimes I_{n_{i}}\right)_{i i}+\left(\left(L_{H_{j}}+I_{n_{j}}\right)^{-1} \otimes I_{n_{i}}\right)_{j j} \\
& -2\left(\left(L_{H_{i}}+I_{n_{i}}\right)^{-1} \otimes I_{n_{i}}\right)_{i j},
\end{aligned}
$$

as stated in (ii).
(iii) For any $i \in V(G), j \in V\left(H_{k}\right)(k=1,2, \ldots, n)$, by Lemma 2.1 and Equation (2), we have

$$
\begin{aligned}
r_{i j}\left(G \tilde{\circ} \wedge_{i=1}^{n} H_{i}\right)= & \left(L_{G}^{\#}\right)_{i i}+\left(\left(L_{H_{k}}+I_{n_{j}}\right)^{-1} \otimes I_{n_{i}}\right)_{j j} \\
& -2\left(L_{G}^{\#}\right)_{i j},
\end{aligned}
$$

as stated in (iii).
Next we compute the Kirchhoff index of $G \tilde{o} \wedge_{i=1}^{n} H_{i}$.
By Lemma 2.3, we have
$K f\left(G \tilde{\circ} \wedge_{i=1}^{n} H_{i}\right)$

$$
\begin{aligned}
= & \left(n+\sum_{i=1}^{n} t_{i}\right) \operatorname{tr}(N)-1^{T} N 1 \\
= & \left(n+\sum_{i=1}^{n} t_{i}\right)\left(\operatorname{tr}\left(L_{G}^{\#}\right)+\operatorname{tr}\left(T^{-1}\right)\right. \\
& \left.+\operatorname{tr}\left(C^{T} L_{G}^{\#} C\right)\right)-1^{T} N 1 \\
= & \left(n+\sum_{i=1}^{n} t_{i}\right)\left(\frac{1}{n} K f(G)+\sum_{i=1}^{n} \operatorname{tr}\left(L_{H_{i}}+I_{t_{i}}\right)^{-1}\right. \\
& \left.+\operatorname{tr}\left(C^{T} L_{G}^{\#} C\right)\right)-1^{T} N 1 .
\end{aligned}
$$

Note that the eigenvalues of $\left(L_{H_{i}}+I_{t_{i}}\right)(i=1,2, \ldots, n)$ are $\mu_{1}\left(H_{i}\right)+1, \mu_{2}\left(H_{i}\right)+1, \ldots, \mu_{t_{i}}\left(H_{i}\right)+1$, then

$$
\begin{equation*}
\operatorname{tr}\left(T^{-1}\right)=\sum_{i=1}^{n} \sum_{j=1}^{t_{i}} \frac{1}{\mu_{j}\left(H_{i}\right)+1} . \tag{4}
\end{equation*}
$$

By Lemma $2.2, L_{G}^{\#} 1=0$, then

$$
1^{T} N 1=1^{T} T^{-1} 1+1^{T} C^{T} L_{G}^{\#} C 1 .
$$

and
$1^{T} T^{-1} 1$

$$
\begin{align*}
& =\left(\begin{array}{cccc}
1_{t_{1}}^{T} & 1_{t_{2}}^{T} & \cdots & 1_{t_{n}}^{T}
\end{array}\right) \\
& \left(\begin{array}{ccccc}
T_{1}^{-1} & 0 & 0 & \ldots & 0 \\
0 & T_{2}^{-1} & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & T_{n}^{-1}
\end{array}\right)\left(\begin{array}{c}
1_{t_{1}} \\
1_{t_{2}} \\
\cdots \\
1_{t_{n}}
\end{array}\right) \\
& \quad=\sum_{i=1}^{n} 1_{t_{i}}^{T}\left(L_{H_{i}}+I_{t_{i}}\right)^{-1} 1_{t_{i}}=\sum_{i=1}^{n} t_{i} \tag{5}
\end{align*}
$$

and

$$
\begin{aligned}
1^{T} C^{T}= & \left(\begin{array}{lllll}
1_{t_{1}}^{T} & 1_{t_{2}}^{T} & \cdots & 1_{t_{n}}^{T}
\end{array}\right) \\
& \left(\begin{array}{ccccc}
1_{t_{1}} & 0 & 0 & \ldots & 0 \\
0 & 1_{t_{2}} & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & 1_{t_{n}}
\end{array}\right)
\end{aligned}
$$

$$
\begin{equation*}
=\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\delta^{T} \tag{6}
\end{equation*}
$$

Plugging (4), (5) and (6) into $K f\left(G \tilde{o} \wedge_{i=1}^{n} H_{i}\right)$, we obtain the required result in $(i v)$.

V. Conclusion

In this paper, we obtain the closed-form formulas for resistance distance and Kirchhoff index of the diamond hierarchical graphs when G is an arbitrary graph. And the resistance distance and Kirchhoff index of the generalized corona $G \tilde{o} \wedge_{i=1}^{n} H_{i}$ whenever G and H_{i} are arbitrary graphs are given. The resistance distance and Kirchhoff index of the corona of G_{1} and G_{2} have already obtained in Ref. [10]. It is easily known that the result of Theorem 3.1 generalize the result of Theorem 1 in [10].

REFERENCES

[1] A Ben-Israel, T. N. E. Greville, Generalized inverses: theory and applications. 2nd ed.,New York: Springer, 2003.
[2] R.B. Bapat, S. Gupta, "Resistance distance in wheels and fans," Indian J. Pure Appl.Math., vol. 41, pp. 1-13, 2010.
[3] Bapat. R.B., Graphs and matrices, Universitext, Springer/Hindustan Book Agency, London/New Delhi, 2010.
[4] X.G. Liu, J. Zhou, C. J. Bu, "Resistance distance in subdivision-vertex join and subdivision-edge join of graphs," Linear Algebra Appl., vol. 458, pp. 454-462, 2014.
[5] C.J. Bu, L.Z. Sun, J. Zhou, Y. M. Wei, "A note on block representations of the group inverse of Laplacian matrices," Electron. J. Linear Algebra, vol. 23, pp. 866-876, 2012.
[6] A.R. FiujLaali, "Spectra of generalized corona of graphs," Linear Algebra Appl., vol. 493, pp. 411-425, 2016.
[7] Z.L. Guo, S.C. Li, X. Liu, X.L. Mei, "Expected hitting times for random walks on the diamond hierarchical graphs involving some classical parameters," Linear Algebra Appl., pp. 1-17, 2019.
[8] D.J. Klein, M. Randić, "Resistance distance," J. Math. Chem., vol. 12, pp. 81-95, 1993.
[9] X.G. Liu, J. Zhou, C.J. Bu, "Resistance distance and Kirchhoff index of R-vertex join and R-edge join of two graphs," Discrete Appl. Math, vol. 187, pp. 130-139, 2015.
[10] Q. Liu, "Resistance distance and Kirchhoff index in corona and edge corona of two graphs," Journal of Donghua University(Natural Science), vol. 33, pp. 411-413, 2016.
[11] Q. Liu, "Some results of resistance distance and Kirchhoff index based on R-graph," IAENG International Journal of Applied Mathematics, vol. 46, no. 3, pp. 346-352, 2016.
[12] Q. Liu, J.B. Liu, J.D. Cao, "The Laplacian polynomial and Kirchhoff index of graphs based on R-graphs," Neurocomputing, vol. 177, pp. 441-446, 2016.
[13] L.Z. Sun, W.Z. Wang, J. Zhou, C.J. Bu, "Some results on resistance distances and resistance matrices, Linear and Multilinear Algebra," vol. 63, pp. 523-533, 2015.
[14] J.B. Liu, X.F. Pan, F.T. Hu, "The $\{1\}$-inverse of the Lapalacian of subdivision-vertex and suvdivision-edge corona with applications," Linear and Multilinear Algebra, vol. 65, pp. 178-191, 2017.
[15] H.Z. Xu, "The Laplacian spectrum and Kirchhoff index of product and lexicographic product of graphs," Xiamen Univ.(Nat. Sci.), vol. 42, pp. 552-554, 2003.
[16] P.C. Xie, Z.Z. Zhang, F. Comellas, "On the spectrum of the normalized Laplacian of iterated triangulations of graphs," Appl. Math. Cmput, vol. 273, pp. 1123-1129, 2016.
[17] P.C. Xie, Z.Z. Zhang, F. Comellas, "The normalized Laplacian spectrum of subdivisions of a graph," Appl. Math. Cmput, vol. 286, pp. 250-256, 2016.
[18] W.J. Xiao, I. Gutman, "Resistance distance and Laplacian spectrum," Theor. Chem. Acc, vol. 110, pp. 284-289, 2003.
[19] Y.J. Yang, D.J. Klein, "Resistance distance-based graph invariants of subdivisions and triangulations of graphs," Discrete Appl. Math, vol. 181, pp. 260-274, 2015.
[20] Y.J. Yang, D.J. Klein, "A recursion formula for resistance distances and its applications," Discrete Appl. Math, vol. 161, pp. 2702-2715, 2013.
[21] F.Z. Zhang, The Schur Complement and Its Applications, SpringerVerlag, New York, 2005.

[^0]: Manuscript received March 20, 2020. This work was supported by the National Natural Science Foundation of China (no.61963013) and the Science and Technology Plan of Gansu Province(18JR3RG206) and the Research Foundation of the Higher Education Institutions of Gansu Province, China (2018A-093)and the Research and Innovation Fund Project of President of Hexi University(XZZD2018003).
 Q. Liu is with School of Mathematics and Statistics, Hexi University, Gansu, Zhangye, 734000, P.R. China. Email: liuqun@fudan.edu.cn.

