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Abstract—The fractional boundary value problem with
Riemann-Liouville derivative with respect to a Kernel function
ϕ(t) was investigated by us. We used a technique called
monotone iteration. The positive solutions for the fractional
problem were found by us. Moreover, the iterative format was
established.

Index Terms—Monotone iterative technique; Positive solu-
tion; Riemann-Liouville derivative; A Kernel function ϕ(t).

I. I NTRODUCTION

BEcause of the extensive use of fractional differential
equation in the natural sciences, more and more scholars

are engaged in this aspect of research (see [1-21,32]). Now
let’s look at a simple but realistic example from mechanics,
in this model, the author used the fractional derivatives
successfully. Here we will display the behavior of certain
materials under external forces. The laws of Hooke and
Newton is usually used to deal with this kind of problem
in mechanics. Relationship between stressσ(t) and strain
ε(t) is our interesting topic. When we consider the viscous
liquids, we usually choose the following tool

ν(t) = ξD′ζ(t) (1)

hereξ is called the material constant.

ν(t) = ED0ζ(t), (2)

as you can see from the relationship above, Hooke’s law is
a correct method for simulating the stress-strain relationship
of elastic solids.

Now, if we control the strain, we build a model, letζ(t) =
t when t ∈ [0, T ] for T > 0. Then we can have

ν(t) = Et

for an elastic solid and

ν(t) = ξ = const

with regard to a viscous liquid. We can reduce these equa-
tions to the following form

ψk =
σ(t)
ε(t)

tk, (3)

hereψ0 = E and ψ1 = η. In practical matters, when0 <
k < 1, the equation (3) represent the viscoelastic materials.

In the references, we can find many definitions about
fractional derivatives, such as Riesz-Caputo derivative [26],
Hadamard derivative [24], Caputo derivative [22], Atangana-
Baleanu fractional derivative [25], Riemann-Liouville deriva-
tive [23]. Many other forms of generalizations of fractional
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derivatives are also discussed in the recent articles, for
example in [27],ψ-Hilfer fractional derivative existed in a
integro-differential equation was considered. The Katugam-
pola fractional derivative was introduced in [28].

ϕ-Caputo fractional derivative exists in the following frac-
tional initial value problem was discussed in Almeida et al.
[29],

CDα ϕ
a+ x(t) = g(t, x(t)), t ∈ [c, d],

x(c) = xc, x
[l]
ψ (c) = xl

c, l = 1, 2, · · ·,m− 1.

In [30], theϕ-Riemann-Liouville fractional derivative ex-
ists in the following fractional problem was considered.

Dα ϕ
0+ v(τ) + f(τ, v(τ)) = 0, τ ∈ (0, 1),

v(0) = 0, v(1) = 0,

where 1 < α ≤ 2. In this article, Seemab et al obtained
the positive solutions for the above differential equation.
Unfortunately, the first order derivative doesn’t exist in the
f(x, v(x)) of the fractional differential equation of Seemab
et al [30].

In [31], the Caputo operator about the new functionψ lies
in a fractional boundary value problems was discussed.

CDβ, ψ
c+ v(τ) = f(τ, v(τ)), τ ∈ [c, d],

v
[l]
ψ (c) = vl

c, l = 0, 1, · · ·, n− 2; v
[n−1]
ψ (d) = vd,

heren−1 < β ≤ n (n = [β]+1), f ∈ C[a, b]×R×R → R
and yk

a , yb ∈ R, (k = 0, 1, · · ·, n − 2), y ∈ Cn−1[a, b] so
as toCDα, ψ

a+ y can exist. Moreover,CDα, ψ
a+ y is continuous

on the interval[a, b]. The authors got the unique solution in
this article.

Sun [33] gave the solution for the Sturm-Liouville-like
problem

(φp(v′(τ)))′ + q(τ)f(τ, v(τ), v′(τ)) = 0, τ ∈ (0, 1),

v(0)− αv′(ξ) = 0,

v(1) + βv′(η) = 0.

The author utilized a technique called monotone iteration. In
this article, Sun didn’t require the above equation has lower
and upper solutions. The positive solutions were obtained
and the iterative schemes were established at the same time.
Unfortunately, the derivative of this above equation in this
article is only of integer order.

On the other hand, most of the existing literature does not
consider the computational methods of the solution. Well,
here’s the problem: When the solutions exist, how can we
compute them? Based on the above results, in this paper,
the Riemann-Liouville derivative with respect to a Kernel
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function ϕ(t) existsin the following fractional problem was
discussed.

Dα ϕ
0+ v(t) + g(t, v(t), v′(t)) = 0, t ∈ (0, 1), (4)

v(0) = 0, v′(0) = 0, v(1) = 0, (5)

where2 < α ≤ 3. Moreover, the functiong : [0, 1]×[0,∞)×
(−∞,∞) → [0,∞) is continuous and the following function
which is increasing strictly satisfiesϕ : [0, 1] → [0, 1], ϕ ∈
C2[0, 1], ϕ′(x) 6= 0′ x ∈ [0, 1] and (α − 1)ϕ′(t) < 1. We
got the positive solution which is monotone and iterative for
the above differential equation.

Let’s take a look at the layout of this article. In Section
1, we give a descriptive introduction. Some theorems and
definitions aboutϕ-Riemann-Liouville fractional integral and
derivative are presented in section 2. At last, the iterative
positive solution for (4), (5) is considered.

II. PRELIMINARIES

We now present some definitions, notations and results of
Riemann-Liouville integral and derivative with respect to a
Kernel functionϕ(t).

Definition 2.1 [29] Now suppose thatn − 1 < β < n.
we gave a functiong ∈ [c, d] which is integrable and
ϕ ∈ Cn[c, d], ϕ′(t) 6= 0 an increasing differentiable func-
tion. Here’s the definition forϕ-Riemann-Liouville fractional
integral ofg

Iβ ϕ
c+ g(x) =

1
Γ(β)

∫ x

c

ϕ′(s)(ϕ(x)− ϕ(s))β−1g(s)ds.

Definition 2.2 [29] Now suppose thatn− 1 < β < n. ϕ
is given just as definition 2.1. Assume thatg : [a, b] →
R is a function which is integrable. Here’s the definition
for Riemann-Liouville derivative with respect to a Kernel
function ϕ(t) as follows

Dβ ϕ
a+ g(x) =

(
1

ϕ′(x)
d

dt

)n

In−β ϕ
a+ g(x)

=
1

Γ(n− β)

(
1

ϕ′(x)
d

dt

)n

∫ x

a
ϕ′(s)(ϕ(x)− ϕ(s))n−β−1g(s)ds.

Let α, β > 0, then the relation

Iα ϕ
a+ Iβ ϕ

a+ h(x) = Iα+β ϕ
a+ h(x)

holds.
Definition 2.3 [29] Let β > 0. ϕ ∈ Cn[c, d], ϕ′(t) >

0 andϕ′(t) 6= 0, t ∈ [c, d]. Supposeh ∈ Cn−1[c, d], here’s
the definition forϕ-Caputo fractional derivative ofh

CDβ ϕ
c+ h(x) = Dβ ϕ

c+

[
h(x)−

n−1∑

k=0

h
[k]
ϕ (c)
k!

(ϕ(x)− ϕ(c))k

]
,

heren = [β] + 1 if β 6∈ N, n = β if β ∈ N.
Theorem 2.1 [29] Let h : [c, d] → R. The following

results are valid.
1. Supposex ∈ C[c, d], we haveCDβ ϕ

c+ Iβ ϕ
c+ h(x) = h(x)

2. Supposex ∈ Cn−1[c, d], just we get

Iβ ϕ C
c+ Dβ ϕ

c+ h(x) = h(x)−
n−1∑

k=0

h
[k]
ϕ (c)
k!

(ϕ(x)− ϕ(c))k.

Lemma 2.1 Supposeg is continuous which is defined on
[0, 1] and2 < β ≤ 3. The following fractional problem

Dβ ϕ
0+ v(t) + g(t) = 0, t ∈ (0, 1), (6)

v(0) = 0, v′(0) = 0, v(1) = 0, (7)

has a solution which is unique as following

v(t) =
∫ 1

0

G(t, s)ϕ′(s)g(s)ds, (8)

here

G(t, s) =
Λ(t)
Γ(β)





(ϕ(1)− ϕ(s))β−1

− 1
Λ(t)

(ϕ(t)− ϕ(s))β−1,

0 ≤ s ≤ t ≤ 1,
(ϕ(1)− ϕ(s))β−1, 0 ≤ t ≤ s ≤ 1,

(9)

with Υ(t) = ϕ(t)− ϕ(0) andΛ(t) =
(Υ(t))β−1

(Υ(1))β−1
.

Proof: First, we presume the fractional problems (6),
(7) has a solutionv(t). Then, from Theorem 2.1, we can get

v(t) = c1(ϕ(t)− ϕ(0))β−1 + c2(ϕ(t)− ϕ(0))β−2

+c3(ϕ(t)− ϕ(0))β−3 − Iβ ϕ
0+ g(t).

c2 = c3 = 0 can be obtained just from the relationsv(0) =
0, v′(0) = 0. Thus,

v(t) = c1(ϕ(t)− ϕ(0))β−1 − Iβ ϕ
0+ g(t).

Similar to [30], we have (8), (9) hold.
Lemma 2.2 We can conclude that the functionG(t, s)

described in (9) matches the following relationship.
1. G(t, s) > 0 for all t, s ∈ (0, 1);

2. For s ∈ (0, 1), max
t∈[0,1]

G(t, s) ≤ (ϕ(1)− ϕ(s))β−1

Γ(β)(Υ(1))β−1
;

3. For s ∈ (0, 1), there exists a positive functionω which
can make the following relationship hold:

min
t∈[ 14 , 3

4 ]
G(t, s) ≥ ω(s) max

t∈[0,1]
G(t, s); (10)

4. For s ∈ (0, 1),

max
t∈[0,1]

∂G(t, s)
∂t

≤ (ϕ(1)− ϕ(s))β−1

(Υ(1))β−1Γ(β − 1)
max

t∈[0,1]
ϕ′(t). (11)

Proof: The proof of the properties 1.2.3 are given in
[30], now we prove the property 4. From (9), we have

∂G(t, s)
∂t

=





Λ′(t)
Γ(β)

(ϕ(1)− ϕ(s))β−1

− 1
Γ(β − 1)

(ϕ(t)− ϕ(s))β−2ϕ′(t),

0 ≤ s ≤ t ≤ 1,
Λ′(t)
Γ(β)

(ϕ(1)− ϕ(s))β−1, 0 ≤ t ≤ s ≤ 1.

(12)
2 < β ≤ 3, ϕ′(t) > 0 imply that

∂G(t, s)
∂t

≤ Λ′(t)
Γ(β)

(ϕ(1)− ϕ(s))β−1

=
(ϕ(t)− ϕ(0))β−2(ϕ(1)− ϕ(s))β−1

(Υ(1))β−1Γ(β − 1)
ϕ′(t)

≤ (ϕ(1)− ϕ(s))β−1

(Υ(1))β−1Γ(β − 1)
max

t∈[0,1]
ϕ′(t).
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II I. M AIN RESULTS

We define the norm

‖v‖ = { max
τ∈[0,1]

|v(τ)|, max
τ∈[0,1]

|v′(τ)|}.

Thus we haveE = C1[0, 1] is a Banach space in the above
norm case.

Let K ⊂ E defined by

K = {v ∈ E : v(t) ≥ 0, 0 ≤ t ≤ 1}. (13)

For v ∈ K, the operatorA is given by the following relation

(Av)(t) =
∫ 1

0

G(t, s)ϕ′(s)g(s, v(s), v′(s))ds. (14)

Obviously, if v(t) satisfies the relationv = Av, then we can
say the fractional problem (4), (5) has a solutionv(t).

Lemma 3.1 [30] Operator relationA : K → K described
by (14) is a completely continuous operator.

Denote

B = min
{

bΓ(β + 1)
ϕ(1)− ϕ(0)

,
bβΓ(β − 1)

(ϕ(1)− ϕ(0)) max
0≤t≤1

ϕ′(t)

}
.

Theorem 3.1Suppose that we can find a numberb > 0,
satisfies

(H1) g(t, µ1, ν1) ≤ g(t, µ2, ν2), if
0 ≤ t ≤ 1, 0 ≤ µ1 ≤ µ2 ≤ b, 0 ≤ |ν1| ≤ |ν2| ≤ b;

(H2) max
0≤t≤1

g(t, b, b) ≤ B;

(H3) g(t, 0, 0) 6≡ 0 if 0 ≤ t ≤ 1.

Thus there is a positive solutionν∗ ∈ K for equation (4),(5).
Moreover, theν∗ satisfies

0 < ν∗ ≤ b, 0 < |(ν∗)′| ≤ b.

Furthermore,

lim
n→∞

νn = lim
n→∞

Anν0 = ν∗

lim
n→∞

(νn)′ = lim
n→∞

(Anν0)′ = (ν∗)′

here

ν0(t) = b(Υ(t))β−1 = b(ϕ(t)− ϕ(0))β−1, 0 ≤ t ≤ 1.

Proof: Set

Kb = {v ∈ K| ‖v‖ < b} .

Then we are going to explainA : Kb → Kb.
Let v ∈ Kb, just wehave

0 ≤ v(t) ≤ max
0≤t≤1

|v(t)| ≤ ‖v‖ ≤ b, (15)

0 ≤ |v′(t)| ≤ max
0≤t≤1

|v′(t)| ≤ ‖v‖ ≤ b. (16)

We can get the following relationship just from conditions
(H1) and (H2).

0 ≤ g(t, v(t), v′(t)) ≤ g(t, b, b) ≤ max
0≤t≤1

g(t, b, b)

≤ B.
(17)

So, from (17) and lemma 2.2, the following relations hold.

∣∣∣∣(Au)(t)
∣∣∣∣ =

∣∣∣∣
∫ 1

0

G(t, s)ϕ′(s)g(s, v(s), v′(s))ds

∣∣∣∣

≤
∫ 1

0

G(t, s)ϕ′(s)
∣∣∣∣g(s, v(s), v′(s))

∣∣∣∣ds

≤
∫ 1

0

G(t, s)ϕ′(s)
∣∣∣∣g(s, b, b)

∣∣∣∣ds

≤
∫ 1

0

max
t∈[0,1]

G(t, s)ϕ′(s)
∣∣∣∣g(s, b, b)

∣∣∣∣ds

≤ B

∫ 1

0

(ϕ(1)− ϕ(s))β−1

(ϕ(1)− ϕ(0))β−1Γ(β)
ϕ′(s)ds

≤ bΓ(β + 1)
ϕ(1)− ϕ(0)

ϕ(1)− ϕ(0)
Γ(β + 1)

= b.
(18)

∣∣∣∣(Au)′(t)
∣∣∣∣ =

∣∣∣∣
∫ 1

0

∂G(t, s)
∂t

ϕ′(s)g(s, v(s), v′(s))ds

∣∣∣∣

≤
∫ 1

0

∂G(t, s)
∂t

ϕ′(s)
∣∣∣∣g(s, v(s), v′(s))

∣∣∣∣ds

≤
∫ 1

0

∂G(t, s)
∂t

ϕ′(s)
∣∣∣∣g(s, b, b)

∣∣∣∣ds

≤
∫ 1

0

max
t∈[0,1]

∂G(t, s)
∂t

ϕ′(s)
∣∣∣∣g(s, b, b)

∣∣∣∣ds

≤ B

∫ 1

0

(ϕ(1)− ϕ(s))β−1 max
0≤t≤1

ϕ′(t)

(ϕ(1)− ϕ(0))β−1Γ(β − 1)
ϕ′(s)ds

≤ bβΓ(β − 1)
(ϕ(1)− ϕ(0)) max

0≤t≤1
ϕ′(t)

(ϕ(1)− ϕ(0)) max
0≤t≤1

ϕ′(t)

βΓ(β − 1)
= b.

(19)
This meansA : Kb → Kb. Let

ν0(t) = b(Υ(t))β−1, 0 ≤ t ≤ 1.

Then

ν′0(t) = b((Υ(t))β−1)′ = b(β−1)(Υ(t))β−2ϕ′(t), 0 ≤ t ≤ 1.

2 < β ≤ 3, ϕ : [0, 1] → [0, 1] and (β − 1)ϕ′(t) < 1 imply
that

0 ≤ ν0(t) ≤ b, 0 ≤ |ν′0(t)| ≤ b.

We defineν1 = Aν0, thusν1 ∈ Kb, we write

νn+1 = Aνn = An+1ν0, (n = 0, 1, 2, · · ·). (20)

We can conclude thatνn ∈ AKb ⊆ Kb, n = 0, 1, 2, · · · just
from A : Kb → Kb.

There exists a sequentially compact set{νn}∞n=0 precisely
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becauseA is a completely continuous operator, therefore,

ν1(t) = Aν0(t) =
∫ 1

0

G(t, s)ϕ′(s)g(s, ν0(s), ν′0(s))ds

≤
∫ 1

0

G(t, s)ϕ′(s)
∣∣∣∣g(s, ν0(s), ν′0(s))

∣∣∣∣ds

≤
∫ 1

0

G(t, s)ϕ′(s)
∣∣∣∣g(s, b, b)

∣∣∣∣ds

≤ B

∫ 1

0

Λ(t)
Γ(β)

(ϕ(1)− ϕ(s))β−1ϕ′(s)ds

≤ bΓ(β + 1)
ϕ(1)− ϕ(0)

(Υ(t))β−1 ϕ(1)− ϕ(0)
Γ(β + 1)

= b(Υ(t))β−1 = ν0(t).
(21)

|ν′1(t)| = |(Aν0)′(t)|
=

∣∣∣∣
∫ 1

0

∂G(t, s)
∂t

ϕ′(s)g(s, ν0(s), ν′0(s))ds

∣∣∣∣

≤
∫ 1

0

∣∣∣∣
∂G(t, s)

∂t

∣∣∣∣ϕ′(s)
∣∣∣∣g(s, ν0(s), ν′0(s))

∣∣∣∣ds

≤
∫ 1

0

∣∣∣∣
∂G(t, s)

∂t

∣∣∣∣ϕ′(s)
∣∣∣∣g(s, b, b)

∣∣∣∣ds

≤ B

∫ 1

0

Λ′(t)
Γ(β)

(ϕ(1)− ϕ(s))β−1ϕ′(s)ds

=
bΓ(β + 1)

ϕ(1)− ϕ(0)

∫ 1

0

((Υ(t))β−1)′

Γ(β)(ϕ(1)− ϕ(0))β−1

(ϕ(1)− ϕ(s))β−1ϕ′(s)ds
= b((Υ(t))β−1)′ = ν′0(t).

(22)
Then wehave

ν1(t) ≤ ν0(t), |ν′1(t)| ≤ |ν′0(t)|, 0 ≤ t ≤ 1.

Thus,

ν2(t) = Aν1(t) ≤ Aν0(t) = ν1(t), 0 ≤ t ≤ 1,

|ν′2(t)| = |(Aν1)′(t)| ≤ |(Aν0)′(t)| = |ν′1(t)|, 0 ≤ t ≤ 1.

We can find

νn+1 ≤ νn, |ν′n+1(t)| ≤ |ν′n(t)|,
0 ≤ t ≤ 1, n = 1, 2, · · · .

just by mathematical induction. Thus, there existsν∗ ∈ Kb

satisfiesνn → ν∗. If we choosen → ∞ in (20), we have
Aν∗ = ν∗ becauseA is a continuous operator.

Supposeg(t, 0, 0) 6≡ 0, 0 ≤ t ≤ 1, then (4),(5) has no
zero solution. Therefore, (4),(5) has a solutionν∗ which is
positive on[0, 1].

Denote

Bk = min
{

bkΓ(β + 1)
ϕ(1)− ϕ(0)

,
bkβΓ(β − 1)

(ϕ(1)− ϕ(0)) max
0≤t≤1

ϕ′(t)

}
.

Corollary 3.1 Except for(H1), (H3) hold, we can find
numbersb1, b2, · · ·, bn which satisfy0 < b1 < b2 < · · · < bn,
moreover,

(H2)′ max
0≤t≤1

g(t, bm, bm) ≤ Bm, m = 1, 2, · · ·, n,

specially,

lim
l→+∞

max
0≤t≤1

g(t, l, bm) = 0, m = 1, 2, · · ·, n.

Thus there are 2n positive solutionν∗m ∈ K, m = 1, 2, · · ·, n
for equation (4),(5). Moreover, theν∗m satisfy 0 < ν∗m ≤

bm, 0 < |(ν∗m)′| ≤ bm and lim
n→∞

νmn
= lim

n→∞
Anνm0 = ν∗m,

where

νm0(t) = bm(Υ(t))β−1 = bm(ϕ(t)−ϕ(0))β−1, 0 ≤ t ≤ 1.

Proof: The iterative schemes in Corollary 3.1 are

νm1 = Aνm0 , νm2 = Aνm1 = A2νm0 ,

νmn+1 = Aνmn
= Anνm0 , m = 1, 2, · · ·, n = 1, 2, · · ·.
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