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Abstract—The sparse optimization problem has a wide range
of applications in image processing, compressed sensing, and
machine learning, etc. It is well known that l1-minimization
problem plays an important role in studying sparse optimization
problem from theoretical and algorithm aspects. In this paper,
we mainly study the existence theory on saddle points for l1-
minimization problem. Firstly, to overcome the nonsmoothness
of l1-norm, we translate l1-minimization problem to an opti-
mization programming with linear cost function by introducing
new variable. Secondly, based on a new augmented Lagrangian
function, the relationship on saddle points between the primal
problem and the translated problems, associated with their
duality problems, is established. It allows us to establish local
saddle points by taking into account of second-order sufficient
conditions. Finally, global saddle points is established by using
two different approaches. One is requiring that the optimal
solution is unique. This assumption can be further removed
in our another approach by using the perturbation analysis of
primal problem.

Index Terms—Saddle points, augmented Lagrangian func-
tions, l1-minimization problems, dual problem, perturbation
analysis.

I. INTRODUCTION

CONSIDER The following l1-minimization problem

(P ) min ‖x‖1
s.t. gi(x) ≤ 0, i = 1, 2, ...,m,

hj(x) = 0, j = 1, 2, ..., l,

x ∈ X,

where ‖x‖1 :=
n∑
i=1

|xi|, gi : Rn → R for i = 1, . . . ,m, hj :

Rn → R for j = 1, . . . , l are twice differentiable functions,
and X is a nonempty closed set in Rn.

The l1-minimization problem has been attracted a lot of
attentions after introducing by Chen, Donoho and Saunders
[5] to tackle the NP-hard l0-minimization arising from signal
and imaging processing. How to seek a sparse solution
has become a common request in many scientific areas.
Hence, due to its capability for locating sparse solutions,
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l1-minimization has found numerous applications in pattern
recognition, machine learning, computer vision, etc. The re-
lation between l0- and l1- minimization, stability of solution
sets, reweighted l1-methods, dual-density-based l1-methods,
and other related theory, algorithm, and applications can be
found in [1], [2], [9], [28], [29], [30], [31] and references
therein.

The Lagrangian function of (P) is

L(x, λ, µ) := ‖x‖1 +
m∑
i=1

λigi(x) +
l∑

j=1

µjhj(x),

where λ ∈ Rm+ and µ ∈ Rl. The dual problem (D) is

(D) max θ(λ, µ) := inf
x∈X
L(x, λ, µ)

s.t. λ ≥ 0.

The duality theory provide a theoretical foundation for devel-
oping various algorithms which are widely used in practical
applications, e.g., [8], [14], [22]. The strong duality theorem
(i.e., the zero-duality gap property between the primal and
dual problems) can be obtained under convexity assumptions.
Unfortunately, a nonzero-duality gap maybe arise for non-
convex programming as using the above Lagrangian. This
drawback has been solved by adding an augmented term
to the classical Lagrangian function, referred to augmented
Lagrangian functions. For example, in [15], the augmented
function is requiring to be convex. This assumption imposed
on augmented function was further weakened to be non-
convex, level-boundedness, or even valley-at-zero property;
see [3], [34] for more information.

In recent years, by introducing different augmented La-
grangian functions, saddle points theory has been established
for various types of optimization problems, such as nonlinear
programming [6], [16], [23], [24], [33], second-order cone
programming [12], [26], [32], semi-definite programming
[10], [13], [19], [20], [25], [27], cone programming [7], [18],
[35], semi-infinite programming [4], [11], [17]. Compared
with the above existing results, it should be pointed out
that l1-minimization belongs to non-smooth optimization
problems, due to the non-smoothness of l1-norm. Hence,
the existing results cannot be applied to l1-minimization
directly. The main aim of this research is to fill up this gap,
i.e., studying the existence theory on saddle points of l1-
minimization problem (P). Our main contributions are listed
as follows.

i) To overcome the non-smoothness caused by l1-norm,
we translate the primal problem (P ) to a new problem
(P ′) by introducing a new variable. The main advan-
tage of this transform (P ′) is that the local saddle
points can be established by second-order sufficient
conditions.
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ii) Develop the relationship of saddle points between (P )
and (P ′). Our research shows an interesting fact: the
saddle point of (P ′) can ensure that of (P ), while the
converse statement maybe false unless some assump-
tions are added.

iii) Establish the global saddle point by using two different
approaches. One is requiring that the optimal solution
is unique. This assumption can be removed in our
another approach by using the perturbation analysis of
primal problem.

The paper are organized as follows. Section II deals
with saddle points for l1-minimization problem with linear
constraints. In Section III, we discuss the relationship of
saddle point between L1 and L2. Section IV studies saddle
points of l1-minimization problem with nonlinear constraints.
Conclusion is given in Section V.

II. SADDLE POINTS WITH LINEAR CONSTRAINTS

We first study the following l1-minimization problem with
linear constraints.

Let B ∈ Rm1×n, C ∈ Rm2×n, D ∈ Rm3×n be three given
matrices with m1 +m2 +m3 < n, and b ∈ Rm1 , c ∈ Rm2 ,
d ∈ Rm3 be three vectors, respectively. Consider

min
x
{‖x‖1 : Bx ≥ b, Cx ≤ c,Dx = d}. (1)

Denoted by F the feasible region, i.e.,

F := {x ∈ Rn|Bx ≥ b, Cx ≤ c,Dx = d}.

Any polyhedron can be represented by finite linear equality
and inequality in this way.

At a reference point x∗, some inequalities among Bx∗ ≥ b
and Cx∗ ≤ c might be binding. Let us use the index sets
A1(x∗) and A1(x∗), respectively, to record the binding and
non-binding constraints in the first group of the inequalities
Bx ≥ b, i.e.,

A1(x∗) := {i : (Bx∗)i = bi},

A1(x∗) := {i : (Bx∗)i > bi},

and the index sets for the second group of the inequality
Cx ≤ c, i.e.,

A2(x∗) := {i : (Cx∗)i = ci},

A2(x∗) := {i : (Cx∗)i < ci}.

By introducing α ∈ Rm1
+ and β ∈ Rm2

+ , (1) takes the form

min
x

{
‖x‖1 :

Bx− α = b, Cx+ β = c,
Dx = d, α ≥ 0, β ≥ 0

}
. (2)

The following result is based on complementarity theory of
linear programming.

Lemma 1. (see [28], Lemma 2.4.1). At an optimal solution
x∗ of the problem (1), there exists α∗, β∗ such that

α∗i = 0 ∀ i ∈ A1 (x∗)
α∗i = (Bx∗)i − bi > 0 ∀ i ∈ A1 (x∗)
β∗i = 0 ∀ i ∈ A2 (x∗)
β∗i = ci − (Cx∗)i > 0 ∀ i ∈ A2 (x∗) .

(3)

By introducing u, v, t ∈ Rn+, where t satisfies |x| ≤ t,
the problem (2) can be written equivalently as a linear
programming

min
(x,t,u,v,α,β)

eT t

s.t. Bx− α = b, Cx+ β = c, Dx = d,

x+ u− t = 0, x− v + t = 0, (4)
(t, u, v, α, β) ≥ 0.

The Lagrangian dual problem (4) in terms of the variables
h(1), ..., h(5) is given as follows
(DP)

max
(h1,...,h5)

bTh3 + cTh4 + dTh5

s.t. h1 + h2 +BTh3 + CTh4 +DTh5 = 0,

−h1 + h2 ≤ e,
(h1,−h2,−h3, h4) ≥ 0.

Here x is the key variable of this problem, because the
remaining variables (t, u, v, α, β) can be determined by x.
This point is illustrated by the following result.

Lemma 2. (see [28], Lemma 2.4.4).
(i) If (x∗, t∗, u∗, v∗, α∗, β∗) is an optimal solution of

the problem (4), then

(t∗, u∗, v∗) = (|x∗| , |x∗| − x∗, |x∗|+ x∗)

and α∗, β∗ is in (3).
(ii) x∗ is a solution to the problem (1) if and only if

(x∗, |x∗| , |x∗| − x∗, |x∗|+ x∗, α∗, β∗) is a solution
to (4), where (α∗, β∗) is in (3).

The existence theory of saddle points with linear con-
straints is given below by using the duality theory of linear
programming.

Theorem 1. The saddle point for l1-minimization problem
with linear constraints (1) exists if and only if primal problem
(4) is feasible.

Proof: Note first that the problem (4) is linear program-
ming and the objective function is bounded from below.
Hence the optimal value of primal problem (4) is finite
whenever the feasible region is nonempty. It ensures the zero-
duality gap between LP problem (4) and dual problem.

III. RELATION OF SADDLE POINTS BETWEEN L1 AND L2

In this section, let us consider the saddle point of (P ) with
nonlinear constraint. Define

u(x, t) := x− t and v(x, t) := −x− t.

The problem (P ) takes the form

(P ′) min
(x,t)

eT t

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m

hj(x) = 0, j = 1, 2, . . . , l

uk(x, t) ≤ 0, k = 1, 2, . . . , n

vk(x, t) ≤ 0, k = 1, 2, . . . , n

x ∈ X.
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Note that the objective function in (P ′) is linear. The
relation between optimal solutions of (P ) and (P ′) is given.

Lemma 3. (i) If (x∗, t∗) is a solution of (P ′), then t∗

equals to |x∗|.
(ii) x∗ is a solution of (P ) if and only if (x∗, |x∗|) is

a solution of (P
′
).

To deal with non-convex optimization problems, it natural-
ly needs to use an augmented Lagrangian function, instead of
the classical Lagrangian. Here we propose two generalized
essentially quadratic augmented Lagrangian functions for
(P ) and (P

′
), respectively,

L1(x, λ, µ, c)

:= ‖x‖1 +
l∑

j=1

µjhj(x) +
c

2

l∑
j=1

h2
j (x)

+
1

2c

m∑
i=1

{
[φ(cgi(x), λi)]

2
+ − λ

2
i

}
,

and

L2(x, t, λ, µ, ξ, η, c)

:= eT t+
l∑

j=1

µjhj(x) +
c

2

l∑
j=1

h2
j (x)

+
1

2c

m∑
i=1

{
[φ (cgi(x), λi)]+ − λ

2
i

}
+

1

2c

n∑
k=1

{
[φ (cuk(x, t), ξk)]+ − ξ

2
k

}
+

1

2c

n∑
k=1

{
[φ (cvk(x, t), ηk)]+ − η

2
k

}
,

where (λ, µ, ξ, η, c) ∈ Rm+ ×Rl ×Rn+ ×Rn+ ×R++ and φ :
R× R→ R is required to satisfy
(A1) convex and twice continuously differentiable,
(A2) φ

′
(0, 0) = (1, 1), φ(0, y) = y, ∀y ∈ R,

(A3) φ
′

x(x, y) > 0, ∀y ∈ R.
Clearly, φ(x, y) := x+ y satisfies the above assumptions. In
this special case, Li for i = 1, 2 reduces to the essentially
quadratic augmented Lagrangian.

The Lagrangian dual problem of (P ) and (P
′
) are pre-

sented as below

(D) max
λ≥0

θ(λ, µ, c) := inf
x∈X
L1(x, λ, µ, c),

and

(D′) max
(λ,ξ,η)≥0

θ(λ, µ, ξ, η, c),

where

θ(λ, µ, ξ, η, c) := inf
(x,t)∈X×Rn

+

L2(x, t, λ, µ, ξ, η, c).

Note that

L2(x, t, λ, µ, ξ, η, c)

= eT t− ‖x‖1 + L1(x, λ, µ, c)

+
1

2c

n∑
k=1

[(
φ(cuk(x, t), ξk)

)2

+
− ξ2

k

]

+
1

2c

n∑
k=1

[(
φ(cvk(x, t), ηk)

)2

+
− η2

k

]
. (5)

The assumption on φ ensures the monotonicity of φ(x, y) in
x. Hence if

φ
(
cuk(x, |x|), ξk

)
≤ ξk, φ

(
cvk(x, |x|), ηk

)
≤ ηk,

then [
φ
(
cuk(x, |x|), ξk

)]2
+
− ξ2

k ≤ 0

and [
φ
(
cvk(x, |x|), ηk

)]2
+
− η2

k ≤ 0.

Thus

L2(x, |x|, λ, µ, ξ, η, c) ≤ L1(x, λ, µ, c)

= L2(x, |x|, λ, µ, 0, 0, c). (6)

Definition 1. A solution (x∗, λ∗, µ∗) ∈ X × Rm+ × Rl is a
global saddle point of L1, if there exists some c > 0 such
that for all (x, λ, µ) ∈ X × Rm+ × Rl,

L1 (x∗, λ, µ, c) ≤ L1 (x∗, λ∗, µ∗, c) ≤ L1 (x, λ∗, µ∗, c) ,
(7)

If the above inequality holds by restricting (x, λ, µ) ∈
X ∩ N (x∗, δ) × Rm+ × Rl, where N (x∗, δ) :=
{x ∈ Rn|‖x− x∗‖ ≤ δ}, then (x∗, λ∗, µ∗) is said to be a
local saddle point of L1.

Note that the saddle point is also dependent on the pa-
rameter c. But for simplification, we omit it in the following
analysis. It does not cause any confusion from the context.

Lemma 4. If (x∗, λ∗, µ∗) is a local (global) saddle point of
L1, then x∗ is a local (global) optimal solution of (P) and

L1(x∗, λ∗, µ∗, c) = ‖x∗‖1.

Proof: If (x∗, λ∗, µ∗) is a local saddle point of L1, by
definition there exists δ > 0 such that for all x ∈ x∗ + δB
and λ ∈ Rm+ ,

L1(x∗, λ, µ, c) ≤ L1(x∗, λ∗, µ∗, c) ≤ L1(x, λ∗, µ∗, c). (8)

If x∗ is infeasible, then we need to consider the following
two cases.
Case (a): ∃i ∈ {1, . . . ,m} such that gi(x∗) > 0. Taking
into account of convexity of φ, we have φ(cgi(x

∗), λi) ≥
cgi(x

∗) + λi > 0, and hence

1

2c

[(
φ(cgi(x

∗), λi)
)2

+
− λ2

i

]
=

1

2c

[(
φ(cgi(x

∗), λi)
)2

− λ2
i

]
≥ 1

2c

[
c2g2

i (x∗) + 2cλigi(x
∗))
]

→ ∞ as λi →∞.

Case (b): ∃j ∈ {1, 2, . . . , l} such that hj(x∗) 6= 0. Then

1

2c

[(
φ(cgi(x

∗), λi)
)2

+
− λ2

i

]
= 0

and
µjhj(x

∗) +
c

2
hj(x

∗)→∞ as µj →∞.
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The above two cases both yield a contradict with the finite-
ness of L1(x∗, λ∗, µ∗, c). Hence x∗ is feasible.
According to the first inequality in (8), we have

L1(x∗, λ∗, µ∗, c) ≥ L1(x∗, 0, µ, c) = ‖x∗‖1,

where the equality is due to the feasibility of x∗ as shown
above. It then further implies(

φ(cgi(x
∗), λ∗)

)2

+
≥ (λ∗i )

2. (9)

The feasibility of x∗ means(
φ(cgi(x

∗), λ∗)
)2

+
≤ (λ∗i )

2. (10)

Putting (9) and (10) together yields(
φ(cgi(x

∗), λ∗)
)2

+
= (λ∗i )

2.

Hence
L1(x∗, λ∗, µ∗, c) = ‖x∗‖1. (11)

Let us use the second inequality in (8) to show the local
optimality of x∗. For any feasible point x satisfying x ∈
x∗ + δB, according to (11) and the second inequality in (8),
we have

‖x∗‖1 ≤ L1(x, λ∗, µ∗, c) ≤ ‖x‖1.

So x∗ is a local optimal solution.
By a similar argument, we can show that x∗ is a global

optimal solution, provided that (x∗, λ∗, µ∗) is a global saddle
point of L1.

The similar argument is applicable to L2.

Corollary 1. If (x∗, t∗, λ∗, µ∗, ξ∗, η∗) is a local (global)
saddle point of L2, then (x∗, t∗) is a local (global) optimal
solution of (P ′), and

t∗ = |x∗| and L2(x∗, t∗, λ∗, µ∗, ξ∗, η∗, c) = ‖x∗‖1.

Proof: Following the argument given in Lemma 4, it
is readily obtaining that (x∗, t∗) is a local (global) optimal
solution of (P ′). Furthermore, according to the special
structure of (P ′), t∗ = |x∗| by Lemma 3.

We next turn attention to study the relationship of saddle
point between L1 and L2.

Theorem 2. If (x∗, t∗, λ∗, µ∗, ξ∗, η∗) is a local (global)
saddle point of L2, then (x∗, λ∗, µ∗) is a local (global)
saddle point of L1.

Proof: If (x∗, t∗, λ∗, µ∗, ξ∗, η∗) is local (global) saddle
point, then by Corollary 1 (x∗, t∗) with t∗ = |x∗| is a local
(global) optimal solution of (P ′). Hence, by Lemma 3 (ii)
x∗ is a local (global) optimal solution of (P ). So[(

φ(cgi(x
∗), λ∗i )

)2

+
− (λ∗i )

2
]

=
[(
φ(cuk(x∗, t∗), ξ∗k)

)2

+
− (ξ∗k)2

]
=

[(
φ(cvk(x∗, t∗), η∗k)

)2

+
− (η∗k)2

]
= 0.

This implies L1(x∗, λ∗, µ∗, c) = ‖x∗‖1. Thus

L1(x∗, λ, µ, c) ≤ ‖x∗‖1 = L2(x∗, t∗, λ∗, µ∗, ξ∗, η∗, c)

≤ L2(x, t, λ∗, µ∗, ξ∗, η∗, c).

In particular, letting t = |x| we obtain

L1(x∗, λ, µ, c) ≤ L2(x, |x|, λ∗, µ∗, ξ∗, η∗, c)
≤ L1(x, λ∗, µ∗, c),

where the last step is due to (6).
However, the converse statement of Theorem 2 needs to

modify a little by restricting the region of (x, t).

Theorem 3. If (x∗, λ∗) is a local (global) saddle point of
L1, then (x∗, t∗, λ∗, ξ∗, η∗) with t∗ := |x∗| and ξ∗ = η∗ = 0
is a restricted local (global) saddle point of L2 over Γ :=
{(x, t)|t ≥ |x|}, i.e.,

L2(x∗, t∗, λ, µ, ξ, η, c) ≤ L2(x∗, t∗, λ∗, µ∗, ξ∗, η∗, c)

≤ L2(x, t, λ∗, µ∗, ξ∗, η∗, c),

whenever (x, t) ∈ Γ and (λ, µ, ξ, η) ∈ Rm+ ×Rl×Rn+×Rn+.

Proof: Since x∗ is feasible and t∗ = |x∗|, we have(
φ(cgi(x

∗), λi)
)2

+
−λ2

i ≤ 0,
(
φ(cuk(x∗, t∗), ξk)

)2

+
−ξ2

k ≤ 0,(
φ(cvk(x∗, t∗), ηk)

)2

+
− η2

k ≤ 0.

Note that(
φ(cuk(x∗, t∗), 0)

)
+

=
(
φ(cvk(x∗, t∗), 0)

)
+

= 0.

Hence

L2(x∗, t∗, λ, µ, ξ, η, c) ≤ L1(x∗, λ∗, µ∗, c)

= L2(x∗, t∗, λ∗, µ∗, 0, 0, c),

On the other hand, since ξ∗ = η∗ = 0 and (x, t) ∈ Γ, (i.e.,
t ≥ |x|), then(

φ(cuk(x, t), ξ∗k)
)2

+
− (ξ∗k)2 = 0,(

φ(cvk(x, t), η∗k)
)2

+
− (η∗k)2 = 0.

This implies

L2(x, t, λ∗, µ∗, 0, 0, c) = eT t+ L1(x, λ∗, µ∗, c)− ‖x‖1
≥ L1(x∗, λ∗, µ∗, c)

= L2(x∗, t∗, λ∗, µ∗, 0, 0, c).

The existence of saddle point between L1 and L2 is not
exactly equivalent to each other. However, we can obtain the
saddle point of L2 by that of L1 if some added assumptions
are improved.

Theorem 4. If (x∗, λ∗, µ∗) is a local saddle point of L1 and
I(x∗) := {k|x∗k = 0} = ∅, then (x∗, t∗, λ∗, µ∗, ξ∗, η∗) is a
local saddle point of L2 where t∗ := |x∗|,

ξ∗k :=

{
1 x∗k > 0,
0 x∗k < 0,

and η∗k :=

{
0 x∗k > 0,
1 x∗k < 0.

Proof: According to the formula of ξ∗, η∗, t∗ = |x∗|
and the property of φ, it is easy to see(

φ(cuk(x∗, t∗), ξ∗k)
)2

+
= (ξ∗k)2,
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(
φ(cvk(x∗, t∗), η∗k)

)2

+
= (η∗k)2, ∀ k = 1, . . . , n.

Using (5), we obtain

L2(x∗, t∗, λ∗, µ∗, ξ∗, η∗, c) = L1(x∗, µ∗, λ∗, c) = ‖x∗‖1.

Furthermore, using (6) yields

L2(x∗, t∗, λ, µ, ξ, η, c) ≤ L2(x∗, t∗, λ∗, µ∗, ξ∗, η∗, c). (12)

For k ∈ {1, . . . , n} be fixed and x∗k > 0, as (xk, tk) near
(x∗k, t

∗
k) by using the convexity of φ, i.e., φ(cuk(x, t), 1) ≥

cuk(x, t) + 1, we have

1

2c

[(
φ(cuk(x, t), ξ∗k)

)2

+
− (ξ∗k)2

]
+

1

2c

[(
φ(cvk(x, t), η∗k)

)2

+
− (η∗k)2

]
− |xk|+ tk

=
1

2c

[(
φ(cuk(x, t), 1)

)2

+
− 12

]
+

1

2c

[(
φ(cvk(x, t), 0)

)2

+

]
− xk + tk

=
1

2c

[(
φ(cuk(x, t), 1)

)2

− 1
]
− (xk − tk)

≥ 1

2c

[(
cuk(x, t) + 1

)2

− 1
]
− (xk − tk)

≥ 0. (13)

By symmetrical argument, if x∗k < 0, for all (xk, tk) near
(x∗k, t

∗
k),

1

2c

[(
φ(cuk(x, t), ξ∗k)

)2

+
− (ξ∗k)2

]
+

1

2c

[(
φ(cvk(x, t), η∗k)

)2

+
− (η∗k)2

]
− |xk|+ tk

≥ 0. (14)

Hence

L2(x, t, λ∗, µ∗, ξ∗, η∗, c) ≥ L1(x∗, λ∗, µ∗, c) (15)
= L2(x∗, t∗, λ∗, µ∗, ξ∗, η∗, c),

in which the first inequality is due to (5), (7), (13),
(14). Combining (12) and (15) together yields that
(x∗, t∗, λ∗, µ∗, ξ∗, η∗) is a local saddle point of L2 where
t∗ := |x∗|,

ξ∗k :=

{
1 x∗k > 0,
0 x∗k < 0,

and η∗k :=

{
0 x∗k > 0,
1 x∗k < 0.

This completes the proof.

IV. SADDLE POINTS WITH NONLINEAR CONSTRAINTS

A. Local saddle points

Assumption 1. (Second-order sufficiency conditions) For
s∗ := (x∗, t∗), denote I (x∗) := {i|gi(x∗) = 0},
U (x∗, t∗) := {k|uk(x∗, t∗) = 0} and V (x∗, t∗) :=
{k|vk(x∗, t∗) = 0} .

(i) ∃λ∗ ≥ 0, µ∗, ξ∗ ≥ 0, and η∗ ≥ 0 such that
0 =

 ∑m
i=1 λ

∗
i∇gi(x∗)+∑l

j=1 µ
∗
j∇hj(x∗) + ξ∗ − η∗

e− ξ∗ − η∗


0 = λ∗i gi(x

∗), ∀ i = 1, . . . ,m
0 = ξ∗kuk(x∗, t∗), ∀ k = 1, . . . , n
0 = η∗kvk(x∗, t∗), ∀ k = 1, . . . , n.

(ii) The Hessian matrix

∇2
(x,t)L(x∗, t∗, λ∗, µ∗, ξ∗, η∗, c) = (16)(
(λ∗)T∇2g(x∗) + (µ∗)T∇2h(x∗) 0

0 0

)
is positive definite over the following set
d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇hj (x∗)
>
d = 0, j = 1, 2, . . . , l,

∇gi (x∗)
>
d = 0, i ∈ J (x∗) ,

∇gi (x∗)
>
d ≤ 0, i ∈ J ′(x∗),

∇uk (x∗, t∗)
>
d = 0, k ∈ K1 (x∗, t∗) ,

∇uk (x∗, t∗)
>
d ≤ 0, k ∈ K ′1(x∗, t∗),

∇vk (x∗, t∗)
>
d = 0, k ∈ K2 (x∗, t∗) ,

∇vk (x∗, t∗)
>
d ≤ 0, k ∈ K ′2(x∗, t∗)


,

where

J (x∗) := {i ∈ I (x∗) |λ∗i > 0} ,
J ′ (x∗) := {i ∈ I (x∗) |λ∗i = 0} ,
K1 (x∗, t∗) := {k ∈ U (x∗, t∗) |ξ∗k > 0} ,
K ′1 (x∗, t∗) := {k ∈ U (x∗, t∗) |ξ∗k = 0} ,
K2 (x∗, t∗) := {k ∈ V (x∗, t∗) |η∗k > 0} ,
K ′2 (x∗, t∗) := {k ∈ V (x∗, t∗) |η∗k = 0} .

Similar to the proof in [21, Theorem 2.1] except for some
technical details, we can obtain the following result.

Theorem 5. If Assumption 1 holds at s∗ = (x∗, t∗), then
(x∗, t∗, λ∗, µ∗, ξ∗, η∗) is a local saddle point of L2.

B. Global saddle points

According to Theorem 2 the saddle point of L1 exists
whenever the saddle point of L2 exists. Thus, it firstly needs
to study sufficient conditions for existence of saddle point of
L2.

For any constant α ≥ 0, let

S(α) :=

(x, t)

∣∣∣∣∣∣
x ∈ X, |hj(x)| ≤ α, j = 1, . . . , l;
gi(x) ≤ α, i = 1, . . . ,m;
uk(x, t) ≤ α, vk(x, t) ≤ α, k = 1, . . . , n

 .

Clearly, S(0) is the feasible set of problem (P ′). Denote
S∗ as the set of the optimal solutions to problem (P ′). The
perturbation function is

βf (α) := inf{eT t| (x, t) ∈ S(α)}.

Clearly, βf (0) = val(P ). Let

U(α) :=
{

(x, t)|x ∈ X, eT t ≤ val(P ) + α
}
.

Throughout the rest of this section, unless stated otherwise,
we assume that S(0) 6= ∅.

In the following analysis, we study global saddle points
under two different approaches.

1) Unique optimal solution: If the primal problem has a
unique solution, then we can obtain the following result.

Theorem 6. Suppose that the primal solution has a unique
solution x∗. If X is compact and Assumption 1 holds at x∗,
then (x∗, t∗, λ∗, µ∗, ξ∗, η∗) is a global saddle point of L2.

Proof: According to Assumption 1 and Theorem 5,
∃c0 > 0, δ > 0 such that (x∗, t∗, λ∗, µ∗, ξ∗, η∗) is local
saddle point for all c ≥ c0, i.e.,

L2 (x∗, t∗, λ, µ, ξ, η, c)
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≤ L2 (x∗, t∗, λ∗, µ∗, ξ∗, η∗, c) (17)
≤ L2 (x, t, λ∗, µ∗, ξ∗, η∗, c) ,

by requiring that (x, t) belongs to the neighborhood
N((x∗, t∗), δ). In what follows we claim that by increasing c
the second inequality in (17) holds even if (x, t) ∈ X×<m.

Since by Lemma 3 (x∗, t∗) is a unique optimal solution
of (P ′), i.e., U(0)

⋂
S(0) = x∗, then[

U(0)\N ((x∗, t∗), δ)
]⋂[

S(0)\N ((x∗, t∗), δ)
]

= ∅.
(18)

The compactness of X further ensures the existence of an
ε1 > 0 such that[
U(ε1)\N ((x∗, t∗), δ)

]⋂[
S(ε1)\N ((x∗, t∗), δ)

]
= ∅.

(19)
In fact, if (19) is invalid, i.e., ∀ε > 0 one has[

U(ε)\N ((x∗, t∗), δ)
]⋂[

S(ε)\N ((x∗, t∗), δ)
]
6= ∅.

For εw → 0, picking

(xw, tw) ∈
[
U(εw)\N ((x∗, t∗), δ)

]
∩
[
S(εw)\N ((x∗, t∗), δ)

]
.

Since (xw, tw) ∈ U(εw) and (xw, tw) ∈ S(εw), then eT tw ≤
βf (0)+εw, and twk ≥ |xwk | for k = 1, 2 · · ·n. Noting that X is
compact, so {tw} is bounded as well. Thus, any accumulation
point of {(xw, tw)} belongs to U(0)∩S(0) as εw → 0, which
yields a contraction to (18).

Pick (x, t) ∈
(
X × Rn+

)
\N ((x∗, t∗), δ).

Case (a): (x, t) ∈ U(ε1)\N ((x∗, t∗), δ). So (x, t) /∈ S(ε1)
by (19). Hence there exists the following possibilities:
gi0(x) > ε1, or |hj0(x)| > ε1, or |uk0(x, t)| > ε1, or
|vk0(x, t)| > ε1. These subcases are further considered
below.

Subcase (a)-1: |hj(x)| > ε1 for some j. Denote Ω :=
{1, 2, . . . , l} and Ωk := {j ∈ Ω‖hj (x) | > ε1}. Hence, Ωk 6=
∅. Note that ∣∣µ∗j ∣∣

c
≤ 1

4
ε1 (20)

for all j ∈ Ω whenever c enough largely. Hence,

L2(x, t, λ∗, µ∗, ξ∗, η∗, c)

≥
l∑

j=1

µ∗jhj (x) +
c

2

l∑
j=1

h2
j (x)

− 1

2c

{
m∑
i=1

λ∗2i +
n∑
k=1

(ξ∗2k + η∗2k )

}
≥ −

∑
j∈Ω/Ωk

∣∣µ∗j ∣∣ |hj (x)|

−

∑
j∈Ωk

(µ∗j )
2

 1
2
∑
j∈Ωk

h2
j (x)

 1
2

+
c

2

l∑
j=1

h2
j (x)− 1

2c

{
m∑
i=1

λ∗2i +
n∑
k=1

(ξ∗2k + η∗2k )

}

≥ −ε1
l∑

j=1

∣∣µ∗j ∣∣+ c

∑
j∈Ωk

h2
j (x)

 1
2

×

1

2

∑
j∈Ωk

h2
j (x)

 1
2

−

∑
j∈Ωk

µ∗j
c2

 1
2


− 1

2c

{
m∑
i=1

λ∗2i +
n∑
k=1

(ξ∗2k + η∗2k )

}

≥ −ε1
l∑

j=1

∣∣µ∗j ∣∣+
1

4
cε21 |Ωk| (21)

− 1

2c

{
m∑
i=1

λ∗2i +
n∑
k=1

(ξ∗2k + η∗2k )

}
,

where we have used the non-negativity of (φ(cgi(x), λ∗i ))+,
(φ(cuk(x), ξ∗k))+, (φ(cvk(x), η∗k))+, and the last inequality
is due to |hj(x)| > ε1 for j ∈ Ωk and (20).

Subcase (a)-2: gi0(x) > ε1 for some i0 and |hj(x)| ≤ ε1
for all j. Then by the convexity of φ, we have

L2(x, t, λ∗, µ∗, ξ∗, η∗, c)

≥ −
l∑

j=1

ε1|µ∗j |+
1

2c

( [
φ(cgi0(x), λ∗i0)

]
+
− λ∗2i0

)
+

1

2c

∑
i6=i0

{
[φ(cgi(x), λ∗i )]+ − λ∗2i

}
− 1

2c

n∑
k=1

(ξ∗2k + η∗2k )

≥ −
l∑

j=1

ε1|µ∗j |+
c

2
g2
i0(x) + λ∗i0gi0(x)

− 1

2c

{
m∑
i=1

λ∗2i +
n∑
k=1

(ξ∗2k + η∗2k )

}

≥ −
l∑

j=1

ε1|µ∗j |+
c

2
ε21 + λ∗i0ε1

− 1

2c

{
m∑
i=1

λ∗2i +
n∑
k=1

(ξ∗2k + η∗2k )

}
→ ∞, as c→∞. (22)

Subcase (a)-3: There exists a k0 such that uk0(x, t) > ε1
and |hj(x)| ≤ ε1 for j = 1, . . . , l, gi(x) ≤ ε1 for
i = 1, . . . ,m. Since φ is convex, then φ(cuk0(x), ξ∗k0) ≥
cuk0(x) + ξ∗k > 0. Hence

L2(x, t, λ∗, µ∗, ξ∗, η∗, c)

≥ −
l∑

j=1

ε1|µ∗j |+
c

2
ε21 + ξ∗k0ε1

− 1

2c

{
m∑
i=1

λ∗2i +
n∑
k=1

(ξ∗2k + η∗2k )

}
(23)

→ ∞, as c→∞.

Subcase (a)-4: vk0(x, t) > ε1 for some k0. It is similar to
above case.

Summarizing the above cases, we know that there exists
c2 ≥ c0 such that for all (x, t) ∈ Uε1\N ((x∗, t∗), δ)

L2(x, t, λ∗, µ∗, ξ∗, η∗, c) ≥ L2(x∗, t∗, λ∗, µ∗, ξ∗, η∗, c),

whenever c ≥ c2.
Case (b): (x, t) ∈ [X × Rn+]\ [Uε1 ∪N ((x∗, t∗), δ)]. Since
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t∗ ≥ |x∗| and eT t > eT t∗ + ε1, then

L2(x, t, λ∗, µ∗, ξ∗, η∗, c) (24)

> ‖x∗‖1 + ε1 +
l∑

j=1

µ∗jhj (x) +
c

2

l∑
j=1

h2
j (x)

− 1

2c

{
m∑
i=1

λ∗2i +
n∑
k=1

(ξ∗2k + η∗2k )

}

> ‖x∗‖1 + ε1 −
1

2c

l∑
j=1

µ∗j

− 1

2c

{
m∑
i=1

λ∗2i +
n∑
k=1

(ξ∗2k + η∗2k )

}
.

Pick

c3 ≥ max

{
c0,

∑m
i=1 λ

∗2
i +

∑n
k=1(ξ∗2k + η∗2k ) +

∑l
j=1 µ

∗2
j

2ε1

}
.

It then follows from (24) that

L2(x, t, λ∗, µ∗, ξ∗, η∗, c) ≥ eTx∗

= L2(x∗, t∗, λ∗, µ∗, ξ∗, η∗, c),

whenever c ≥ c3. Hence the second inequality of (17) holds
whenever (x, t) ∈ X × Rn+ as c is larger than c2 + c3.

Combining Theorem 2 and Theorem 6 together yields the
following result.

Corollary 2. Under the assumption of Theorem 6,
(x∗, λ∗, µ∗) is a global saddle point of L1(x, λ, µ, c).

2) Multiple optimal solutions: To remove the restriction
on the uniqueness of optimal solutions, we resort to pertur-
bation analysis of the primal problem. Firstly, the following
lemmas are needed.

Lemma 5. If cω ↗ +∞, then for ε > 0 there exists ωε > 0
such that

{(x, t)|L2 (x, t, λ∗, µ∗, ξ∗, η∗, cω) ≤ val(P )} ⊆ S(ε),

whenever ω ≥ ωε.

Proof: We prove it by contradiction. Suppose that there
exist ε0 > 0, Ñ ⊆ {1, 2, . . . , n}, (xω, tω) with ω ∈ N such
that

L2 (xω, tω, λ∗, µ∗, ξ∗, η∗, cω) ≤ val(P ),
(xω, tω) /∈ S (ε0).

(25)

Hence,

val(P ) (26)
≥ L2 (xω, tω, λ∗, µ∗, ξ∗, η∗, cω)

= eT tω +
l∑

j=1

µ∗jhj (xω) +
cω
2

l∑
j=1

hj(x
ω)

+
1

2cω

m∑
i=1

{(
φ (cωgi (xω) , λ∗i )

)2

+
− λ∗2i

}
+

1

2c

n∑
k=1

{(
φ (cωuk(xω, tω), ξ∗k)

)
+
− (ξ∗k)2

}
+

1

2c

n∑
k=1

{(
φ (cωvk(xω, tω), η∗k)

)
+
− (η∗k)2

}
.

Recall that Ω = {1, 2, . . . , l}. It follows from (25) that there
exists N0 ⊆ Ñ satisfies one of the following cases.
Case 1: Ωω := {j ∈ Ω‖hj (xω) | > ε0} 6= ∅ for k ∈ N0. As
ω ∈ N0 sufficiently large,

|µ∗j |
cω
≤ 1

4
ε0, ∀j ∈ Ω.

This together with (21) and (26) implies that

val(P ) ≥ L2 (xω, tω, λ∗, µ∗, ξ∗, η∗, cω)

≥ −ε0
l∑

j=1

|µ∗j |+
1

4
cωε

2
0 |Ωω|

− 1

2cω

{
m∑
i=1

λ∗2i +
n∑
k=1

(ξ∗2k + η∗2k )

}
.

Taking limit as ω ∈ N0 yields val(P ) = +∞. This is a
contradiction. Thus,

|hj (xω)| ≤ ε0, ∀j ∈ Ω = {1, 2, . . . , l}. (27)

Case 2: gi0 (xω) > ε0 for some i0 and ω ∈ N0. It follows
from (22), (26), and (27) that

val(P ) ≥ L2 (xω, tω, λ∗, µ∗, ξ∗, η∗, cω)

≥ −
l∑

j=1

ε0|µ∗j |+
cω
2
ε20 + λ∗i0ε0

− 1

2cω

{
m∑
i=1

λ∗2i +

n∑
k=1

(ξ∗2k + η∗2k )

}
.

Taking limits also yielders val(P ) = +∞. A contradiction
is obtained.
Case 3: there exists k0 such that uk0 (xω) > ε0 for ω ∈ N0.
By taking limits and using (23), (26), and (27), we obtain
val(P ) = +∞. This is a contradiction.
Case 4: there exists k0 such that vk0 (xω) > ε0 for ω ∈ N0.
The analysis is similar to the above cases.

Lemma 6. If cω ↗ +∞, then for ε > 0 there exists ωε > 0
such that

{(x, t)|L2 (x, t, λ∗, µ∗, ξ∗, η∗, cω) ≤ val(P )} ⊆ U(ε),

whenever ω ≥ ωε.

Proof: Let Γ :=
(∑l

j=1 |µ∗j |+ 1
)

and α := ε/(3Γ).

Lemma 5 ensures

{(x, t)|L2 (x, t, λ∗, µ∗, ξ∗, η∗, cω) ≤ val(P )} ⊆ S(α),
(28)

and
1

2cω

{
m∑
i=1

λ∗2i +

n∑
k=1

(ξ∗2k + η∗2k )

}
≤ ε

2
, (29)

whenever cw sufficiently large. Pick (x, t) such that

L2 (x, t, λ∗, µ∗, ξ∗, η∗, cω) ≤ val(P ).

Therefore

eT t = L2 (x, t, λ∗, µ∗, ξ∗, η∗, cω)

−
l∑

j=1

µ∗jhj(x)− cω
2

l∑
j=1

h2
j (x)
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− 1

2cω

m∑
i=1

{(
φ (cωgi(x), λ∗i )

)
+
− λ∗2i

}
− 1

2cω

n∑
k=1

{(
φ (cuk(x, t), ξ∗k)

)
+
− (ξ∗k)2

}
− 1

2cω

n∑
k=1

{(
φ (cvk(x, t), η∗k)

)
+
− (η∗k)2

}

≤ val(P ) +
l∑

j=1

|µ∗j | ·
∣∣h2
j (x)

∣∣+
1

2cω

m∑
i=1

λ∗2i

+
1

2cω

n∑
k=1

ξ∗2k +
1

2cω

n∑
k=1

η∗2k

≤ val(P ) + α
l∑

j=1

|µ∗j |+
ε

2

≤ val(P ) + ε,

where the last third inequality is by (28) and (29).
The following result is applicable to the multiple optimal

solution case.

Theorem 7. Assume that S (α0) ∩ U (α0) is bounded
for α0 > 0 and that there exists (λ∗, µ∗, ξ∗, η∗) such
that (x∗, t∗, λ∗, µ∗, ξ∗, η∗) is a local saddle point of L2

for each (x∗, t∗) ∈ S∗. Then, for each (x̄, t̄) ∈ S∗,
(x̄, t̄, λ∗, µ∗, ξ∗, η∗) is a global saddle point of L2.

Proof: By assumption, there exists a neighborhood
N((x∗, t∗), δ∗) of (x∗, t∗) such that

L2 (x∗, t∗, λ, µ, ξ, η, c)

≤ L2 (x∗, t∗, λ∗, µ∗, ξ∗, η∗, c)

≤ L2 (x, t, λ∗, µ∗, ξ∗, η∗, c) . (30)

According to Corollary 1,

L2 (x∗, t∗, λ∗, µ∗, ξ∗, η∗, c) = ‖x∗‖1, (31)

from which and x∗ is feasible, it follows

L2 (x∗, t∗, λ, µ, ξ, η, c) ≤ ‖x∗‖1
= L2 (x∗, t∗, λ∗, µ∗, ξ∗, η∗, c) .

It remains to show that the second inequality of (30) holds
true even if x does not belongs to N(x∗, δ∗) by increasing
c.

If there exist cω ↗ +∞ and (xω, tω) ∈ X/N(x∗, δ∗)×Rn+
such that

L2 (xω, tω, λ∗, µ∗, ξ∗, η∗, cω)

< L2 (x∗, t∗, λ∗, µ∗, ξ∗, η∗, cω)

= ‖x∗‖1, (32)

which further implies that (xω, tω) belongs to the following
set

{(x, t)|L2 (xω, tω, λ∗, µ∗, ξ∗, η∗, ck) ≤ ‖x∗‖1} .

Given any ε ∈ (0, α0], it follows from Lemma 5 and Lemma
6 that

(xω, tω) ∈ S(ε) ∩ U(ε).

Since S(ε) ∩ U(ε) ⊂ S(α0) ∩ U(α0), then {(xω, tω)} is
bounded. Hence its any accumulate point, say (x̄, t̄), satisfies

(x̄, t̄) ∈ S(ε) ∩ U(ε).

Since ε > 0 is arbitrary, (x̄, t̄) ∈ S(0) ∩ U(0) = S∗, i.e.,
eT t̄ = eT t∗.

According to assumption (x̄, t̄, λ∗, µ∗, ξ∗, η∗) is also a
local saddle point. By a similar argument as above, it is
readily verified that

L2 (x̄, t̄, λ∗, µ∗, ξ∗, η∗, c) = eT t̄ = eT t∗

= L2 (x∗, t∗, λ∗, µ∗, ξ∗, η∗, c) ,

which further implies that for any (x, t) ∈ (X × Rn+) ∩
N((x̄, t̄), δ̄)

L2 (x∗, t∗, λ∗, µ∗, ξ∗, η∗, c) ≤ L2 (x, t, λ∗, µ∗, ξ∗, η∗, c) .

Note that (xω, tω) ∈ (X × Rn+) ∩N((x̄, t̄), δ̄). Hence

L2 (x∗, t∗, λ∗, µ∗, ξ∗, η∗, cω) ≤ L2 (xω, tω, λ∗, µ∗, ξ∗, η∗, cω) ,

contradicting (32).

Corollary 3. Under the assumption of Theorem 7, for each
(x̄, t̄) ∈ S∗, (x̄, λ∗, µ∗) is a global saddle point of L1.

Proof: The desired result follows by combining Theo-
rem 2 and Theorem 7 together.

Example 1.

min ‖x‖1
s.t. x1 + x2 − 1 = 0

x2
1 + x2

2 ≥ 1.

The optimal solutions are x∗,1 = (1, 0) and x∗,2 = (0, 1).
By introducing variables, we have

min eT t

s.t. x1 + x2 − 1 = 0

x2
1 + x2

2 ≥ 1

xk − tk ≤ 0, k = 1, 2

−xk − tk ≤ 0, k = 1, 2.

For a given α > 0,

S(α) :=

(x, t)

∣∣∣∣∣∣
|x1 + x2 − 1| ≤ α;
x2

1 + x2
2 ≥ 1− α;

xk − tk ≤ α,−xk − tk ≤ α, k = 1, 2

 ,

U(α) :=
{

(x, t)|eT t ≤ 1 + α
}
.

It is easy to see that S(α) ∩ U(α) is bounded. The KKT
conditions are

0 = λ∗
(

1
1

)
+ µ∗

(
2x1

2x2

)
+

(
ξ∗1
ξ∗2

)
−
(
η∗1
η∗2

)
0 =

(
1
1

)
−
(
ξ∗1
ξ∗2

)
−
(
η∗1
η∗2

)
0 = λ∗g(x∗)
0 = ξ∗kuk(x∗, t∗), ∀ k = 1, 2
0 = η∗kvk(x∗, t∗), ∀ k = 1, 2.

A common Lagrangian multiplier is (λ∗, µ∗, ξ∗, η∗) =
(
−

1, 0, (1, 1), (0, 0)
)

at x∗,i for i = 1, 2. Moreover, the second-
order sufficiency conditions holds at (x∗,i, t∗,i)(i = 1, 2).
Hence, the assumptions given in Theorem 7 are satisfied.
Therefore, (x∗,i, t∗,i, λ∗, µ∗, ξ∗, η∗) is a global saddle point
for Li(i = 1, 2).
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V. CONCLUSIONS

In this paper, we mainly deal with the existence theory on
saddle points of l1-minimization problems. The local saddle
points are established by using the second-order sufficient
conditions, while the global saddle points are established by
two different approaches depending on whether the solution
is unique. Saddle point theory plays an important role in the
theoretical analysis for many primal-dual type algorithms.
Hence, there are several interesting topics for further re-
search, such as developing augmented Lagrangian multiplier
methods for l1-minimization problems, or studying the exact
penalty representation of Li for i = 1, 2.
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