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Abstract—In this paper, moving least squares (MLS) and
modified moving least squares (MMLS) methods have been
employed to estimate the solution of two-dimensional linear
and nonlinear Fredholm-Volterra integral equations. The mod-
ification means that quadratic base functions can be utilized
with the same size of the support domain as linear base
functions, resulting in better approximation capability. The
proposed methods are meshless because they don’t require any
background mesh or cell structures and so they are independent
of the geometry of the domain. The error estimate of the
proposed method is provided. The accuracy and computational
efficiency of the methods are illustrated by several numerical
tests.

Index Terms—Moving least squares approximation, mod-
ified moving least squares approximation, Two-dimensional
Fredholm-Volterra integral equation, Gauss-Legendre quadra-
ture, Convergence analysis.

I. INTRODUCTION

TWO-dimensional Fredholm-Volterra integral equations
reformulated many varied problems in physics and

engineering. They are utilized as mathematical models for
many different science applications such as plasma physics
[1], approximation of implicit surfaces [2], diffraction theory
[3], simulations [4], [5], and computational biomechanics [6],
[7]. Some integral equations cannot be solved by the exact
methods. Thus, it is desirable to present numerical methods
with high performance to solve these equations numerically.

The motivation of this paper is to solve nonlinear
Fredholm-Volterra integral equations of the second kind
using the moving least squares and modified moving
least squares methods. So we consider the following two-
dimensional mixed integral equation of the second kind

u(x, y) +

∫ d

c

∫ b

a

K1(x, y, s, v)Φ1(s, v, u(s, v)) dsdv (1)

+

∫ y

c

∫ x

a

K2(x, y, s, v)Φ2(s, v, u(s, v)) dsdv = g(x, y).

The functions g(x, y), K1(x, y, s, v), K2(x, y, s, v) are as-
sumed to be given smooth real valued functions on (x, y) ∈
[a, b] × [c, d] and D = {(x, y, s, v), a ≤ s ≤ x ≤ b, c ≤
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v ≤ y ≤ d}, respectively and u(x, y) is the solution to be
determined. For these types of integral equations, it is usually
difficult to obtain analytical solutions and then numerical
solutions have to be studied. It is worth remembering that,
analytical and numerical analysis of one-dimensional mixed
integral equations have been discussed by numerous authors
[8], [9], [10].

Actually, the meshless methods have gained more atten-
tion, particularly Moving Least Squares method, it has been
applied in many branches of modern sciences, such as surface
construction [11], function approximation [12], numerical
solution of integral equations [8], [9], [10], [13], [14], [15].
Also, further important applications of the meshless moving
least square method are the Diffuse Element Method (DEM)
presented in [16], the well known Element-Free Galerkin
(EFG) method developed in [17], Boundary Node Method
(BNM) [18], Hp-cloud method [19] and the Meshless Local
Petrov Galerkin (MLPG) method introduced in [20]. The
MLS method doesn’t depend on the geometry of the domain
and it doesn’t require domain elements or background cells.
The new method does not increase the difficulties for higher
dimensional problems, also it is more adaptable and efficient
to approximate the unknown function for most classes of
mixed integral equations. However, the moment matrix in the
MLS method may be singular when the number of points in
the local support domain is not enough. In this work, the
MMLS method has been applied to overcome this difficulty
and finding the best support.

The new idea in this paper is to expand the MMLS
method to solve two-dimensional Fredholm-Volterra integral
equations, this efficient method prevents a singular moment
matrix in the context of MLS based method. The modifica-
tion is suggested on the quadratic base functions (m = 2)
to be utilized with the same size of the support domain as
linear base functions(m = 1). The major advantage of using
the MMLS method is that the results converge more quickly
to the true solution and give better accuracy than that of
MLS approximation. The first use of the modified moving
least squares method was proposed in [21] for smoothing
and approximating scattered.

The rest of this paper is organized as follows: In Section
2, a brief discussion of the MLS method is outlined. In the
next section, the modified MLS approximation is presented.
The computational method for solving two-dimensional lin-
ear and nonlinear Fredholm-Volterra integral equations is
introduced in section 4, then section 5 is devoted to the
error estimate of the applied method. Numerical results are
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introduced in section 6, which will be used to verify the
theoretical results obtained in section 5. Finally, we conclude
the article in Section 7.

II. THE CLASSICAL MLS APPROXIMATION

The moving least squares (MLS) approximation as a
generalization of Shepard’s method [22] is developed by Lan-
caster and Salkauskas [23]. It is one of the meshless methods
since it is based on a set of scattered points instead of inter-
polation on elements. We use this method to approximate two
variable functions X = {(x1, y1), (x2, y2), ..., (xn, yn)} on
the rectangular form D = [a, b] × [c, d]. Let u : D → R be
a continuous real function and the points (xi, yi, ui), i =
1, 2, ...., n are known. The main point of this meshless
method is to estimate a function u(x, y) for every point
(x, y) ∈ D based on the weighted least square.
Let Pq be the space of polynomials of degree q � n. The
MLS approximation uρ(x, y) of u(x, y), ∀(x, y) ∈ D, can
be given as

uρ(x, y) = pT (x, y)a(x, y), ∀(x, y) ∈ D, (2)

where

p(x, y) = [p0(x, y), p1(x, y), ....., pm(x, y)]T ,

and {pi(x, y)}mi=0 is a complete basis of Pq of order m and,

a(x, y) = [a0(x, y), a1(x, y), ....., am(x, y)],

are unknown coefficients to be determined. In this paper
we use monomials and Chebyshev polynomials as a basis.
The MLS method presents the approximate function uρ(x, y)
in a particularized class of differentiable functions which
minimize the quantity

J(x, y) =

n∑
i=1

ωi(x, y)(pT (xi, yi)a(x, y)− ui)2 (3)

= [P.a(x, y)− u]T .W.[P.a(x, y)− u],

where ωi(x, y) is the weight function associated with node i,
(xi, yi) denotes the value of (x, y) at node i, n is the number
of nodes in D with wi(x, y) > 0 and ui are the fictitious
nodal values, but not the nodal values of the unknown trial
function uρ(x, y) i.e. uρ(xi, yi) 6= ui . The matrix P and W
are defined as

P = [pT (x1, y1), pT (x2, y2), ..., pT (xn, yn)]Tn×(m+1)

W = diag(ωi(x, y)), i = 1, 2, ...n.

A necessary condition for J(x, y) to be minimized is ∇J =
0, which implies the following normal equation
n∑

i=1

ωi(x, y)p(xi, yi)p
T (xi, yi)a(x, y) =

n∑
i=1

ωi(x, y)p(xi, yi)ui.

(4)
Using the moment matrix

A(x, y) =
n∑
i=1

ωi(x, y)p(xi, yi)p
T (xi, yi),

and setting
u = [u1, u2, ....., un]T ,

and

B(x, y) = [w1(x, y)p(x1, y1), w2(x, y)p(x2, y2),

..., wn(x, y)p(xn, yn)],

(4) becomes as follows

A(x, y)a(x, y) = B(x, y)u, (5)

and by selecting the nodal points such that A(x) is nonsin-
gular, (5) can be written as

a(x, y) = A−1(x, y)B(x, y)u. (6)

Substituting (6) into (2) we obtain

uρ(x, y) = p(x, y)TA−1(x, y)B(x, y)u =
n∑
i=1

φi(x, y)ui,

(7)
where

φi(x, y) =
m∑

k=1

pk(x, y)[A−1(x, y)B(x, y)]ki,

φi(x, y) are called the shape functions of the MLS ap-
proximation, corresponding to the nodal point (xi, yi). If
wi(x, y) ∈ Cr(D) and pk(x, y) ∈ Cs(D), i = 1, ...., n, k =
1, ....,m then φi(x, y) ∈ Cmin(r,s)(D). The spline weight
function is applied in the present work as

wi(x, y) =

{
1− 6

(
di
ρi

)2
+ 8

(
di
ρi

)3
− 3

(
di
ρi

)4
si 0 ≤ di ≤ ρi

0 si di > ρi

where di =
√

(x− xi)2 + (y − yi)2 (the Euclidean distance
between nodes), ρi is the size of the support domain.

III. MODIFIED MLS APPROXIMATION

The proposed MMLS method will avoid the singular
moment matrix in the context of MLS based on meshless
methods. This modification allows quadratic base functions
to be utilized with the same size of the support domain as
linear base functions by adding additional terms based on
the coefficients of the polynomial base functions, leading to
have a better approximation capability.
The coefficients in the monomial quadratic basis are defined
as

p(x) = [1, x, y, x2, xy, y2]T ,

a(x) = [a1, ax, ay, ax2 , axy, ay2 ]T .

Therefore, the new functional (3) can be represented as
follows

J̄(x, y) =

n∑
i=1

ωi(x, y)[uρ(x, y)−ui]2+νx2a
2
x2 +νxya

2
xy+νy2a

2
y2

(8)
where ν = [νx2 νxy νy2 ] is a vector of positive weights

for the additional constraints.
The modified matrix and the matrix form of (8) are

J̄(x, y) = [P.a−ui]T .W.[P.a−ui]+aTMa, i = 1, 2, ..., n
(9)

and

M =

[
O3,3 O3,3

O3,3 diag(ν)

]
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where O3,3 is the zero matrix and the last three diagonal
entries equal to ν.
By minimizing the functional (9), the coefficients a(x, y) will
be determined by

Ā(x, y)a(x, y) = B(x, y)ui,

where
Ā = PT .W.P +M.

The modified approximation can be written as follows

ūρ(x, y) =
n∑
i=1

φ̄i(x, y)ui,

with the MMLS shape functions defined by

Φ̄(x, y) = [φ̄1(x, y), φ̄2(x, y)...φ̄n(x, y)]

= pT (x, y)(PT .W.P +M)−1B(x, y).

IV. THE PROPOSED METHOD

A. 2-D linear Fredholm-Volterra integral equation

Consider the following two-dimensional Fredholm-
Volterra integral equation

u(x, y) +

∫ d

c

∫ b

a

K1(x, y, s, v)u(s, v) dsdv

+

∫ y

c

∫ x

a

K2(x, y, s, v)u(s, v) dsdv = g(x, y),

where (x, y) ∈ [a, b] × [c, d], the intervals [a, x], [c, y] are
converted respectively to the fixed intervals [a, b], [c, d] by
the following linear transformations

s(x, δ) =
x− a
b− a

δ +
b− x
b− a

a, v(y, β) =
y − c
d− c

β +
d− y
d− c

c.

(10)
Therefore, the equation takes the following form

u(x, y)+

∫ d

c

∫ b

a

K1(x, y, s, v)u(s, v) dsdv

+

∫ d

c

∫ b

a

K̄2(x, y, s(x, δ), v(y, β))

u(s(x, δ), v(y, β)) dδdβ = g(x, y),

where

K̄2(x, y, s(x, δ), v(y, β)) =
x− a
b− a

y − c
d− cK2(x, y, s(x, δ), v(y, β)).

If we replace u(x, y) by uρ(x, y) we obtain

uρ(x, y)+

∫ d

c

∫ b

a

K1(x, y, s, v)uρ(s, v) dsdv

+

∫ d

c

∫ b

a

K̄2(x, y, ξ(x, δ), v(y, β))

uρ(s(x, δ), v(y, β)) dδdβ = g(x, y),

or equivalently
n∑
j=1

[
φj(x, y)+

∫ d

c

∫ b

a

K1(x, y, s, v)φj(s, v) ds dv

+

∫ d

c

∫ b

a

K̄2(x, y, s(x, δ), v(y, β))

φj(s(x, δ), v(y, β))dδdβ
]
uj = g(x, y).

Assume that this equation holds at (xi, yi)

n∑
j=1

[
φj(xi, yi)+

∫ d

c

∫ b

a

K1(xi, yi, s, v)φj(s, v) ds dv

+

∫ d

c

∫ b

a

K̄2(xi, yi, s(xi, δ), v(yi, β))

φj(s(xi, δ), v(yi, β))dδdβ
]
uj = g(xi, yi),

where i = 1, 2, ..., n, we compute integrals numerically by
using m1 points quadrature formula with the quadrature points
{sk}, {δk}, {vp}, {βp} and the quadrature weights {wk}, {wp}.
Therefore, the above equation can be written as follows

n∑
j=1

Fi,j ûj = g(xi, yi), i = 1, 2, ..., n,

where ûj are the approximate quantities of uj and F is a n by n
matrix defined by

Fi,j = φj(xi, yi)+

m1∑
p=1

m1∑
k=1

K1(xi, yi, sk, vp)φj(sk, vp)ωkωp

+

m1∑
p=1

m1∑
k=1

K̄2(xi, yi, s(xi, δk), v(yi, βp))

φj(s(xi, δk), v(yi, βp))ωkωp.

Let’s note

û = [û1, û2, ......, ûn]T , g = [g1, g2, ...., gn]T .

Then we have the following linear system of equations

F û = g. (11)

Solving (11), we can approximate u(x, y) as in (7) by

uρ(x, y) =

n∑
j=1

φj(x, y)ûj , (x, y) ∈ [a, b]× [c, d].

B. 2-D nonlinear Fredholm-Volterra integral equation
In this section, MLS and MMLS approximations are used

to solve two dimensional nonlinear Fredholm-Volterra integral
equations of the second kind. Firstly, we transform the intervals
[a, x], [c, y] in to [a, b], [c, d] by the last linear transformations (10),
then (1) takes the following form

u(x, y)+

∫ d

c

∫ b

a

K1(x, y, s, v)Ψ1(s, v, u(s, v)) dsdv (12)

+

∫ d

c

∫ b

a

K̄2(x, y, s(x, δ), v(y, β))

Ψ2(s(x, δ), v(y, β), u(s(x, δ), v(y, β))dδdβ = g(x, y),

where

K̄2(x, y, s(x, δ), v(y, β)) =
x− a
b− a

y − c
d− cK2(x, y, s(x, δ), v(y, β)).

We estimate the unknown function u(x, y) as

uρ(x, y) =

n∑
j=1

αjφj(x, y).

If in (12) we replace u(x, y) by uρ(x, y), we obtain
n∑
j=1

αjφj(x, y)+

∫ d

c

∫ b

a

K1(x, y, s, v)Ψ1

(
s, v,

n∑
j=1

αjφj(s, v)

)

ds dv+

∫ d

c

∫ b

a

K̄2(x, y, s(x, δ), v(y, β))

Ψ2

(
s(x, δ), v(y, β),

n∑
j=1

αjφj(s(x, δ), v(y, β))

)
dδdβ = g(x, y).

IAENG International Journal of Applied Mathematics, 51:1, IJAM_51_1_07

Volume 51, Issue 1: March 2021

 
______________________________________________________________________________________ 



If this equation holds at the collocation points (xi, yi) we will
have

n∑
j=1

αjφj(xi, yi) +

∫ d

c

∫ b

a

K1(xi, yi, s, v) (13)

Ψ1

(
s, v,

n∑
j=1

αjφj(s, v)

)
ds dv

+

∫ d

c

∫ b

a

K̄2(xi, yi, s(xi, δ), v(yi, β))

Ψ2

(
s(xi, δ), v(yi, β),

n∑
j=1

αjφj(s(xi, δ), v(yi, β))

)
dδdβ

= g(xi, yi).

Using a m1 points quadrature formula with the points
{sk}, {δk}, {vp}, {βp} and weights {wk}, {wp} for numerical
integration, we obtain

n∑
j=1

ᾱjφj(xi, yi) +

m1∑
p=1

m1∑
k=1

wkwpK1(xi, yi, sk, vp) (14)

Ψ1

(
sk, vp,

n∑
j=1

ᾱjφj(sk, vp)

)

+

m1∑
p=1

m1∑
k=1

wkwpK̄2(xi, yi, s(x, δk), v(y, βp))

Ψ2

(
s(xi, δk), v(yi, βp),

n∑
j=1

ᾱjφj(s(xi, δk), v(yi, βp))

)
= g(xi, yi).

The unknowns ᾱj can be found by solving the nonlinear system of
algebraic equations which can be solved by any nonlinear solver;
in this work we have used the fsolve command of Matlab. So
the values of u(x, y) at any point (x, y) ∈ [a, b] × [c, d] can be
approximated by

uρ(x, y) =

n∑
j=1

ᾱjφj(x, y)

V. CONVERGENCE ANALYSIS

In this section we will study the error estimation for the proposed
method. In [24] Levin presented the error estimates in the uniform
norm for a particular weight function in N dimensions, but, he did
not obtain error estimates for the derivatives. In [25] Armentano and
Duron studied the MLS method for the function and its derivatives
in the one dimension obtaining error estimate in L∞. Armentano in
[26] presented the error estimates in L∞ and L2 norms for one and
N dimensions which generalizes the result given in [25]. Zuppa in
[27] proved the error estimates for derivatives of shape function by
the condition numbers of the star of nodes in the normal equation.
Authors of [28], obtained the error estimates in Sobolev space when
u(x, y) ∈ Cm+1(D), and u(x, y) ∈ Wm+1,q(D), respectively.
Equation (1) can be represented in abstract form as

(I −K)u = g

where

Ku =

∫ 1

0

∫ 1

0

K1(x, y, s, v)Ψ1(s, v, u(s, v)) ds dv

+

∫ y

0

∫ x

0

K2(x, y, s, v)Ψ2(s, v, u(s, v)) ds dv

We define the collocation operator Pn : C(D)→ Gn by

Pnu(x, y) =

n∑
i=1

αiΦi(x, y) (x, y) ∈ D

where Gn = span{Φ1,Φ2, ...,Φn} and the coefficients αi can be
determined by solving the linear system

Pnu(xi, yi) = u(xi, yi) i = 1, 2, ..., n

we note that (13) can be written in the abstract form

(I − PnK)un = Png. (15)

Let the operator Kn be defined as

Knu =

m1∑
p=1

m1∑
k=1

wkwpK1(x, y, sk, vp)Ψ1 (sk, vp, u(sk, vp))

+

m1∑
p=1

m1∑
k=1

wkwpK̄2(x, y, s(x, δk), v(y, βp))

Ψ2 (s(x, δk), v(y, βp), u(s(x, δk), v(y, βp))) .

we can write (14) in the operator form

(I − PnKn)ûn = Png. (16)

Let {Tn, T̂n} be the operators defined respectively by

Tnu = PnKu+ Png, T̂nu = PnKnu+ Png

So (15), (16) can be written as

un = Tnun, ûn = T̂nûn.

Theorem 1: Suppose Pn is the collocation projection for the
shape functions of MLS method corresponding to nodal points X =
{(x1, y1), (x2, y2), ..., (xn, yn)}. Assume the family {Pn, n ≥ 1} is
uniformly bounded. If u ∈ Cq+1(D∗) then Pnu converge to u as
n −→∞ and

‖Pnu− u‖∞ ≤ (1 +m)Chq+1
X,D|u|Cq+1(D∗),

where m,C are constants.
We present the following theorem from Vainikko [29] utilised to
obtain the error analysis of the proposed method.

Theorem 2: Let T and T̂ be continuous over an open set D in
Banach space X. Let the equation

u = T̂ u

has an isolated solution û0 in D and let the following conditions
be satisfied:
• The operator T is Frechet differentiable in some neighborhood

of the point û0 while the linear operator I − T
′
(û0) is

continuously invertible,
• For some η > 0 and 0 < q < 1 the following inequalities

are valid (the number η > 0 assumed to be so small that the
sphere ‖u− û0‖ ≤ η is contained within D).

sup
‖u−û0‖≤η

‖(I − T
′
(û0))−1(T

′
(u)− T

′
(û0))‖ ≤ q, (17)

α = ‖(I − T
′
(û0))−1(T (û0)− T̂ (û0))‖ ≤ η(1− q), (18)

then the equation u = Tu has in the sphere ‖u− û0‖ ≤ η a unique
solution u0. Moreover, the inequality

α

1 + q
‖u0 − û0‖ ≤

α

1− q
is valid.

Theorem 3: let u0 ∈ C([0, 1]× [0, 1]) be an isolated solution of

u = Ku+ g

Assume that 1 is not an eigenvalue of the linear operator T
′
(u0).

Then for sufficiently large n, the operator (I − T̂
′
n (u0))−1 is

invertible and there exists constant L > 0 independent of n such
that ‖(I − T̂

′
n (u0))−1‖ ≤ L.

Theorem 4: let u0 ∈ C([0, 1]× [0, 1]) be an isolated solution of

u = Ku+ g.
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Assume that 1 is not an eigenvalue of the linear operator T
′
(u0) .

Then for sufficiently large n, the approximate solution ûn of (16)
is unique in B(u0, η) = {u : ‖u − u0‖ ≤ η} for some η > 0.
Moreover, there exists a constant 0 < q < 1 independent of n such
that ϕn

1 + q
≤ ‖u0 − ûn‖ ≤

ϕn

1− q ,

where ϕn = ‖(I − T̂
′
n (u0))−1(T̂n(u0)− T (u0))‖.

Proof: Applying theorem 3 we have (I − T̂
′
n (u0))−1 exists

and it is uniformly bounded i.e, there exists a constant L > 0 such
that

‖(I − T̂
′
n(u0))−1‖ ≤ L.

Assume that ‖Pn‖ < p and ‖K′n‖ < M, then

‖T̂
′
n(u)− T̂

′
n(u0)‖ = ‖PnK

′
nu− PnK

′
nu0‖

≤ ‖Pn‖‖K
′
nu−K

′
nu0‖

≤ pMη, ∀u ∈ B(u0, η).

Thus, we obtain

sup
‖u−û0‖≤η

‖(I − T̂
′
n(u0))−1(T̂

′
n(u)− T̂

′
n(u0))‖ ≤ LpMη ≤ q,

where 0 < q < 1, which demonstrates (17) for η sufficiently small.
Also we have

ϕn = ‖(I − T̂
′
n(u0))−1(T̂n(u0)− T (u0))‖

≤ ‖(I − T̂
′
n(u0))−1‖‖(T̂n(u0)− T (u0))‖

≤ L‖(T̂n(u0)− T (u0))‖.

Here, we will prove that ‖(T̂n(u0)− T (u0))‖ −→ 0 as n −→∞.
Now consider

‖(T̂n(u0)− T (u0))‖ = ‖PnKnu0 + Pnf −Ku0 − g‖
≤ ‖Pn{Knu0 + g −Ku0 − g}‖+ ‖(Pn − I)(Ku0 + g)‖
≤ p‖Kn −K‖‖u0‖+ ‖Pnu0 − u0‖ −→ 0 as n −→∞ (19)

For sufficient large n we have βn ≤ η(1 − q) . Since (18) is
satisfied. Then from theorem 2 we have

ϕn
1 + q

‖ûn − u0‖ ≤
ϕn

1− q

We complete the error estimate by the following theorem.
Theorem 5: let u0 ∈ Cq+1(D∗) be an isolated solution of the

equation u = Kz + g and un be the discrete MLS collocation
method of u0. Then we have

‖ûn − u0‖L∞(D) ≤
Lp

1− q ‖Kn −K‖L∞(D)‖u0‖L∞(D)

+
L

1− q (1 +m)Chq+1
X,D|u0|Cq+1(D∗),

Proof: We have

‖ûn − u0‖ ≤
ϕn

1− q
Utilizing theorems 1, 3, and Eq. (19) we obtain

‖ûn − u0‖L∞(D) ≤
ϕn

1− q

≤
‖(I − T̂ ′n(u0))−1(T̂n(u0)− T (u0))‖L∞(D)

1− q

≤
L

1− q
‖(T̂n(u0)− T (u0))‖L∞(D)

≤
L

1− q
‖PN‖L∞(D)‖Kn −K‖L∞(D)‖u0‖L∞(D)

+
L

1− q
‖Pnu0 − u0‖L∞(D)

≤
Lp

1− q
‖Kn −K‖L∞(D)‖u0‖L∞(D)

+
L

1− q
(1 +m)Chq+1

X,D|u0|Cq+1(D∗).

VI. NUMERICAL RESULTS

To show the validity of the method as a numerical tool. Linear
and nonlinear Fredholm-Volterra integral equations are solved. For
numerical implementation we put hX = 1

n−1
, then in computations

of the MLS method we put for linear case ρi = 2 × hX , for
quadratic case ρi = 2.5 × hX , for degree 3 case ρi = 3 × hX ,
and for degree 4 case ρi = 4 × hX , where hX is the distance
between two consecutive nodes. When we use the MMLS method,
we take for quadratic case ρi = 2 × hX . Also, we use the 5-
points Gauss-Legendre quadratic rule for numerical integration and
spline weight functions for approximating integrals in the scheme.
Furthermore, for computing shape function in MMLS method,
we take νe = 10−9; with e = 1; 2; 3 as weights of additional
coefficients for MMLS, it should be pointed out that, this value
was selected experimentally. Accuracy of the numerical solutions
can be worked out by measuring the ‖e‖∞ and e(x, y) norms which
are defined by

‖e‖∞ = max |uex(x, y)− û(x, y)|, (x, y) ∈ D,
e(x, y) = |uex(x, y)− û(x, y)|, (x, y) ∈ D.

where û is the approximate solution of the exact solution uex. The
rate convergence presented in this work is defined as

Ratio =
ln(‖en‖∞)− ln(‖en′ ‖∞)

ln(hX)− ln(hX′ )
,

(‖en‖∞, ‖en′ ‖∞) are the maximum errors of the previous and the
current row respectively. The ”Fsolve” command is employed to
solve the nonlinear system of algebraic equations. All calculations
are done by Matlab.

A. Example 1: 2-D linear
As the first example, consider the two-dimensional linear

Fredholm-Volterra integral equation

u(x, y) +

∫ 1

0

∫ 1

0

cos(x− s) exp(v)u(s, v) ds dv

+
1

2

∫ y

0

∫ x

0

sin(x− s) exp(v − y)u(s, v) ds dv = g(x, y).

where

g(x, y)) = sin(x) exp(−y) +
y

4
exp(−y)

(
sin(x)− xcos(x)

)
+

1

4

(
2sin(x)− cos(2− x) + cos(x)

)
, 0 ≤ x, y ≤ 1.

The function g(x, y) has been chosen such that the exact solution of
the integral equation is uex(x, y) = sin(x) exp(−y). The integral
equation is solved on the square domain D = [0, 1] × [0, 1].
Numerical results are presented in Table I in terms of ‖e‖∞ at
different numbers of n, and Figure 1 is depicting the absolute
error with (n = 43 × 43) points. As we expected, from Figure
1, the error near the boundary increases which effects on the global
error. As we can see, the results gradually converge to the exact
values as the number of nodes increases, and the obtained results
by the MMLS method are better than the results given by the MLS
method. According to the Theorem 5, the ratio of error remains
approximately constant for the linear case O(h2

X) and for the
quadratic case O(h3

X) as N →∞.

B. Example 2: 1-D nonlinear
Consider the following nonlinear Volterra-Fredholm integral

equation by using the shifted Chebyshev polynomials as basis

u(x)−
∫ x

0

sin(x− s)cos(u(x)) ds

− 1

8

∫ 1

0

(x− s)u(x) ds = g(x), x ∈ [0, 1],
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TABLE I
MAXIMUM ERRORS USING DIFFERENT VALUES OF N FOR EXAMPLE 1

n hX
MLS approximation error MMLS approximation error

Linear basis Ratio Quadratic basis Ratio Quadratic basis Ratio
3× 3 0.50 1.43× 10−2 - 7.47× 10−3 - 2.83× 10−3 -
5× 5 0.25 4.41× 10−3 1.69 1.30× 10−3 2.52 4.77× 10−4 2.56
9× 9 0.12 1.22× 10−3 1.85 1.73× 10−4 2.90 6.36× 10−5 2.90
19× 19 0.05 2.54× 10−4 1.93 1.55× 10−5 2.97 7.08× 10−6 2.70
37× 37 0.02 6.46× 10−5 1.97 1.94× 10−6 2.99 9.17× 10−7 2.94
43× 43 0.02 4.75× 10−5 1.99 1.21× 10−6 3.06 5.36× 10−7 3.48

(a) (b)

(c)
Fig. 1. Approximation error :(a) Linear basis(MLS), (b) Quadratic basis(MLS), (c) Quadratic basis(MMLS) of Example 1

where

g(x) =
49

48
− 17x

16
− 1

2

(
sin(x)(xcos(1) + sin(1))

− xsin(1)cos(x)

)
.

The exact solution of this equation is uex(x) = 1− x.

TABLE II
MAXIMUM ERRORS USING DIFFERENT VALUES OF DEGREE BASIS M FOR

EXAMPLE 2

n hX m = 1 m = 2 m = 3 m = 4

5 0.25 8.65× 10−4 3.56×10−5 3.65×10−6 1.37×10−6

9 0.12 2.89× 10−4 2.88×10−6 1.35×10−6 3.95×10−8

15 0.07 1.36 ×10−4 1.12×10−6 1.55×10−7 2.65×10−9

21 0.05 9.51 ×10−5 2.50×10−7 4.59×10−8 4.43×10−10

25 0.04 7.61 ×10−5 1.30×10−7 2.78×10−8 2.78×10−10

Table II shows ‖e‖∞ at the different numbers of nodes that
are regularly employed in the segment. According to the

table, when the degree basis increases, the numerical results
show the higher performance of the MLS method with the
Chebyshev basis, and also the results converge to the exact
values as the number of nodes increases.

C. Example 3: 2-D nonlinear
Consider the following two-dimensional nonlinear

Fredholm-Volterra integral equation defined as :

u(x, y)−
∫ 1

0

∫ 1

0

(v − s)sin(x− y)u(s, v) ds dv

−
∫ y

0

∫ x

0

(xs2 + cos(v))u2(s, v) ds dv = g(x, y), 0 ≤ x, y ≤ 1.

Where

g(x, y) = xsin(y)

(
1− 1

9
x2sin2(y)

)
+

1

10
x6
(

1

2
sin(2y)− y

)
+

1

6
sin(x− y)

(
2− 3sin(1) + cos(1)

)
.
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TABLE III
MAXIMUM ERRORS USING DIFFERENT VALUES OF N FOR EXAMPLE 3

n hX
MLS approximation error MMLS approximation error

Linear basis Ratio Quadratic basis Ratio Quadratic basis Ratio
3× 3 0.50 2.23× 10−2 - 1.08× 10−2 - 7.51× 10−3 -
4× 4 0.33 1.09× 10−2 1.76 3.89× 10−3 2.51 1.55× 10−3 3.89
5× 5 0.25 6.59× 10−3 1.74 1.56× 10−3 3.17 4.93× 10−4 3.98
9× 9 0.12 1.91× 10−3 1.78 1.89× 10−4 3.04 6.35× 10−5 2.95
12× 12 0.09 8.43× 10−4 2.56 8.04× 10−5 2.68 2.80× 10−5 2.57
18× 18 0.05 2.66× 10−4 2.64 2.07× 10−5 3.11 8.07× 10−6 2.43

(a) (b)

(c)
Fig. 2. Approximation error :(a) Linear basis(MLS), (b) Quadratic basis(MLS), (c) Quadratic basis(MMLS) of Example 3

The exact solution is uex(x, y) = xsin(y). Table III shows
the maximum errors for different values of m and n that are
regularly employed in the unit square, and the absolute error
for (n = 18× 18) is graphically shown in figure 2. We can
see that when the values of n increases, the maximum errors
decrease, the results of MMLS approximation converge more
quickly to the true solution than that of MLS approximation.
The ratio of error remains constant for the linear case (≈ 2)
and the quadratic case (≈ 3). So the numerical results show
that the proposed method will be of O(hq+1

X ) as it is expected
in Theorem 5.

D. Example 4: 2-D nonlinear
As the final example, we consider the following two-

dimensional nonlinear Fredholm-Volterra integral equation

u(x, y)−
∫ 1

0

∫ 1

0

exp(−x− y − 4)u2(s, v) ds dv

− 1

4

∫ y

0

∫ x

0

(ys+ xv)u(s, v) ds dv = g(x, y), x ∈ [0, 1].

where

g(x, y) =
1

2
exp(y) + xy − 1

72
exp(−x− y − 4)

(
35

+ 9 exp(2)

)
− x2

48

(
4y3x− 3y + exp(y)(9y − 6) + 6

)
.

The analytic solution of this problem is uex(x, y) =
1
2exp(y) +xy. The maximum errors using MLS and MMLS
approximation are shown in table IV, the absolute error with
(n = 10 × 10) points is plotted in figure 3. The results,
presented in table V, support the maximum errors using
different values of ν when n = 5×5, this value was selected
experimentally, we can see that MMLS approximation gives
better accuracy when we put ν as small positive numbers.
As shown, from table IV, the faster method is modified
moving least squares method, also as n (the number of nodes)
increases, the error term decreases in both MLS and MMLS
approximation. Apparently, the method provides accurate
numerical solutions for mixed integral equations.
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TABLE IV
MAXIMUM ERRORS USING DIFFERENT VALUES OF N FOR EXAMPLE 4

n hX
MLS approximation error MMLS approximation error

Linear basis Quadratic basis Quadratic basis
3× 3 0.50 2.44× 10−2 1.03× 10−3 5.39× 10−4

5× 5 0.25 7.99× 10−3 6.20× 10−4 6.31× 10−5

6× 6 0.20 5.60× 10−3 3.60× 10−4 2.19× 10−5

10× 10 0.11 1.91× 10−3 6.91× 10−5 4.68× 10−6

TABLE V
MAXIMUM ERRORS USING DIFFERENT VALUES OF ν AND n = 5× 5 FOR EXAMPLE 4

ν 10−6 10−8 10−9 10−10

‖e‖∞ 1.42× 10−4 6.34× 10−5 6.31× 10−5 6.31× 10−5

(a) (b)

(c)
Fig. 3. Approximation error :(a) Linear basis(MLS), (b) Quadratic basis(MLS), (c) Quadratic basis(MMLS) of Example 4

VII. CONCLUSION

The linear and nonlinear Fredholm-Volterra integral equa-
tions are usually difficult to solve analytically. As a result,
it is required to obtain approximate solutions. In this work,
we presented the moving least squares and modified moving
least squares methods for solving two-dimensional linear and
nonlinear Fredholm-Volterra integral equations. The numeri-
cal examples show that the approximation of the MMLS gave
more accurate results than that of the classical MLS. The
most advantage of the MMLS method is the ability to get an
approximation for cases when classical MLS with quadratic
base functions fail because of a singular moment matrix.
The efficiency of the obtained solutions can be improved by
taking more nodes in the rectangular domain. The absolute

and maximum errors have been used to measure the accuracy
of the method, also the rate convergence is examined with
some examples. The achieved results show the validity and
accuracy of the new technique and have confirmed the
theoretical error estimates. The MMLS approximation is a
powerful tool for solving mixed integral equations and it can
be easily extended to three-dimensional problems due to the
easy adaption of the MMLS method for the 3-D space.
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