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Abstract—In this paper the Adjustable Robust Maximum
Flow Problem (ARMFP) is discussed. The problem is considered
as a two-stage optimization problem with two kinds of variables,
i.e., adjustable and non-adjustable variables. There is also an
assumption that the input parameter, i.e. arc capacities, lie
within an uncertainty set. The main challenge in Adjustable
Robust Optimization (ARO) is to find whether the robust coun-
terpart of ARMFP be can be formulated into a computationally
tractable optimization problem. To this end, a convex continue
set is assumed to be the set of the adjustable variables and
or the uncertain arc capacities. In this paper it is considered
the parametric ellipsoidal and polyhedral uncertainty set. The
ARMFP is constructed by defining the maximum flow for the
whole network represented by a flow xts that connect the
destination node t back to the source node s. This xts is
assumed to be the adjustable variable. In the case of parametric
ellipsoidal uncertainty, the characteristic of ARMFP is analysed
using the Theorem of Max-Flow and Min- Cut. In the case of
polyhedral uncertainty set, the counterpart is obtained as a
linear programming problem. Some examples are presented.

Index Terms—Maximum Flow Problem, Robust Optimiza-
tion, Adjustable Robust Counterpart, Parametric Ellipsoidal,
Polyhedral, Uncertainty Set.

I. INTRODUCTION

THE maximum flow problem (MFP) arises in a wide
variety of situations and in several forms. For example,

determining the maximum steady state flow of petrol in a
pipeline network, cars in a road network, messages in a
telecommunication network and electricity in an electrical
network. Several ways to solve the problem of maximum
flow, including using linear programming. Furthermore, the
problem of maximum flow has also become an important
problem in daily life. Refers to Ford [1], the maximum flow
was first introduced by L.R. Ford and D.R. Fulkerson, in
1956, and continues to be developed to date. However, in
reality, there are uncertainty factors that affect the network
system. One of the uncertainty factors is the flow capacity
on each side in a network that can change. For this reason,
optimization techniques are needed that take into account
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uncertainty in order to obtain an optimal solution that is
resistant to data uncertainty.

One area of optimization that is able to solve various
problems related to the problem of uncertainty is Robust
Optimization (RO) as discussed by Ben-Tal and Nemirovskii
in [2]. RO has been widely practiced by previous researchers.
Referring to Ben-Tal et al. The first step towards achieving
the RO method is carried out by A.L. Soyster (see [3])
who discussed how to find a solution that is resistant to
data uncertainty in linear programming, In 1995, Mulvey
et al. ini [4] discussed RO of large-scale systems. Ben-
Tal et al.. in [5] discuss RO in detail. Gorissen et al. in
[6] given practical guidance on RO. Until now RO has
been growing from year to year. In this framework, the
existence of uncertainties in the uncertain optimization model
is handled using a methodology so-called Robust Counterpart
(RC) Methodology.

This RC is formulated by considering that feasible solu-
tions for all possibilities by using the set of box, ellipsoidal,
and polyhedral uncertainty. Referring to Ben-Tal et al. in [2]
also Chaerani and Roos in [7], the main challenge of RO
is to find a set of uncertainties that can be formulated into
a computationally tractable optimization problem. Computa-
tionally tractable can be analyzed by representing the RC into
one of three classes of optimization problems, namely linear
programming, conic quadratic, or semidefinit programming.
A discusion on some applications of RO in industrial and
environmental problem can be seen in Chaerani et al. [8]. A
recent discussion on a survey of nonlinear robust optimiza-
tion by Leyffer et al. in [9] mentioned that RO is dedicated to
solving optimization problems subject to uncertainty: design
constraints must be satisfied for all the values of the uncertain
parameters within a given uncertainty set. Uncertainty sets
may be modeled as deterministic sets (boxes, polyhedra,
ellipsoids).

For the last ten years, research on the topic of robust
maximum flow problem (RMFP) is still progressive. We
conduct a literature study to know what type of approach
can be used to model and solve the RMFP. A recent one
is a discussion on Heuristic Solutions to robust variants
of the minimum-cost integer flow problem, as we can see
in Spoljarec [10]. Another discussion on maximum flow-
based network interdiction problem considering uncertainties
in arc capacities and interdiction resource consumption is
presented in Chauhan [11]. An Iterative Security Game for
Computing Robust and Adaptive Network Flows is discussed
by Ridremont in [12]; Gottchalk in [13] discussed Robust
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flows over time: models and complexity results. The cooper-
ative maximum-flow problem under uncertainty in logistic
networks is discussed in Hafezalkotob [14]. Furthermore,
in Bertsimas [15], it is shown that robust maximum flow
problem can be solved in polynomial time, but the robust
minimum cut problem is NP-hard. Minoux in [16] shows
that robust network optimization under polyhedral demand
uncertainty is NP-hard and also discusses its computational
tractability.

Han in [17] presents the maximum flow problem of
uncertain network with the arc capacities of the network
as uncertain variables. The main purpose of this paper is
to solve the maximum flow in an uncertain network by
considering the uncertain arc capacities as random or fuzzy
variables. Ding et al. in [18] discusses the α-maximum
flow model with uncertain capacities. Dynamic network
design problem under demand uncertainty: an adjustable RO
approach is presented in [19]. Moolman in [20] discusses
the Maximum Flow and Minimum Cost Maximum Flow
Problems: Computing and Applications. The complexity of
computing a robust flow is discussed in Disser [21].

RO can be categorised into two types, i.e., the single stage
and two-stage models. In RO, the single stage optimization,
all decision variables with here and now decisions are
considered to be a problem to be resolved immediately.
Meanwhile, in the two-stage optimization with the wait and
see decision, the decision variables in the second stage are
adjusted to the realization of parameter uncertainty. This
two-stage RO is known as Adjustable Robust Optimization
(ARO) (see Bental et al. [22] and [23]). Two-stage RO, state-
space representable uncertainty and applications can be seen
in Minoux [24]. Atamturk in [25] discusses two-stage robust
network flow and design under demand uncertainty. Related
work on adjustable RO for maximum flow problem with box
uncertainty is discussed in Agustini et al. [26].

In this paper, a discussion on Adjustable Robust Counter-
part Optimization Model (ARCOM) for UMFP with para-
metric ellipsoidal uncertainty set and polyhedral uncertainty
is presented. The paper is organized as follows. Section III
briefly introduces the theory of Max-Flow Min-Cut Theorem,
RO, ARO and RMFP. Section IV is devoted to discuss the
ARC of MFP and the characteristic of RMF function over
the parametric ellipsoidal. In Section IV-B, we discuss a
parametric variant of the above ARC-MFP, where the sizes
of the uncertainty in c are controlled by a nonnegative scaling
parameter. In Section V, we discuss some examples of ARC-
MFP. Conclusions can be found in Section VI.

II. PROBLEM DESCRIPTION

In this paper, we discuss the adjustable robust counterpart
model for UMFP with an assumption that the uncertain
arcs lies in a parametric ellipsoidal and in a polyehedral
uncertainty set. In the concept of ARO, the problem con-
sidered as two-stage optimization problem. There are two
kinds of variables in ARO, i.e., adjustable and non-adjustable
variables. For the case of UMFP, the maximum flow is
represented by a flow xts from the destination node t back to
the source node s. This xts is assumed to be the adjustable
variable. The UMFP is formulated as a linear programming
problem with uncertain arcs capacities. The ARO version
for UMFP is called Adjustable Robust Optimization Model

for Maximum Flow Problem (ARO-MFP). The main aim is
to determine that the ARO-MFP is computationally tractable.
We also discuss the case of parametric ellipsoidal uncertainty
and its characteristic of ARO-MFP is analysed using the
Theorem of Max-Flow and Min-Cut.

To this end, let recall the MFP problem as follows (see
Schrijver [27]. Let G = (V,A) be a directed graph, let s, t ∈
V and let c : A → Q+ be a capacity function. The objective
in the MFP is to find an s− t flow of maximum value under
c. Adding an arc from t to s with cts = ∞, the maximum
t− s flow problem can be formulated as

max{xts : Ax = 0, 0 ≤ x ≤ c}, (1)

where A is the node-arc incidence matrix and x is the vector
of flow variables.

Recall the robust maximum flow problem (RMFP) in
Chaerani et al. [28], the following is a model to handle the
maximum flow problem with uncertain arc capacities that
belong to a so-called uncertainty set U . We then have to deal
with a whole family of maximum flow problems, namely

H = {max{xsr : Ax = 0, 0 ≤ x ≤ c} : c ∈ U}. (2)

Referring to Chaerani et al. [28], the major challenge is
when and how we can reformulate (2) as a computationally
tractable optimization problem. The flow is must be feasible
under all possible values of c ∈ U , and the maximum flow
value under this condition is obtained, thus the problem is
called the robust maximum flow problem (RMFP), and the
flow of maximum value under the uncertain arc capacities
is called the robust maximum flow (RMF) value. A natural
assumption is used; the network G = (V,A) is fixed, as well
as the nodes s and t. Thus, the uncertainty occurs only in
the vector c of arc capacities. We assume c ∈ U , when U
is the uncertainty set for c. By Robust Linear Optimization
methodology (see [5]), the robust counterpart of the RMFP
can be stated as

max{xts : Ax = 0, 0 ≤ x ≤ c,∀c ∈ U}. (3)

Hence, the objective is to find the maximum value of a
flow that satisfies x ≤ c for all c ∈ U where cts = ∞.
Certainly, this robust counterpart depends on how we choose
the uncertainty set U . In Chaerani et al. [28], two different
uncertainty sets, namely box and ellipsoidal uncertainty sets
are considered.

A case of ellipsoidal uncertainty is considered in [28] is
discussed as follows.

U = {c : c = c0 +Qζ, ‖ζ‖2 ≤ 1}, (4)

where Q is a fixed matrix of size |A| × p and ζ ∈ Rp for
some p.

Lemma 1: Referring to Chaerani et al. [28], the flow x is
robust feasible if and only if

0 ≤ xa ≤ c0a − ‖Qa‖ , ∀a ∈ A (5)

where c0a is the nominal capacity on arc a and Qa is the row
of Q corresponding to arc a.

Proof: The flow xa on arc a must satisfy

xa ≤ c0a +Qaζ, ∀ζ : ‖ζ‖2 ≤ 1. (6)
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This means that

xa ≤ c0a + min
ζ
{Qaζ : ‖ζ‖2 ≤ 1} . (7)

The minimum at the right hand side is attained when

ζ = − QTa
‖Qa‖2

, (8)

whence the capacity of arc a becomes

c0a −Qa
QTa
‖Qa‖2

= c0a −
‖Qa‖2

‖Qa‖2
= c0a − ‖Qa‖2 . (9)

This implies that also in this case, the RMFP is a usual
maximum flow problem, with the nominal capacities c0a
replaced by c0a − ‖Qa‖, a ∈ A. So we have proved the
next result (see [28]).

Theorem 1: The RMFP with ellipsoidal uncertainty as
given by (4), is equivalent to

max{xts : Ax = 0, 0 ≤ xa ≤ c0a − ‖Qa‖ , a ∈ A}. (10)

III. METHODOLOGY

To formulate the Adjustable Robust Counterpart Optimiza-
tion model for the maximum flow problem it must be known
in advance about Theorem of Max-Flow Min-Cut for of
the maximum flow problem, RO, and Adjustable Robust
Counterpart Optimization must be known.

A. Max-Flow Min-Cut Theorem

In this subsection, we briefly recall some well known
definitions and results about the maximum flow problem
including the max flow-min cut theorem (see Schrijver [27]).

Definition 1: For a given network G = (V,A) and s, t ∈
V , a function x : A → R is called an s− t flow if

xa ≥ 0 for each a = (i, j) ∈ A, (11)

and ∑
a∈δ+(j)

xa =
∑

a∈δ−(j)

xa for each j ∈ V \ {s, t}, (12)

where δ+(j) and δ−(j) denote the sets of arcs leaving j and
entering j, respectively. Condition (12) is called the flow
conservation law, i.e., the famount of flow entering a node
j 6= s, t is equal to the amount of the flow leaving j.

The value of an s − t flow is, by definition, the net flow
entering the network. So, the value is given by

xts =
∑

a∈δ+(s)

xa −
∑

a∈δ−(s)

xa. (13)

As (12) equals the net flow leaving the network, hence we
have also

xts =
∑

a∈δ+(t)

xa −
∑

a∈δ−(t)

xa. (14)

Let c : A → R+ be a capacity function. We say that a flow
x is under c (or subject to c) if

xa ≤ ca for each a ∈ A. (15)

Let X ⊆ V with s ∈ X and t /∈ X . Then the set δ+(X)

δ+(X) = {a = (i, j) ∈ A : i ∈ X, j /∈ X} (16)

Fig. 1. s− t cut determined by node set X

is called an s − t cut, more specifically, the s − t cut is
determined by the nodes set X (see Figure 1). Note that
when removing the edges in an s − t cut δ+(X) from the
network then there is no longer a path from s to t, and hence
no flow can be sent through the network. The capacity of a
cut δ+(X) is defined by

c(δ+(X)) =
∑

a∈δ+(X)

ca. (17)

The following theorem holds.
Theorem 2 (cf. Schijver [27]): For every flow x and every

s− t cut δ+(X) one has:

xts ≤ c(δ+(X)). (18)

Equality holds if and only if xa = ca for each a ∈ δ+(X)
and xa = 0 for each a ∈ δ−(X).

Inequality (18) in Theorem 2 is called the weak duality
theorem for the max flow problem. Referring to Schijver
[27], the following theorem, which is known as the max
flow-min cut theorem is known.

Theorem 3: A strong dual to the maximum s − t flow
problem (1) is

min
X

 ∑
a∈δ+(X)

ca : s ∈ X ⊂ V \ {t}

 , (19)

which is the minimum s− t cut problem.

B. Robust Optimization

Referring to Ben-Tal et al. in [5], RO is a method to
solve optimization problems with data uncertainty and is only
known in a set of uncertainties. The general form of the
problem of indefinite linear optimization can be formulated
as in equation (20) follows:

min cTx

s.t Ax ≤ b (20)
(c, A, b) ∈ U .

where c ∈ Rn, A ∈ Rmxn, b ∈ Rn, the three decision
variables are indefinite coefficients. U is a notation of the set
of uncertainties.

There are three basic assumptions in RO, namely all
decision variables state decisions ”here and now”, deci-
sion makers are fully responsible for the consequences of
decisions made, if and only if the actual data have been
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determined in the set of uncertainties U , and constraints on
programming problems linear with uncertainty is ”hard”. In
addition, referring to Gorissen et al. in [6], in dealing with
Linear RO, three things are also assumed. First, the objective
function is certainly valuable. If there are uncertainties in
the objective function, then the problem can be formulated
by replacing the objective function with a single variable
function such that uncertainty arises in a constraint function.
Second, the right vertex vector b is of certain value. If b is
not certain, an extra variable xn+1 can be introduced. Third,
robustness against U can be formulated as a constraint-wise
problem and the set of uncertainties U is a closed and convex
set.

Assuming that c ∈ Rn and b ∈ Rm are of certain value,
the Robust Counterpart (RC) formulation of equation (20) is
equivalent to equation (21) below.

min cTx

s.t A(ζ)x ≤ b (21)
∀ ζ ∈ Z.

Note the uncertain constraint in equation (21) and define
the uncertain parameter a(ζ) = ā + Pζ where ā ∈ Rn is
a nominal value vector and P ∈ RnxL is a confounding
matrix, the set U is defined as in equation (22).

U = {a|a = ā+ Pζ, ζ ∈ Z} (22)

where Z ⊂ RL is an uncertain set of primitive factors, so
equation (23) is obtained.

(ā+ Pζ)
T
x ≤ b, ∀ ζ ∈ Z (23)

The optimal solution from Robust Counterpart is called
optimal robust. Furthermore, to reformulate the set of un-
certainty U into a computationally tractable problem, the
following theorem applies.

Theorem 4: Referring to Bental et al. [2] and Chaerani &
Roos [7], assume the set of uncertainty U is an affine image
of the limited set Z = {ζ} ⊂ Rn, and U is:

1) The system of linear inequality constraints

Pζ ≤ p (24)

2) The system of conic quadratic inequality

‖Piζ − pi‖2 ≤ p
T
i ζ − ri, i = 1, ...,M (25)

3) The systems of linear matrix inequality

p0 +

dimζ∑
i=1

ζiPi ≥ 0 (26)

In cases (2) and (3) it is also assumed that the system
of the constraints defining U is strictly feasible. Then, the
Robust Counterpart of equation (20) is equivalent to] Linear
Programming (LP) problems in the case (1).Conic Quadratic
Programming (CQP) problems in cases (2). Semidefinite
Programming (SDP) problems in cases (3).

Cite from Gorissen et al. in [6], the computational
tractability of robust counterpart for different sets of uncer-
tainties can be seen in Table I.

TABLE I
TRACTABILITY FOR CONSTRAINTS WITH UNCERTAINTY SETS

Uncertainty Set Z Robust Counterpart Tractability

Box ‖ζ‖∞ ≤ 1 aT x+ ‖PT x‖1 ≤ b LP

Ellipsoidal ‖ζ‖2 ≤ 1 aT x+ ‖PT x‖2 ≤ b CQP

Polyhedral Dζ + q ≥ 0


aT x+ qTw ≤ b
DTw = −PT x

w ≥ 0

LP

C. Adjustable Robust Counterpart Optimization

Referring to Bental et al. in [5] and [22] also in Yanikouglu
et al. [23], in multistage optimization, the basic paradigm of
RO, namely the ”here and now” decision, can be relaxed.
Some decision variables can be adjusted at a later time
according to decision rules, which are a function of (some or
all parts of) uncertain data. Adjustable Robust Counterpart
(ARC) is given as in equation (27).

minx,y(.) c
Tx

s.t A(ζ)x+By(ζ) ≤ b (27)
∀ ζ ∈ Z.

where x ∈ Rn is the first stage decision ”here and now”
made before ζ ∈ RL is realized, y ∈ Rk denotes a ”wait and
see” decision and B ∈ Rmxk which shows a certain matrix
coefficient.

In practice, y(ζ) is often through an approach with affine
or linear decision rules y(ζ) = y0 + Qζ with y0 ∈ Rk and
Q ∈ RkxL is the coefficient in the decision rule, which is to
be optimized. Thus, the reformulation of equation (27) is as
follows:

minx,y0,Q cTx

s.t A(ζ) +By0 +BQζ ≤ b (28)
∀ ζ ∈ Z.

In the next section, we discuss the formulation of the
Adjustable Robust Counterpart Optimization (ARC) model
for the maximum flow problem (MFP), the ARC-MFP with
parametric ellipsoidal uncertainty set, and the ARC-MFP
with polyhedral uncertainty set.

IV. RESULT AND DISCUSSION

A. ARC Optimization Model for the Maximum Flow Problem

Previously, review the model of the maximum flow prob-
lem as in equation (1). The first thing to do is determining
the parameters of uncertainty. In the case of maximum flow,
the flow capacity of each side in the network is an uncertain
factor. Therefore, the uncertainty parameter in this maximum
flow model is the side capacity of the network. This means
that the capacity of node i and j, i.e., cij is assumed lies
within an uncertainty set U . Furthermore, as an uncertainty
parameter, cij can be written into equation (29)

cij = c̄ij + Pijζ,∀ ζ ∈ Z (29)

where c̄ij ∈ Rn is a nominal value vector of side capacity,
Pij ∈ RnxL is a confounding matrix, and ζ ∈ RL is a
primitive uncertainty vector. cij uncertainty parameters are
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found in the constraints of the maximum flow model. cij
parameter is a vector of the right hand side of the constraint,
so the assumption that the right hand side of the constraint
must be of certain valuable can be met by adding an extra
variable ωij = 1 so that the cij parameter becomes the
coefficient of the ωij variable as in equation (30) as follows:

xij − cijωij ≤ 0,∀i, j; ωij = 1 (30)

Substitute equation (29) to equation (30) to get the model for
the maximum flow problem with uncertainty in the following
parameters:

max xts

s.t Ãx = 0

xij − (c̄ij + Pijζ)ωij ≤ 0, ∀ i, j (31)
ωij = 1

xij ≥ 0, ∀ i, j

The next step is to determine the adjustable decision variable
from the maximum flow model in the form of the number
of flows from node t to node s (xts). The xts variable can
adjust to xts(ζ) decision rules that depend on ζ and can be
defined as follows:

xts(ζ) = x̄ts +Qζ (32)

where x̄ts ∈ Rn is the nominal vector of the amount of
flow from node t to node s, Q ∈ RnxL is a confounding
matrix, and ζ ∈ RL is a primitive uncertainty factor. Note
that the adjustable variable xts is found in the objective
function of the maximum flow model, so the assumption
that the objective function must be of value can be fulfilled
by replacing the objective function with a single variable
function t and there are uncertainties in a constraint function
where t ≤ xts and t ∈ Rn. Substitute equation (32) to
equation (31) to obtain an Adjustable Robust Counterpart
model for the maximum flow problem as in equation (16)
follows:

max t

s.t x̄ts +Qζ − t ≥ 0

Ãx = 0

xij − (c̄ij + Pijζ)ωij ≤ 0, ∀ i, j (33)
ωij = 1

xij ≥ 0, ∀ i, j
ζ ∈ Z

B. ARC Optimization Model for Maximum Flow Problem
with Parametric Ellipsoidal Uncertainty

Assume that the uncertain parameters and decision vari-
ables in the Adjustable Robust Counterpart model for the
maximum flow problem are in the set of ellipsoidal uncer-
tainty. Define the set of ellipsoidal uncertainty as follows:

Z = {ζ : ‖ζ‖2 ≤ 1} (34)

Robust Counterpart formulation for constraints with the set
of ellipsoidal uncertainty as in equation (35) follows:

(ā+ Pζ)Tx ≤ b, ∀ζ : ‖ζ‖2 ≤ 1 (35)

is equivalent with

(ā+ Pζ)Tx = āTx+ max
ζ:‖ζ‖2≤1

(PTx)T ζ

= āTx+ ‖PTx‖2 ≤ b (36)

Assuming the uncertainty is in the set of ellipsoidal uncer-
tainty, the third constraint in equation (33) is equivalent to
the following equation:

xij − (c̄ij + Pijζ)ωij = xij − c̄ijωij − Pijωijζ
= xij − c̄ijωij − max

ζ:‖ζ‖2≤1
(Pijωijζ)

≤ 0, ∀ i, j (37)

To achieve the best worst condition, choose the unit vector

ζ =
Pijωij
‖Pijωij‖2

. (38)

By referring to the norm definition, norm−L2 is the root
result of adding up the absolute value of the entry squared.

max
ζ:‖ζ‖2≤1

(Pijωijζ) = Pijωij
Pijωij
‖Pijωij‖2

,

=
(Pijωij)

2√
(Pijωij)2

,

=
√

(Pijωij)2,

= ‖Pijωij‖2, ∀i, j. (39)

Thus, this implies that the equation (37) can be represented
as (40).

xij − c̄ijωij − ‖Pijωij‖2 ≤ 0,∀i, j. (40)

In the same way, for the first constraint in equation (33)
with the set of ellipsoidal uncertainty, choose the unit vector
ζ = Q

‖Q‖2 . This is equivalent to equation (41).

x̄ts +Qζ − t = x̄ts + (Q
Q

‖Q‖2
)− t

= x̄ts + (
Q2√
Q2

)− t

= x̄ts +
√
Q2 − t,

= x̄ts + ‖Q‖2 − t ≥ 0. (41)

Next, substituting equations (40) and (41) into the Op-
timization model (33), we obtain the Adjustable Robust
Counterpart Optimization model with the set of ellipsoidal
uncertainty for the maximum flow problem as in equation
(42).

max t

s.t x̄ts + ‖Q‖2 − t ≥ 0, ∀i
Ãx = 0

xij − c̄ijωij − ‖Pijωij‖2 ≤ 0,∀i, j. (42)
ωij = 1, ∀i, j
xij ≥ 0, ∀i, j

Next, we discuss a parametric variant of the above ARC-
MFP, where the sizes of the uncertainty perturbation in c are
controlled by a nonnegative scaling parameter.
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1) Parametric Ellipsoidal Uncertainty for ARC-MFP: Let
the uncertainty set Uα be defined by

Uα = {c : c = c0 + αQζ, ‖ζ‖ ≤ 1}, (43)

where c0 is the nominal value of c, α is a nonnegative scaling
parameter. Note that c0 +αQζ must be nonnegative for ∀ζ :
‖ζ‖ ≤ 1 to ensure feasibility. Thus, we assume that

0 ≤ α ≤ αmax := min

{
c0a
‖Qa‖

: ‖Qa‖ > 0, a ∈ A
}
.

(44)
Theorem 5: Let Uα be the ellipsoidal uncertainty set given

by (43) with 0 ≤ α ≤ αmax and let xts(α) denote the opti-
mal flow value for the robust counterpart. Then xts(α) is a
piecewise monotonically decreasing linear concave function.

Proof: By Theorems 3 and 1, the maximum flow of the
ARC-MFP with ellipsoid set Uα , xts(α) satisfies

minX
∑

a∈δ+(X)

(c0a − α ‖Qa‖)

s.t s ∈ X ⊆ V \ {t}. (45)

We shall show that xts(α) is a piecewise linear concave
function of α by proving that it is the minimum of a finite
family of linear functions. To this end, it is convenient to
introduce

X = {X : s ∈ X ⊆ V \ {t}} (46)

such that (45) can rewritten as follows

xts(α) = min
X

{
cα(δ+(X)) : X ∈ X

}
, (47)

where

cα(δ+(X)) =
∑

a∈δ+(X)

c0a − α
∑

a∈δ+(X)

‖Qa‖ . (48)

Fixing X ∈ X and since
∑
a∈δ+(X) ‖Qa‖ ≥ 0, cα(δ+(X))

is a monotonically decreasing linear function of α. If |V| =
n, then the number of s−t cuts X is 2n−2. Hence X is finite.
We conclude that xts(α) is the minimum of a finite set of
monotonically decreasing linear functions. This implies that
xts(α) is continuous, concave and monotonically decreasing
piecewise linear function.

Next, we discuss some properties of the RMF value
function xts(α).

2) The minimal cuts on a linearity interval and at a
breakpoint: The values of α where the slope of xts(α)
changes are called breakpoints of xts(α) and any interval
between two successive break points of xts(α) is called a
linearity interval of xts(α). For any α in the domain of
xts(α) we denote the set of minimal cut sets by

Xα = {X ∈ X : xts(α) = cα(δ+(X))}. (49)

The following theorem shows that the set Xα is constant on
the interior of a linearity interval.

Theorem 6: If xts(α) is linear on the interval [α1, α2],
where α1 < α2 then Xα is constant for α ∈ (α1, α2).

Proof: Rewrite the RMF value as

xts(α) = τ − ασ, α ∈ [α1, α2], (50)

where

τ =
∑

a∈δ+(X)

c0a and σ =
∑

a∈δ+(X)

‖Qa‖ . (51)

Consider that for β ∈ (α1, α2) such that X ∈ Xβ we have
that τ and σ are independent of β. This implies that Xβ is
independent of β. Since β is arbitrary on the open interval
(α1, α2), then for any α ∈ (α1, α2) we conclude that Xα is
constant.

At a break point (α, xts(α)), the following holds.
Theorem 7: Let Xα1

and Xα2
be the minimal cuts on two

neighboring intervals (α1, α) and (α, α2) respectively. Then
the minimal cut set at the breakpoint (α, xts(α)) satisfies

Xα ⊇ Xα1

⋃
Xα2

. (52)

Proof: By Theorem 6, the minimal cuts Xα1
and Xα2

are constant on the interval (α1, α) and (α, α2) respectively.
This implies that at the breakpoint (α, xts(α)), the minimal
cuts Xa contains Xα1 and Xα2 . Thus the proof is followed.

C. ARC Optimization Model for the Maximum Flow Problem
with Polyhedral Uncertainty

Assume that the uncertain parameters and decision vari-
ables in the Adjustable Robust Counterpart model for the
maximum flow problem are in the set of polyhedral uncer-
tainty. Define the set of polyhedral uncertainty as (53).

Z = {ζ : δ −Dζ ≥ 0} (53)

Consider that the robust counterpart formulation for con-
straints with the set of polyhedral uncertainty can be derived
as follows

(ā+ Pζ)Tx ≤ b, ∀ζ : d−Dζ ≥ 0 (54)

which equivalent with

āTx+ max
ζ:d−Dζ≥0

(PTx)T ζ ≤ b, (55)

where ā ∈ Rn is a nominal value vector, P ∈ RnxL is a
confounding matrix, ζ ∈ RL is a primitive uncertainty vector,
d ∈ Rm, and D ∈ RmxL. Consider that using the duality
theory, solving (55) is equivalent with solving its dual.

āTx+ min
y

{
dT y : DT y = PTx, y ≥ 0

}
≤ b. (56)

This means that ∃y such that

āTx+ dT y ≤ b, DT y = PTx, y ≥ 0 (57)

Now, assume that the data uncertainty lies within a poly-
hedral uncertainty set as in (53) , thus the ARC for problem
(33) can be done by reformulating the third constraint of
problem (33), as follows.

xij − (c̄ij + Pijζ)Tωij

= xij − c̄ijωij − (PTijωij)
T ζ ≤ 0,∀i, j, (58)

which equivalent with

xij − c̄ijωij − max
ζ:d−Dζ≥0

(PTijωij)
T ζ ≤ 0, ∀i, j (59)

Using the duality theory consider that

max
ζ:d−Dζ≥0

(PTijωij)
T ζ (60)

is equivalent with

min
yk

{
dTk yk : DT

k yk = PTijωij , yk ≥ 0
}
. (61)
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Thus the ARC of the third constraint of problem (33) is

xij − c̄ijωij − dTk yk ≤ 0, (62)
DT
k yk = PTijωij , yk ≥ 0,∀i, j (63)

In the same way, to determine the ARC of the first constraint
to equation (33) with the set of polyhedral uncertainty,
consider that the following holds.

xts +Qζ − t = xts + max
ζ:d−Dζ≥0

(Qζ)− t

= xts + min
yx

{
dTx yx : DT

x yx = Q, yx ≥ 0
}
− t

Thus we have that

xts + dTx yx − t ≥ 0, (64)
DT
x yx = Q, yx ≥ 0. (65)

Next, substituting equations (62), (63), (64), and (65) into
(33), we obtain the Adjustable Robust Counterpart Optimiza-
tion model with the set of polyhedral uncertainty for the
maximum flow problem as in equation (66) below:

max t

s.t x̄ts + dTx yx − t ≥ 0

Ãx = 0

xij − c̄ijωij − dTk yk ≤ 0, ∀i, j

DT
k yk = PTijωij

DT
x yx = Q

ωij = 1

yz, yk ≥ 0

xij ≥ 0, ∀i, j

(66)

V. NUMERICAL SIMULATION

In this section we present some examples of Parametric
Ellipsoidal Uncertainty in ARC-MFP, ARC-MFP as a piece-
wise linear concave function, and a case study of ARC in
a network of Energy-Saving Generation Dispatch (ESGD)
with ellipsoidal and polyhedral uncertainty set.

A. Parametric Ellipsoidal Uncertainty in ARC-MFP

In this subsection we discuss how the RMF objective
function can be a piecewise monotonically decreasing linear
concave function of α with n different intervals and n + 1
break points. We show this by following examples.

Example 1: Consider the network of Figure 2. Taking
Q = I , we have a parametric ellipsoid Uα as

Uα = {c : c = c0 + αζ, ‖ζ‖ ≤ 1} (67)

where α satisfy 0 ≤ α ≤ 1 by (44).
The robust arc capacities are then

ca = c0a − α, ∀a ∈ A, (68)

hence the RMFP for this example is

max{x71 : Ax = 0, 0 ≤ xa ≤ c0a − α,∀a ∈ A}. (69)

Fig. 2. A maximum flow problem with the nominal arc capacities

In Table II, we present the RMF for 0 ≤ α ≤ 1. In Figure
3 we see that the RMF value function x7,1(α) is a piecewise
monotonically decreasing linear concave function of α with
two different intervals and three break points.

Fig. 3. The RMF x7,1(α) as a piecewise linear concave function of
ellipsoidal scalling parameter α.

Example 2: The second example shows that it is possible
to have n+ 1 different linearity interval and n breakpoints.
The discussion is as follows. Consider a network as shown
in Figure 4 with n ≥ 2. For a given R, define

ck =
R

sin γk
, where γk = k(

π

2n
), k = 1, 2, . . . , n. (70)

Fig. 4. A simple network for RMFP with n ≥ 2

The matrix Q is a diagonal matrix with

Qkk = − cot γk, thus αmax = min
k

{
R

cos γk

sin2 γk

}
. (71)

As an example, for a case with R = 1 and n = 4, the
nominal arc capacities c0 is

c0 =


1.0353
1.1547
1.4142
2.0000
3.8637
∞

 (72)
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TABLE II
THE RMF FOR xv7,v1 (α) VALUE FOR α ∈ [0.0, 1.0]

Arcs c0 α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
xv1,v2
x1,3
x2,3
x2,4
x2,5
x3,4
x3,5
x4,7
x5,4
x5,6
x4,6
x6,7
x7,1

4

6

4

7

4

1

12

6

2

2

3

6

∞

3.7929

4.2071

0.1999

3.3709

0.2221

0.7753

3.6317

6.0000

1.8539

2.0000

0

2.0000

8.0000

3.7322

4.0678

0.1562

3.4123

0.1636

0.7011

3.5230

5.9000

1.7866

1.9000

0

1.9000

7.8000

3.6745

3.9255

0.1111

3.4533

0.1101

0.6320

3.4045

5.8000

1.7146

1.8000

0

1.8000

7.6000

3.6163

3.7837

0.0683

3.4899

0.0581

0.5680

3.2840

5.7000

1.6421

1.7000

0

1.7000

7.4000

3.5585

3.6415

0.0290

3.5067

0.0229

0.5190

3.1514

5.6000

1.5743

1.6000

0

1.6000

7.2000

3.5000

3.5000

0

3.5000

0

0.5000

3.0000

5.5000

1.5000

1.5000

0

1.5000

7.0000

3.4000

3.2000

0

3.4000

0

0.4000

2.8000

5.2635

1.4000

1.4000

0.0635

1.3365

6.6000

3.3000

2.9000

0

3.3000

0

0.3000

2.6000

5.0197

1.3000

1.3000

0.1197

1.1803

6.2000

3.2000

2.6000

0

3.2000

0

0.2000

2.4000

4.7710

1.2000

1.2000

0.1710

1.0290

5.8000

3.1000

2.3000

0

3.1000

0

0.1000

2.2000

4.5150

1.1000

1.1000

0.2150

0.8850

5.4000

3.0000

2.0000

0

3.0000

0

0

2.0000

4.2567

1.0000

1.0000

0.2567

0.7433

5.0000

RMF 8.0000 7.8000 7.6000 7.4000 7.2000 7.0000 6.6000 6.2000 5.8000 5.4000 5.0000

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

The ellipsoidal scaling parameter

T
h
e
 R

M
F

 V
a
lu

e

Fig. 5. Optimal value function in Example 2.

and the matrix Q is

Q =


−0.2679 0 0 0 0 0

0 −0.5774 0 0 0 0
0 0 −1.0000 0 0 0
0 0 0 −1.7321 0 0
0 0 0 0 −3.7321 0
0 0 0 0 0 0

 .

In Figure 5, we see that there are four breakpoints and five
linearity intervals for α ∈ [0, 1.0353].

B. A Case Study in a Network of Energy-Saving Generation
Dispatch (ESGD)

The data used for the case study are secondary data that
already exists referring to Zhang and Cai [29] regarding the
network on the issue of Energy-Saving Generation Dispatch
(ESGD).

The ESGD problem used has the aim to minimize car-
bon gas emissions resulting from the use of coal fuel by
minimizing the cost function and optimizing the electric
current in the distribution system. In this electric power
distribution system, electricity will be sent from a power
source (generator) through several components such as the

transformer and capacitors to the consumer demand. Basi-
cally, the electrical distribution system can be described as
a network in which some components that play a role in the
delivery of electricity.

Fig. 6. ESGD Bus Power System from Zhang and Cai [29]

To proceed this problem as a maximum flow problem, a
converting step is done to represent the diagram in Figure 6
to a network diagram flow as can be seen in Figure 7.

Fig. 7. ESGD Problem as a Network Flow Problem (see Zhang and Cai
[29]).

Referring to (73), ESGD is developed by the Chinese
government in 2007. Based on the fuel consumption rate
from low to high, the power plants are ranked. The power
plant will be sorted based on the intensity of its carbon
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emission from low to high when the fuel consumption rate is
the same. The ESGD problem has an objective function on
minimizing the operating costs of power generation systems
that are considered to represent the fuel costs that are directly
proportional to the carbon emissions generated so that both
seek to comply with government ESGD schemes.

Referring to Zhang and Cai [29] a power distribution
system has been converted into a network. The following
is the example for ESGD network as a bus power system
as in Figure 6. To this end, a source point is selected first.
In this case the point that is representing the generator as
power producer, namely point 1 and point 2 are selected as
the source points. Next, select the destination points, i.e.,
the three destination points or demand power points, i.e., the
point 3, 5, and 6. The flow in bus power system hence can be
followed in order to assemble the network on the diagram of
network flow. the points where there is a reduction of power
during delivery are become other points. These are the points
at which there is a transformer or capacitor. Network diagram
flow generated from the diagram bus power system in Figure
6 now has been converted as a network flow in Figure 7.

A variant version of optimization model for ESGD is
discussed by Lesmana et. al in [30]. The ESGD problem
is considered as a min-cost flow model. Differs to [30], in
this paper the main focus in this case study study is to find
the maximum electric current that can flow on the network
such as Figure 7 and the maximum current flow with an
uncertainty in the electric power capacity. The maximum
flow problem for the ESGD network case study can be
written as in equation (73).

max x81

s.t x12 + x13 − x81 = 0

−x12 + x25 + x27 = 0

x25 + x54 + x57 = 0

−x13 + x36 + x34 = 0

x27 − x57 + x76 + x78 = 0 (73)
x34 − x54 + x48 = 0

x36 − x76 + x68 = 0

x78 − x68 − x48 + x81 = 0

xij ≤ cij , ∀(i, j)
xij ≥ 0

The maximum amount of electric current that can flow on
the network is 193.2 Ampere. The electric current for each
arcs can be seen in Table III for nominal case (without
uncertainty).

1) Numerical Simulation Result with Ellipsoidal Uncer-
tainty: The formulation of ARMFP with the ellipsoidal
uncertainty set for (73) can be seen in (74). Let the value of P
is a random number obtained through Maple software. Thus,
the calculation result for equation (74), i.e., the maximum
amount of electric current that can flow on the network is
219.1948 Ampere. The optimal amount of electric current on
each arcs with the set of ellipsoidal uncertainty can be seen
in Table III.

max t

s.t x81 + ‖Q‖ − t ≥ 0

TABLE III
THE ELECTRIC CURRENT FOR EACH ARCS OF THE NETWORK WITH

ELLIPSOIDAL AND POLYHEDRAL UNCERTAINTY SET

Arcs Optimal Robust Optimal Robust Optimial

(nominal) (ellipsoidal) (polyhedral)

x12 93.7 104.1759 109.6852

x13 99.5 115.10188 109.2969

x25 41.8 42.8248 23.5330

x27 51.9 61.3511 86.1521

x34 50 58.4124 76.3744

x36 49.5 56.6064 32.9225

x48 91 95.4278 99.9074

x54 41 37.0154 23.5330

x57 0.79 5.8093 0

x68 49.5 56.6064 32.9225

x76 0 0 0

x78 52.7 67.1605 86.1521

x81 193.2 219.1948 218.9821

Q - 0 0

t - 219.1948 218.9821

x12 + x13 − x81 − ‖Q‖ = 0

x12 + x25 + x27 = 0

x25 + x54 + x57 = 0

x13 + x36 + x34 = 0

x27 − x57 + x76 + x78 = 0 (74)
x34 − x54 + x48 = 0

x36 − x76 + x68 = 0

x78 − x68 − x48 + x81 + ‖Q‖ = 0

xij − cij − ‖Pij‖ ≤ 0, ∀(i, j)
xij ≥ 0

C. Numerical Simulation Result with Polyhedral Uncertainty

The ARMFP with polyhedral uncertainty set can be for-
mulated as (75)

max t

x81 + dxyx − t ≥ 0

x12 + x13 − x81 − dxyx = 0

x12 + x25 + x27 = 0

x25 + x54 + x57 = 0

x13 + x36 + x34 = 0

x27 − x57 + x76 + x78 = 0 (75)
x34 − x54 + x48 = 0

x36 − x76 + x68 = 0

x78 − x68 − x48 + x81 + dxyx = 0

xij − cijωij − dcijycij ≤ 0, ∀(i, j)
Dcijycij = Pijωij , ∀(i, j)
Dxyx = Q

ωij = 1

yx ≥ 0

xij , ycij ≥ 0, ∀(i, j)

IAENG International Journal of Applied Mathematics, 51:1, IJAM_51_1_09

Volume 51, Issue 1: March 2021

 
______________________________________________________________________________________ 



Let the value in the variable P,Dx, Dk, dx, dk is a random
number obtained through Maple software. Based on equation
(75) and the value of the variable P,Dx, Dk, dx, dk, using
Maple 18 software the maximum amount of electric current
that can flow on the network is 218,9821 Ampere. The robust
optimal of electric current on each arcs with the set of
polyhedral uncertainty as in Table III.

VI. CONCLUSIONS

The ARC-MFP has been discussed in this paper. It
is clearly shown that the ARC-MFP is computationally
tractable problem when the uncertainty set is parametric
ellipsoidal uncertainty and polyhedral uncertainty set. For
the case of parametric ellipsoidal, the characteristic of ARC-
MFP objective function is shown to be continuous, concave
and a monotonically decreasing piecewise linear function.
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[6] B. L. Gorissen, İ. Yanıkoğlu, and D. den Hertog, “A practical guide
to robust optimization,” Omega, vol. 53, pp. 124–137, 2015.

[7] D. Chaerani and C. Roos, “Handling optimization under uncertainty
problem using robust counterpart methodology,” Jurnal Teknik Indus-
tri, vol. 15 (2), pp. 111–118, 2013.

[8] D. Chaerani, S. P. Dewanto, and E. Lesmana, “Robust optimization
modelling with applications to industry and environmental problems,”
in Journal of Physics: Conference Series, vol. 893, 2017, p. 012065.

[9] S. Leyffer, M. Menickelly, T. Munson, C. Vanaret, and S. M. Wild, “A
survey of nonlinear robust optimization,” INFOR: Information Systems
and Operational Research, pp. 1–32, 2020.
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