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Abstract—We concern with the existence of solutions of frac-
tional p-Laplacian equations with functional boundary value
conditions at resonance. Applying the extension of continuation
theorem, some new existence results on this problem are
obtained. Finally, this article also gives examples to verify the
main results. The work of this paper is to extend some current
results to a completely nonlinear situation.

Index Terms—Riemann-Liouville fractional derivative, func-
tional boundary conditions, p-Laplacian operator, resonance,
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I. INTRODUCTION

FRACTIONAL differential equations are studied by
many scholars because of its wide application back-

ground (see [1-5]). Ameen and Novati [5] considered the
following fractional epidemic model:

CDα
0+x (t) = −βx (t) y (t) , t ≥ t0,

CDα
0+y (t) = βx (t) y (t)− γy (t) , t ≥ t0,

CDα
0+z (t) = γy (t) , t ≥ t0,

x (t0) = N1 ≥ 0, y (t0) = N2 ≥ 0, z (t0) = N3 ≥ 0,

where 0 < α ≤ 1, β > 0, γ > 0, CDα
0+ is a

Caputo fractional derivative. The specific significance of the
remaining parameters can be found in literature [6].

In recent years, there has been great interest in functional
boundary value problems (see [7-17]). For example, Zou and
Cui [12] first discussed the following fractional functional
boundary value problems (FFBVPs for short):{
Dα

0+u (t)=f
(
t, u (t) , Dα−1

0+ u (t) , Dα−2
0+ u (t)

)
, t ∈ [0, 1],

I3−α
0+ u(t)

∣∣
t=0

=0,Φ1

[
Dα−1

0+ u (t)
]
=0,Φ2

[
Dα−2

0+ u (t)
]
=0,

where 2 < α < 3, Dα
0+ is a Riemann-Liouville fractional

derivative, Φ1,Φ2 : C [0, 1] → R are continuous, linear
functional. In particular, the functional conditions here can
be similarly represented as the following form:

Φ1

[
Dα−1

0+ u (t)
]

=

∫ 1

0

Dα−1
0+ u (t) dη1 (t) = 0,
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Φ2

[
Dα−2

0+ u (t)
]

=

∫ 1

0

Dα−2
0+ u (t) dη2 (t) = 0.

It is worth mentioning that η1, η2 are Riemann-Stieltjes
measures. Some existence results were obtained by giving
some sufficient conditions as follows:

(A1) Φ1 (1) Φ2 (1) 6= 0;

(A2) Φ1 (1) = Φ2 (t) = 0,Φ2 (1) 6= 0;

(A3) Φ1 (1) = Φ2 (1) = 0,Φ2 (t) 6= 0;

(A4) Φ1 (1) 6= 0,Φ2 (1) = Φ2 (t) = 0;

(A5) Φ1 (1) = Φ2 (1) = Φ2 (t) = 0.

However, since the condition (A6) Φ1 (1) = 0, Φ2 (t),
Φ2 (1) 6= 0 was not considered in [12], Kosmatov and Jiang
[13] continued to research the solvability of the following
FFBVPs under the condition (A6):{
Dα

0+u (t)=f
(
t, u (t) , Dα−2

0+ u (t) , Dα−1
0+ u (t)

)
, t ∈ (0, 1),

u(0) = 0, B1(u) = B2(u) = 0.

Note that the conditions B1(u) = B2(u) = 0 can be
expressed as the following concrete form:

Bi (u) =

∫ 1

0

u (t) dξi1 (t) +

∫ 1

0

Dα−2
0+ u (t) dξi2 (t)

+

∫ 1

0

Dα−1
0+ u (t) dξi3 (t) = 0, i = 1, 2,

Where ξij (t) , i = 1, 2, j = 1, 2, 3, are Riemann-Stieltjes
measures. Obviously, the boundary conditions here are more
general than [12]. Here, Mawhin’s continuous theorem (see
[19]) is applied.

Based on the above literature, this paper will study the
following FFBVPs with p-Laplacian operator:

Dβ
0+φp

(
Dα

0+u (t)
)

= f
(
t, u (t) , Dα−2

0+ u (t) ,

Dα−1
0+ u (t) , Dα

0+u (t)
)
, t ∈ (0, 1),

u (0) = Dα
0+u (0) = 0,T1 (u) = T2 (u) = 0,

(1)

where 2 < α ≤ 3, 0 < β ≤ 1, 3 < α + β ≤ 4,
Dα

0+ is a Riemann-Liouville fractional derivative, f ∈
C([0, T ] × R4,R) and T1,T2 : C[0, 1] → R are lin-
ear bounded functional and satisfy the resonance condition
T1

(
tα−1

)
T2

(
tα−2

)
= T1

(
tα−2

)
T2

(
tα−1

)
. φp (·) is a p-

Laplacian operator, φp (s) = |s|p−2
s, p > 1, φp (0) = 0.

The p-Laplacian operator originated from the research of
turbulent flow in porous medium. Leibenson [18] recom-
mended the p-Laplacian equation as below:

(φp (x′ (t)))
′

= f (t, x (t) , x′ (t)) .
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Later, many scholars have developed a strong interest in the
p-Laplacian operator and obtained some excellent results, as
shown in [20-21, 24-30]. Since the p-Laplacian operator is
nonlinear, the continuous theorem of Mawhin is no longer
applicable to study the p-Laplacian problems. Applying the
extended continuous theorem, Jiang [21] discussed fractional
p-Laplacian problems as follows:
Dβ

0+φp
(
Dα

0+u(t)
)

=−f
(
t, u(t) , Dα−1

0+ u(t), Dα
0+u(t)

)
, t∈(0, 1),

u (0) = Dα
0+u (0) = 0, u(1) =

∫ 1

0

h(t)u(t)dt,

where 0 < β ≤ 1, 1 < α ≤ 2,
∫ 1

0
h(t)tα−1dt = 1. And

inspired by [21], this paper studies a more general functional
boundary value problem (1). In summary, the results of this
paper will further expand and enrich the work of [12,13,21].

II. PRELIMINARIES

Here, some relevant definitions and lemmas are shown as
follows, for more details, please see [20-23].

Definition 2.1 ([20]). Let X,Z be real Banach spaces
with norms ‖·‖X , ‖·‖Z , respectively. A continuous operator
M : X ∩ domM → Z is said to be quasi-linear if

(i) ImM := M(X ∩ domM) is a closed subset of Z,

(ii)KerM := {x ∈ X ∩ domM : Mx = 0} is linearly
homeomorphic to Rn, n <∞,
where domM denotes the domain of the operator M .

Definition 2.2 ([21]). Let X1 = KerM and X2 be the
complement space of X1 in X . Then X = X1 ⊕ X2.
Let P : X → X1 be projector and Ω ∈ X be
an open and bounded set with the origin θ ∈ Ω.
Suppose that Nλ : Ω → Z, λ ∈ [0, 1] is a
continuous and bounded operator. Denote N1 by N .
Let

∑
λ = {x ∈ Ω : Mx = Nλx}. Nλ is said to be

M-quasi-compact in Ω if there exists a vector subspace Z1

of Z satisfying dimZ1 = dimX1 and two operators Q and
R such that for λ ∈ [0, 1],

(a) KerQ = ImM,

(b) QNλx = θ, λ ∈ (0, 1) ⇔ QNx = θ,

(c) R(·, 0) is the zero operator and R(·, λ)
∣∣∑

λ
=

(I − P )
∣∣∑

λ
,

(d) M [P +R(·, λ)] = (I −Q)Nλ,
where Q : Z → Z1, QZ = Z1 is continuous, bounded
and satisfies Q(I − Q) = 0 and R : Ω × [0, 1] → X2 is
continuous and compact.

Lemma 2.1 ([21]). Let X and Z be two Banach spaces with
norms ‖·‖X , ‖·‖Z , respectively, and Ω ∈ X be an open and
bounded nonempty set. Suppose

M : X ∩ domM → Z

is a quasi-linear operator and that Nλ : Ω → Z, λ ∈ [0, 1]
is M-quasi-compact. In addition, if the following conditions

hold:

(C1) Mx 6= Nλx, ∀x ∈ ∂Ω ∩ domM, λ ∈ (0, 1),

(C2) deg{JQN, Ω ∩ KerM, 0} 6= 0,
then the abstract equation Mx = Nx has at least one
solution in domM ∩ Ω, where N = N1, J : ImQ→ KerM
is a homeomorphism with J(θ) = θ.

Definition 2.3([22]). The Riemann-Liouville fractional inte-
gral of order α > 0 of a function y : (0,∞) → R is given
by

Iα0+y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1
y(s)ds,

provided the right-hand side is pointwise defined on (0,∞).

Definition 2.4([22]). The Riemann-Liouville fractional
derivative of order α > 0 of a function y : (0,∞) → R
is given by

Dα
0+y(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1
y(s)ds,

provided the right-hand side is pointwise defined on (0,∞),
where n = [α] + 1.

Lemma 2.2([22]). If n−1 < α ≤ n, u ∈ C(0, 1)∩L1(0, 1),
then the fractional differential equation Dα

0+u(t) = 0 has the
solution

u(t) = c1t
α−1+c2t

α−2+· · ·+cntα−n, ci ∈ R, n = [α]+1.

Lemma 2.3([22]). Let n − 1 < α ≤ n, if Dα
0+u(t) ∈

C(0, 1) ∩ L1(0, 1), then

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n,

for some ci ∈ R, i = 1, 2, · · · , n, n = [α] + 1.

Lemma 2.4([22]). Assume u ∈ C[0, 1], 0 ≤ p ≤ q, then

Dp
0+I

q
0+u(t) = Iq−p0+ u(t).

Lemma 2.5([22]). Let α ≥ 0,
(i) if λ > −1, and λ 6= α− i, i = 1, 2, · · · , [α] + 1, then

Dα
0+t

λ =
Γ(λ+ 1)

Γ(λ− α+ 1)
tλ−α,

(ii) Dα
0+t

α−i = 0, i = 1, 2, · · · , [α] + 1.

Lemma 2.6([23]). Assume a, b ∈ R, then

(i) (|a|+ |b|)p ≤ |a|p + |b|p, 0 < p ≤ 1,

(ii) (|a|+ |b|)p ≤ 2p−1(|a|p + |b|p), p > 1.

III. MAIN RESULT

For convenience, this article makes X ={
u|u,Dα−2

0+ u,Dα−1
0+ u,Dα

0+u ∈ C[0, 1]
}

, the norm of
which is as follows:

‖u‖X =max
{
‖u‖∞,

∥∥Dα−2
0+ u

∥∥
∞,
∥∥Dα−1

0+ u
∥∥
∞,
∥∥Dα

0+u
∥∥
∞

}
.
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And, let Y = C[0, 1] with norm ‖y‖Y = ‖y‖∞, where
‖y‖∞ = maxt∈[0,1] |y (t)| . It is easy to see that (X, ‖·‖X)
and (Y, ‖·‖Y ) are two Banach spaces. In order to prove the
theorem, the hypothesis of this paper are given below.

(A0) Functionals Ti : X → R, i = 1, 2, satisfy the
relations T1

(
tα−2

)
= γ1,T1

(
tα−1

)
= γ2,T2

(
tα−2

)
=

kγ1,T2

(
tα−1

)
= kγ2, where γ1, γ2, k ∈ R, γ2

1 + γ2
2 6= 0.

(A1) Functionals Ti : X → R are linear bounded with
the respective norms ‖Ti‖ , i = 1, 2.

(A2) Functional

F (y) = (T2 − kT1)
(
Iα0+

(
φq

(
Iβ0+y

)))
,

1

p
+

1

q
= 1,

is increasing.

(H1) There exists M0 > 0, such that if∣∣Dα−2
0+ u (t)

∣∣+
∣∣Dα−1

0+ u (t)
∣∣ > M0, then F (Nu) 6= 0.

(H2) There exist nonnegative functions a, b, c, d, e ∈
C[0, 1] such that

|f(t, u, v, w, z)|≤a (t)+b (t) |u|p−1
+c (t) |v|p−1

+d (t) |w|p−1

+ e (t) |z|p−1
, t ∈ [0, 1] , u, v, w, z ∈ R,

with

Ap−1
1 L‖b‖∞ + L‖c‖∞ + L‖d‖∞ + ‖e‖∞

Γ (β + 1)
< 1, (2)

where A1 = 1
Γ(α+1) + 2

Γ(α) + 7
2Γ(α−1) , L = max

{
1, 2p−2

}
.

(H3) There exists M1 > 0, such that if |c| > M1, then
one of these is established:

cQN
(
c
(
γ2t

α−2 − γ1t
α−1

))
> 0, (3)

cQN
(
c
(
γ2t

α−2 − γ1t
α−1

))
< 0. (4)

(H4) There exists M0
′ > 0 such that if∣∣Dα−1

0+ u (t)
∣∣ > M0

′, then F (Nu) 6= 0.

(H5) There exist nonnegative functions a, b, c, d, e ∈
C[0, 1] such that

|f(t, u, v, w, z)|≤a (t)+b (t) |u|p−1
+c (t) |v|p−1

+d (t) |w|p−1

+ e (t) |z|p−1
, t ∈ [0, 1] , u, v, w, z ∈ R,

with

C2Lq

(
‖b‖∞ + ‖c‖∞ + ‖d‖∞ + ‖e‖∞

Γ (β + 1)

)q−1

×
[
1 +
‖T1‖∞ (|γ1|Γ (α) + |γ2|Γ (α− 1))

γ2
1Γ (α) + γ2

2Γ (α− 1)

]
< 1,

(5)

where Mα=max {(|r1|+|r2|) , (|r1|Γ (α)+|r2|Γ (α− 1))},
C2 =Mα/γ1Γ (α)+1, Lq=max

{
1, 2q−2

}
.

This paper defines the operators M : X ∩ domM → Y ,
Nλ : X → Y , and their specific forms are as follows:

Mu (t)=Dβ
0+φp

(
Dα

0+u (t)
)
,

Nλu (t)=λf
(
t, u (t), Dα−2

0+ u (t), Dα−1
0+ u (t), Dα

0+u (t)
)
,

t, λ ∈ [0, 1],

(6)

where

domM =
{
u ∈ X

∣∣∣Dβ
0+φp

(
Dα

0+u
)
∈ Y,

u (0)=Dα
0+u (0)=0,T1 (u)=T2 (u)=0

}
.

(7)

Then FFBVPs (1) can be converted to the operator equation
Mu = Nu, u ∈ domM,N = N1. For the purpose of
proving the theorem in this paper, some relevant lemmas
are shown as follows.

Lemma 3.1. M is a quasi-linear operator, and

KerM=
{
u∈X

∣∣u (t)=c
(
γ2t

α−2−γ1t
α−1
)
, c ∈ R

}
, (8)

ImM = {y ∈ Y |F (y) = 0} . (9)

Proof. The condition (A0) and Lemma 2.2 imply that
(8) holds. Clearly, dimKerM = 1 and KerM is linearly
homeomorphic to R.

If y ∈ ImM , there exists a function u ∈ domM with
Dβ

0+φp
(
Dα

0+u (t)
)

= y (t). Lemma 2.3 and conditions
u (0) = Dα

0+u (0) = 0 show that

u (t) = Iα0+φq

(
Iβ0+y

)
+ c1t

α−1 + c2t
α−2, c1, c2 ∈ R.

Functional boundary condition Ti (u) = 0, i = 1, 2 implies
that

T1 (u) = T1

(
Iα0+φq

(
Iβ0+y

))
+ c1γ2 + c2γ1 = 0,

T2 (u) = T2

(
Iα0+φq

(
Iβ0+y

))
+ c1kγ2 + c2kγ1 = 0.

Obviously, (T2 − kT1)
(
Iα0+φq

(
Iβ0+y

))
=0, i.e. F (y)=0.

Conversely, suppose y ∈ Y and satisfies F (y) = 0. Let

u (t)=Iα0+φq

(
Iβ0+y

)
−

T1

(
Iα0+φq

(
Iβ0+y

))
γ2

1 +γ2
2

(
γ1t

α−2+γ2t
α−1
)
,

then, we have u ∈ domM and Mu (t) =
Dβ

0+φp
(
Dα

0+u (t)
)

= y (t). So, y ∈ ImM , and ImM ⊂ Y
is closed. Hence, M is a quasi-linear operator. �

Define operators P : X → KerM and Q : Y → R as
follows:

Pu (t)=
γ2D

α−2
0+ u(0)−γ1D

α−1
0+ u (0)

γ2
1Γ (α) + γ2

2Γ (α− 1)

(
γ2t

α−2−γ1t
α−1
)
,

t ∈ [0, 1] ,

(10)

and Qy(t) = c. Among them, F (y − c) = 0. Obviously, P
is a projector and KerQ = ImM .

Lemma 3.2. Q : Y → Y1 is continuous, bounded and
Q(I − Q)y = Q(y − Qy) = 0, y ∈ Y , QY = Y1, where
Y1 = R.

Proof. For y ∈ Y, the hypothetical condition (A2) implies
that the function F (y − c) is continuous, decreasing on c.
We take a1 = mint∈[0,1]y (t) , a2 = maxt∈[0,1]y (t). Then
F (y − a1) > 0, F (y − a2) < 0. Therefore, there is a u-
nique constant c ∈ [a1, a2], which satisfies F (y−c) = 0. So,
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Q is well defined. If y1, y2 ∈ Y, then Qy1 = c1, Qy2 = c2.
Since φq is strictly increasing, if c2−c1 > ‖y2 − y1‖∞, then

0=F (y2 − c2) = (T2 − kT1)
(
Iα0+

(
φq

(
Iβ0+(y2 − c2)

)))
=(T2−kT1)

(
Iα0+

(
φq

(
Iβ0+(y1−c1+(y2−y1)−(c2−c1))

)))
<(T2−kT1)

(
Iα0+

(
φq

(
Iβ0+(y1−c1)

)))
=F (y1−c1)=0.

Obviously, it is contradictory. Conversely, if c2 − c1 <
−‖y2 − y1‖∞, then

0 = F (y2 − c2) = F (y1 − c1 + (y2 − y1)− (c2 − c1))

> F (y1 − c1) = 0.

Clearly, it is also contradictory. Therefore,

|c2 − c1| ≤ ‖y2 − y1‖∞.

So, Q is continuous. In addition, if Ω ⊂ Y is
bounded, then Q(Ω) is bounded. In other words,
Q is bounded. According to the definition of Q,
Q (I −Q) y = Q (y −Qy) = 0, y ∈ Y and QY = Y1. �

Lemma 3.3. The operator R : X×[0, 1]→ X2 is as follows:

R (u, λ) (t) =Iα0+

(
φq

(
Iβ0+ (I −Q)Nλu

))
−

T1

(
Iα0+φq

(
Iβ0+ (I −Q)Nλu

))
γ2

1Γ (α) + γ2
2Γ (α− 1)

×
(
γ1Γ (α) tα−2 + γ2Γ (α− 1) tα−1

)
,

where KerM ⊕ X2 = X . Then R : Ω × [0, 1] → X2 is
continuous and compact, where Ω ⊂ X is bounded.

Proof. The continuity of T1, Q, f imply that R(u, λ) is
continuous. Thus, there exist two constants k1, k2 > 0
such that

∣∣f (t, u (t) , Dα−2
0+ u (t) , Dα−1

0+ u (t) , Dα
0+u (t)

)∣∣ ≤
k1, |Qf | ≤ k2 for u ∈ Ω. Then, one has

|R (u, λ)| ≤
[
1+
‖T1‖∞ (|γ1|Γ (α) + |γ2|Γ (α− 1))

γ2
1Γ (α) + γ2

2Γ (α− 1)

]
×
∥∥∥Iα0+

(
φq

(
Iβ0+ (I −Q)Nλu

))∥∥∥
X

≤
[
1+
‖T1‖∞ (|γ1|Γ (α) + |γ2|Γ (α− 1))

γ2
1Γ (α) + γ2

2Γ (α− 1)

]
× 1

Γ (α+ 1)
φq

(
k1 + k2

Γ (β + 1)

)
,

∣∣Dα−2
0+ R (u, λ)

∣∣= ∣∣∣∣∫ t

0

(t−s)
(
φq

(
Iβ0+(I−Q)Nλu (s)

))
ds

−
T1

(
Iα0+φq

(
Iβ0+ (I −Q)Nλu

))
γ2

1Γ (α) + γ2
2Γ (α− 1)

×Γ (α) Γ (α− 1) (γ1 + γ2t)|

≤
[

1

2
+
‖T1‖∞ (|γ1|+ |γ2|)
α (γ2

1 (α− 1) + γ2
2)

]
× φq

(
k1 + k2

Γ (β + 1)

)
,

∣∣Dα−1
0+ R (u, λ)

∣∣ =

∣∣∣∣∫ t

0

φq

(
Iβ0+ (I −Q)Nλu (s)

)
ds

−
T1

(
Iα0+φq

(
Iβ0+ (I−Q)Nλu

))
γ2

1Γ (α) + γ2
2Γ (α− 1)

×Γ (α) Γ (α−1) γ2|

≤
[
1 +

‖T1‖∞ |γ2|
α (γ2

1 (α− 1) + γ2
2)

]
× φq

(
k1 + k2

Γ (β + 1)

)
,

∣∣Dα
0+R (u, λ)

∣∣= ∣∣∣φq (Iβ0+ (I−Q)Nλu
)∣∣∣≤φq ( k1 + k2

Γ (β+1)

)
.

Therefore, R is bounded in Ω×[0, 1] . For (u, λ) ∈ Ω×[0, 1] ,
t1, t2 ∈ [0, 1] , t1 < t2, we get

|R (u, λ) (t2)−R (u, λ) (t1)|

≤
∣∣∣Iα0+

(
φq
(
Iβ0+(I−Q)Nλu

))
(t2)−Iα0+

(
φq
(
Iβ0+(I−Q)Nλu

))
(t1)
∣∣∣

+
‖T1‖∞φq

(
k1+k2
Γ(β+1)

)
Γ (α+ 1) (γ2

1Γ (α) + γ2
2Γ (α− 1))

×
[
|γ1|Γ (α)

(
tα−2
2 −tα−2

1

)
+|γ2|Γ (α−1)

(
tα−1
2 −tα−1

1

)]
.

Considering∣∣∣Iα0+

(
φq
(
Iβ0+ (I−Q)Nλu

))
(t2)−Iα0+

(
φq
(
Iβ0+(I−Q)Nλu

))
(t1)
∣∣∣

=
1

Γ (α)

∣∣∣∣∫ t2

0

(t2 − s)α−1
(
φq
(
Iβ0+ (I −Q)Nλu

))
ds

−
∫ t1

0

(t1 − s)α−1
(
φq
(
Iβ0+ (I −Q)Nλu

))
ds

∣∣∣∣
≤
φq
(
k1+k2
Γ(β+1)

)
Γ (α)

∣∣∣∣∫ t1

0

[
(t2−s)α−1−(t1−s)α−1] ds+

∫ t2

t1

(t2−s)α−1ds

∣∣∣∣
≤ (tα2 − tα1 )

Γ (α+ 1)
× φq

(
k1 + k2

Γ (β + 1)

)
,

combined with the above results, we obtain

|R (u, λ) (t2)−R (u, λ) (t1)| ≤
φq
(
k1+k2
Γ(β+1)

)
Γ (α+ 1)

× [(tα2 − tα1 )

+
‖T1‖∞

(
|γ1|Γ (α)

(
tα−2
2 − tα−2

1

)
+|γ2|Γ (α−1)

(
tα−1
2 −tα−1

1

))
(γ2

1Γ (α) + γ2
2Γ (α− 1))

]
.

Thus,
{
R (u, λ)

∣∣(u, λ) ∈ Ω× [0, 1]
}

is equicontinuous. At
the same time, we can also work out∣∣Dα−2

0+ R (u, λ) (t2)−Dα−2
0+ R (u, λ) (t1)

∣∣
≤
∣∣∣∣∫ t2

0

(t2 − s)φq
(
Iβ0+ (I −Q)Nλu

)
ds

−
∫ t1

0

(t1 − s)φq
(
Iβ0+ (I −Q)Nλu

)
ds

∣∣∣∣
+

‖T1‖∞φq
(
k1+k2
Γ(β+1)

)
Γ (α+ 1) (γ2

1Γ (α) + γ2
2Γ (α− 1))

× Γ (α) Γ (α− 1) |γ2| (t2 − t1)

≤ φq
(
k1 + k2

Γ (β + 1)

)
×

[(
t22 − t21

)
2

+
‖T1‖∞ |γ2| (t2 − t1)

α (γ2
1 (α− 1) + γ2

2)

]
,
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and ∣∣Dα−1
0+ R (u, λ) (t2)−Dα−1

0+ R (u, λ) (t1)
∣∣

≤
∣∣∣∣∫ t2

0

φq

(
Iβ0+ (I −Q)Nλu

)
ds

−
∫ t1

0

φq

(
Iβ0+ (I −Q)Nλu

)
ds

∣∣∣∣
≤ (t2 − t1)φq

(
k1 + k2

Γ (β + 1)

)
.

Thus,
{
Dα−2

0+ R (u, λ)
∣∣(u, λ) ∈ Ω× [0, 1]

}
and{

Dα−1
0+ R (u, λ)

∣∣(u, λ) ∈ Ω× [0, 1]
}

are equicontinuous.
Finally, we will verify

{
Dα

0+R (u, λ)
∣∣(u, λ) ∈ Ω× [0, 1]

}
is equicontinuous. If (u, λ) ∈ Ω × [0, 1] ,
t1, t2 ∈ [0, 1] , t1 < t2, then∣∣Dα

0+R (u, λ) (t2)−Dα
0+R (u, λ) (t1)

∣∣
=

∣∣∣∣φq ( 1

Γ (β)

∫ t2

0

(t2 − s)β−1
(I −Q)Nλu (s) ds

)
−φq

(
1

Γ (β)

∫ t1

0

(t1 − s)β−1
(I −Q)Nλu (s) ds

)∣∣∣∣ .
Since ∣∣∣∣ 1

Γ (β)

∫ t

0

(t− s)β−1
(I −Q)Nλu (s) ds

∣∣∣∣
≤ (k1 + k2)

Γ (β + 1)
, (u, λ) ∈ Ω× [0, 1] ,

and ∣∣∣∣ 1

Γ (β)

∫ t2

0

(t2 − s)β−1
(I −Q)Nλu (s) ds

− 1

Γ (β)

∫ t1

0

(t1 − s)β−1
(I −Q)Nλu (s) ds

∣∣∣∣
=

1

Γ (β)

∣∣∣∣∫ t1

0

[
(t2−s)β−1−(t1−s)β−1

]
(I−Q)Nλu (s) ds

+

∫ t2

t1

(t2 − s)β−1
(I −Q)Nλu (s) ds

∣∣∣∣
≤ (k1 + k2)

Γ (β + 1)

(
tβ2 − t

β
1

)
,

and considering that φq is uniformly continuous in
[−(k1 + k2)/Γ (β + 1) , (k1 + k2)/Γ (β + 1)], we obtain
that

{
Dα

0+R (u, λ)
∣∣(u, λ) ∈ Ω× [0, 1]

}
is equicontinuous,

too. Applying the Arzelà-Ascoli theorem, we can get that
R : Ω× [0, 1]→ X2 is compact. �

Lemma 3.4. If Ω ⊂ X is an open and bounded set, then
the operator Nλ is M-quasi-compact in Ω.

Proof. Clearly, ImP = KerM , dim KerM = dim ImQ,
Q(I − Q) = 0, KerQ = ImM , R(·, 0) = 0, mean-
while, the condition (b) of Definition 2.2 is satisfied. For
u ∈

∑
λ = {u ∈ Ω : Mu = Nλu}, we obtain

QNλu = 0 and Nλu = Dβ
0+φp

(
Dα

0+u (t)
)
. The conditions

Dα
0+u (0) = u (0) = Dα

0+R (u, λ) (0) = R (u, λ) (0) = 0
imply that

u (t)=Iα0+

(
φq

(
Iβ0+Nλu

))
+
Dα−1

0+ u (0)

Γ (α)
tα−1+

Dα−2
0+ u (0)

Γ (α−1)
tα−2.

Using T1 (u) = 0, T1

(
tα−1

)
=γ2, T1

(
tα−2

)
= γ1, we

have

R (u, λ) = Iα0+

(
φq

(
Iβ0+Nλu

))
−

T1

(
Iα0+φq

(
Iβ0+Nλu

))
γ2

1Γ (α) + γ2
2Γ (α− 1)

×
(
γ1Γ (α) tα−2 + γ2Γ (α− 1) tα−1

)
= u (t)−

Dα−1
0+ u (0)

Γ (α)
tα−1 −

Dα−2
0+ u (0)

Γ (α− 1)
tα−2

−
T1

(
u (t)− Dα−1

0+ u(0)

Γ(α) tα−1 − Dα−2
0+ u(0)

Γ(α−1) tα−2

)
γ2

1Γ (α) + γ2
2Γ (α− 1)

×
(
γ1Γ (α) tα−2 + γ2Γ (α− 1) tα−1

)
= u (t)−

Dα−1
0+ u (0)

Γ (α)
tα−1 −

Dα−2
0+ u (0)

Γ (α− 1)
tα−2

+

Dα−1
0+ u(0)

Γ(α) γ2 +
Dα−2

0+ u(0)

Γ(α−1) γ1

γ2
1Γ (α) + γ2

2Γ (α− 1)

×
(
γ1Γ (α) tα−2 + γ2Γ (α− 1) tα−1

)
= u (t) +

γ2D
α−2
0+ u (0)− γ1D

α−1
0+ u (0)

γ2
1Γ (α) + γ2

2Γ (α− 1)
· γ1t

α−1

−
γ2D

α−2
0+ u (0)− γ1D

α−1
0+ u (0)

γ2
1Γ (α) + γ2

2Γ (α− 1)
· γ2t

α−2

= u (t)− Pu = (I − P )u.

Thus, the condition (c) of Definition 2.2 is fulfilled. For u ∈
Ω, one has

M [Pu+R (u, λ)] = Nλu−QNλu = (I −Q)Nλu.

That is, the condition (d) of Definition 2.2 is fulfilled.
Hence, Nλ is M-compact in Ω. �

Lemma 3.5. Suppose (H1) and (H2) hold, then

Ω1 = {u ∈ domM |Mu = Nλu , λ ∈ (0, 1)}

is bounded in X .

Proof. For u ∈ domM , Lemma 2.3 implies that u(t) =
Iα0+D

α
0+u(t) + c1t

α−1 + c2t
α−2 + c3t

α−3. Using u(0) = 0,
one has c3 = 0. That is,

u(t) = Iα0+D
α
0+u(t) + c1t

α−1 + c2t
α−2.

Thus,

Dα−1
0+ u(t) = I1

0+D
α
0+u(t) + c1Γ (α) ,

Dα−2
0+ u(t) = I2

0+D
α
0+u(t) + c1Γ (α) t+ c2Γ (α− 1) ,

c1 =
1

Γ (α)

(
Dα−1

0+ u(t)−
∫ t

0

Dα
0+u(s)ds

)
,

c2 =
1

Γ (α− 1)

[
Dα−2

0+ u(t)−
∫ t

0

(t− s)Dα
0+u(s)ds

−
(
Dα−1

0+ u(t)−
∫ t

0

Dα
0+u(s)ds

)
t

]
.

For u ∈ Ω1, one has QNλu = 0. Hypothetical condi-
tion (H1) means that there exists t0 ∈ [0, 1] such that∣∣Dα−1

0+ u(t0)
∣∣ ≤ M0,

∣∣Dα−2
0+ u(t0)

∣∣ ≤ M0. By using the
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relations

Dα−1
0+ u(t) = Dα−1

0+ u(t0) +

∫ t

t0

Dα
0+u(s)ds,

Dα−2
0+ u(t) = Dα−2

0+ u(t0) +

∫ t

t0

Dα−1
0+ u(s)ds,

we can get∥∥Dα−1
0+ u

∥∥
∞ ≤M0 +

∥∥Dα
0+u

∥∥
∞,∥∥Dα−2

0+ u
∥∥
∞ ≤ 2M0 +

∥∥Dα
0+u

∥∥
∞,

|c1| ≤
1

Γ (α)

(
M0 + 2

∥∥Dα
0+u

∥∥
∞

)
,

|c2| ≤
1

Γ (α− 1)

(
3M0 +

7

2

∥∥Dα
0+u

∥∥
∞

)
.

Thus,
‖u‖∞ ≤ A1

∥∥Dα
0+u

∥∥
∞ +B1,

where A1 = 1
Γ(α+1) + 2

Γ(α) + 7
2Γ(α−1) , B1 =(

1
Γ(α) + 3

Γ(α−1)

)
M0.

The hypothetical condition (H2), combined with Mu = Nλu
and Dα

0+u (0) = 0, means∣∣φp (Dα0+u (t)
)∣∣

≤
1

Γ(β)

∫ t

0
(t−s)β−1

∣∣∣f(s, u (s), Dα−2
0+ u (s) , Dα−1

0+ u (s) , Dα0+u (s)
)∣∣∣ ds

≤
1

Γ (β)

∫ t

0
(t−s)β−1[a (s)+b (s) |u (s)|p−1+c (s)

∣∣∣Dα−2
0+ u (s)

∣∣∣p−1

+ d (s)
∣∣∣Dα−1

0+ u (s)
∣∣∣p−1

+ e (s)
∣∣Dα0+u (s)

∣∣p−1
]ds

≤
1

Γ (β + 1)

(
‖a‖∞ + ‖b‖∞ ‖u‖

p−1
∞ + ‖c‖∞

∥∥∥Dα−2
0+ u

∥∥∥p−1

∞

+ ‖d‖∞
∥∥∥Dα−1

0+ u
∥∥∥p−1

∞
+‖e‖∞

∥∥Dα0+u
∥∥p−1

∞

)
.

This, together with
∣∣φp (Dα

0+u (t)
)∣∣ =

∣∣Dα
0+u (t)

∣∣p−1
and

Lemma 2.6, means

‖Dα
0+u‖p−1

∞

≤ 1

Γ (β + 1)
[‖a‖∞ + ‖b‖∞

(
A1‖Dα

0+u‖∞ +B1

)p−1

+ ‖c‖∞
(
2M0 + ‖Dα

0+u‖∞
)p−1

+ ‖d‖∞
(
M0 + ‖Dα

0+u‖∞
)p−1

+‖e‖∞ ‖D
α
0+u‖p−1

∞ ]

≤ B2+
Ap−1

1 L‖b‖∞+L‖c‖∞+L‖d‖∞+‖e‖∞
Γ (β + 1)

·‖Dα
0+u‖p−1

∞ ,

where L = max
{

1, 2p−2
}

, B2 = 1
Γ(β+1) ·[

‖a‖∞+L‖b‖∞B
p−1
1 +L‖c‖∞(2M0)

p−1
+L‖d‖∞(M0)

p−1
]
.

The inequality (2) implies that there exists M2 > 0 such
that ∥∥Dα

0+u
∥∥
∞ ≤M2,

∥∥Dα−1
0+ u

∥∥
∞ ≤M0 +M2 := M3,∥∥Dα−2

0+ u
∥∥
∞ ≤ 2M0 +M2 := M4,

‖u‖∞ ≤ A1M2 +B1 := M5.

Thus, one has

‖u‖X = max
{
‖u‖∞,

∥∥Dα−2
0+ u

∥∥
∞,
∥∥Dα−1

0+ u
∥∥
∞,
∥∥Dα

0+u
∥∥
∞

}
≤ max {M5,M4,M3,M2} := M6.

Hence, Ω1 is bounded. �

Lemma 3.6. If the hypothetical condition (H3) holds, then

Ω2 = {u ∈ KerM |QNu = 0}

is bounded in X .

Proof. For u ∈ Ω2, one has u (t) = c
(
γ2t

α−2 − γ1t
α−1

)
,

c ∈ R, t ∈ [0, 1] and F (Nu) = 0. The hypothetical condition
(H3) implies |c| ≤M1. Thus,

‖u‖X
≤M1

∥∥γ2t
α−2 − γ1t

α−1
∥∥
X

≤ max {M1 (|γ1|+|γ2|) ,M1 (|γ1|Γ (α)+|γ2|Γ (α−1))}
:= M7.

Hence, Ω2 is bounded. �
The main results of this paper are as follows.

Theorem 3.1 . Let f ∈ C([0, 1] × R4,R). Suppose that
the hypothetical conditions (A0)-(A2) and (H1)-(H3) hold.
Then FFBVPs (1) has at least a solution.

Proof. Let Ω⊃Ω1∪Ω2∪{u|u∈X,‖u‖X≤max {M6,M7}+1}
be an open and bounded set of X . Lemmas 3.5, 3.6 imply
that Mu 6= Nλu, u ∈ domM ∩ ∂Ω and QNu 6= 0, u ∈
KerM ∩ ∂Ω.

Let H(u, δ) = ρδu + (1 − δ)JQNu, δ ∈ [0, 1], u ∈
KerM ∩ Ω, where J : ImQ → KerM is a homeomorphism
with Jc = c(r2t

α−2 − r1t
α−1), ρ = 1 or ρ = −1, if (3)

or (4) hold, respectively. For u ∈ KerM ∩ ∂Ω, one has
u = c(r2t

α−2 − r1t
α−1) 6= 0. If δ = 1, then H(u, 1) =

ρc(r2t
α−2 − r1t

α−1) 6= 0. If δ = 0, by applying Lemma
3.6, then H(u, 0) = QN(c(r2t

α−2 − r1t
α−1))(r2t

α−2 −
r1t

α−1) 6= 0. For 0 < δ < 1, u(t) = c(r2t
α−2 − r1t

α−1).
Lemma 3.6 implies ‖u‖X ≤ M1

∥∥γ2t
α−2 − γ1t

α−1
∥∥
X

. So,
|c| > M1. If

H
(
c
(
γ2t

α−2 − γ1t
α−1

)
, δ
)

= ρδc
(
γ2t

α−2 − γ1t
α−1

)
+(1−δ)QN

(
c
(
γ2t

α−2−γ1t
α−1
)) (

γ2t
α−2−γ1t

α−1
)

=0,

using (3), one has

c2 = −1− δ
ρδ
· cQN

(
c
(
γ2t

α−2 − γ1t
α−1

))
< 0,

which is a contradiction. Hence, H(u, δ) 6= 0, u ∈ KerM ∩
∂Ω, δ ∈ [0, 1]. Based on the homotopy invariance of degree,
we have

deg(JQN,Ω∩KerM, 0) = deg(H(·, 0), Ω ∩KerM, 0)

= deg(H(·, 1),Ω ∩KerM, 0)

= deg(H(ρI,Ω ∩KerM, 0) 6=0.

Lemma 2.1 implies that Mu = Nu has at least a solution
in domM ∩ Ω. That is, FFBVPs (1) has at least a solution
in X . �

For another result of FFBVPs (1), assume the inequality∣∣Dα−2
0+ u (t)

∣∣ +
∣∣Dα−2

0+ u (t)
∣∣ > M0 in the condition (H1) is

replaced by
∣∣Dα−1

0+ u (t)
∣∣ > M0

′ or
∣∣Dα−2

0+ u (t)
∣∣ > M0

′′,
which may lead to slight changes in the proof of Lemma
3.5. In particular, we remember that Theorem 3.1 satisfies
the relation γ2

1 + γ2
2 6= 0.

Theorem 3.2. Let f ∈ C([0, 1] × R4,R). Suppose that
γ1 6= 0 and the conditions (A0)-(A2) and (H3)-(H5) hold.
Then FFBVPs (1) has at least a solution.
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Proof. For u ∈ Ω1, QNu = 0. This hypothetical con-
dition (H4) implies that there exists t1 ∈ [0, 1] such that∣∣Dα−1

0+ u (t1)
∣∣ ≤ M ′0. By Lemma 3.4, R(u, λ) = (I − P )u.

So, u(t) = Pu(t) + (I − P )u(t) = Pu(t) +R(u, λ). Then∣∣Dα−1
0+ Pu (t1)

∣∣ ≤M ′0 + ‖R(u, λ)‖X .

According to the definition of P , one has∣∣∣∣∣γ2D
α−2
0+ u (0)−γ1D

α−1
0+ u (0)

γ2
1Γ (α) + γ2

2Γ (α− 1)

∣∣∣∣∣≤ 1

γ1Γ (α)
(M ′0+‖R(u, λ)‖X).

Therefore,

‖u‖X ≤ ‖Pu‖X + ‖R(u, λ)‖X

≤ max {(|r1|+|r2|) , (|r1|Γ (α)+|r2|Γ (α−1))}
γ1Γ (α)

×
(
M0
′ + ‖R(u, λ)‖X

)
+ ‖R(u, λ)‖X

≤ C1 + C2‖R(u, λ)‖X ,

where C1 =M ′0Mα/γ1Γ (α), C2 =Mα/γ1Γ (α)+1, Mα=
max {(|r1|+|r2|) , (|r1|Γ (α)+|r2|Γ (α−1))} .
Considering

‖R(u, λ)‖X ≤
[
1+
‖T1‖∞ (|r1|Γ (α)+|r2|Γ (α−1))

γ2
1Γ (α) + γ2

2Γ (α− 1)

]
×
∥∥∥Iα0+

(
φq

(
Iβ0+ (I−Q)Nλu

))∥∥∥
X

≤
[
1+
‖T1‖∞ (|r1|Γ (α)+|r2|Γ (α−1))

γ2
1Γ (α) + γ2

2Γ (α− 1)

]
×
(

1

Γ (β + 1)

)q−1

‖Nλu‖q−1
∞ ,

and then using the hypothetical condition (H5) and Lemma
2.6, one has

‖u‖X ≤ C1 + C2

[
1 +
‖T1‖∞ (|r1|Γ (α) + |r2|Γ (α− 1))

γ2
1Γ (α) + γ2

2Γ (α− 1)

]
×
(

1

Γ (β + 1)

)q−1

×
(
‖a‖∞ + ‖b‖∞ ‖u‖

p−1
∞ + ‖c‖∞

∥∥Dα−2
0+ u

∥∥p−1

∞

+‖d‖∞
∥∥Dα−1

0+ u
∥∥p−1

∞ + ‖e‖∞ ‖D
α
0+u‖p−1

∞

)q−1

≤ C1 + C2

[
1 +
‖T1‖∞ (|r1|Γ (α) + |r2|Γ (α− 1))

γ2
1Γ (α) + γ2

2Γ (α− 1)

]
×
(

1

Γ (β + 1)

)q−1

×
[
‖a‖∞+

(
‖b‖∞+‖c‖∞+‖d‖∞+‖e‖∞

)
‖u‖p−1

X

]q−1

≤ C1 + C2Lq

[
1 +
‖T1‖∞ (|r1|Γ (α) + |r2|Γ (α− 1))

γ2
1Γ (α) + γ2

2Γ (α− 1)

]
×
(

1

Γ (β + 1)

)q−1

×
[
‖a‖q−1
∞ +

(
‖b‖∞+‖c‖∞+‖d‖∞+‖e‖∞

)q−1‖u‖X
]
.

The inequality (5) implies that Ω1 is bounded. The rest of
the proof, similar to Theorem 3.1, which is ignored here.

Remark 3.1. When the inequality
∣∣Dα−1

0+ u (t)
∣∣ > M0

′

of (H4) is replaced by
∣∣Dα−2

0+ u (t)
∣∣ > M0

′′, the proof of
the existence of the solution of FFBVPs (1) is similar to
Theorem 3.2. It is not explained in detail here.

The above conclusions are discussed under resonance
conditions. For non-resonance conditions, we give the

following conclusion.

Theorem 3.3. Let f ∈ C([0, 1] × R4,R). If T1, T2 :
C[0, 1] → R are continuous linear functionals satisfying
the condition T1

(
tα−1

)
T2

(
tα−2

)
6= T1

(
tα−2

)
T2

(
tα−1

)
,

then FFBVPs (1) has a unique solution if and only if the
following operator A : C[0, 1]→ C[0, 1] has a unique fixed
point, where

(Au)(t)

= Iα0+φq(I
β
0+f(t, u(t), Dα−2

0+ u(t), Dα−1
0+ u(t), Dα

0+u(t)))

+
D1

D
tα−1 +

D2

D
tα−2,

D =

∣∣∣∣ T1

(
tα−1

)
T1

(
tα−2

)
T2

(
tα−1

)
T2

(
tα−2

) ∣∣∣∣
= T1

(
tα−1

)
T2

(
tα−2

)
− T1

(
tα−2

)
T2

(
tα−1

)
6= 0,

D1 =∣∣∣∣∣−T1(Iα0+φq(I
β
0+f(t, u(t), Dα−2

0+ u(t), Dα−1
0+ u(t), Dα

0+u(t))))

−T2(Iα0+φq(I
β
0+f(t, u(t), Dα−2

0+ u(t), Dα−1
0+ u(t), Dα

0+u(t))))

T1

(
tα−2

)
T2

(
tα−2

)∣∣∣∣∣ ,
D2 =

∣∣∣∣∣T1

(
tα−1

)
T2

(
tα−1

)
−T1(Iα0+φq(I

β
0+f(t, u(t), Dα−2

0+ u(t), Dα−1
0+ u(t), Dα

0+u(t))))

−T2(Iα0+φq(I
β
0+f(t, u(t), Dα−2

0+ u(t), Dα−1
0+ u(t), Dα

0+u(t))))

∣∣∣∣∣ .
Proof. If u is a solution to Au = u, we have

Dβ
0+φp

(
Dα

0+u (t)
)

= f(t, u(t), Dα−2
0+ u(t), Dα−1

0+ u(t), Dα
0+u(t)).

By Lemma 2.3, we get

φp
(
Dα

0+u (t)
)

= Iβ0+f(t, u(t), Dα−2
0+ u(t), Dα−1

0+ u(t), Dα
0+u(t)) + c0t

β−1.

It follows from Dα
0+u(0) = 0 that c0 = 0. So, we obtain

φp
(
Dα

0+u (t)
)

= Iβ0+f(t, u(t), Dα−2
0+ u(t), Dα−1

0+ u(t), Dα
0+u(t)).

Then

Dα
0+u (t) = φq(I

β
0+f(t, u(t), Dα−2

0+ u(t), Dα−1
0+ u(t), Dα

0+u(t))).

By Lemma 2.3, one has

u (t)

= Iα0+φq(I
β
0+f(t, u(t), Dα−2

0+ u(t), Dα−1
0+ u(t), Dα

0+u(t)))

+ c1t
α−1 + c2t

α−2 + c3t
α−3.

It follows from u(0) = 0 that c3 = 0. Thus,

u (t)

= Iα0+φq(I
β
0+f(t, u(t), Dα−2

0+ u(t), Dα−1
0+ u(t), Dα

0+u(t)))

+ c1t
α−1 + c2t

α−2.

From T1(u) = T2(u) = 0, we have{
T1(Iα0+φq(I

β
0+f) + c1t

α−1 + c2t
α−2) = 0,

T2(Iα0+φq(I
β
0+f) + c1t

α−1 + c2t
α−2) = 0.
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Considering the T1, T2 are continuous linear functionals, we
get{

T1(Iα0+φq(I
β
0+f)) + c1T1(tα−1) + c2T1(tα−2) = 0,

T2(Iα0+φq(I
β
0+f)) + c1T2(tα−1) + c2T2(tα−2) = 0.

Then,{
c1T1(tα−1) + c2T1(tα−2) = −T1(Iα0+φq(I

β
0+f)),

c1T2(tα−1) + c2T2(tα−2) = −T2(Iα0+φq(I
β
0+f)).

According to Cramer’s Rule, we obtain

c1 =
D1

D
, c2 =

D2

D
.

Thus, u is a solution to FFBVPs (1). If u is a solution of
FFBVPs (1), then (Au)(t) = u(t). Therefore, FFBVPs (1)
has one unique solution if and only if the operator equation
Au = u has a unique solution. �

An example is given below to verify the rationality of
Theorem 3.2.

Example 3.1. Consider the following FFBVPs:

D
1
2
0+φ 3

2

(
D

5
2
0+u (t)

)
=

f
(
t, u (t) , D

1
2
0+u (t) , D

3
2
0+u (t) , D

5
2
0+u (t)

)
, t∈(0, 1),

u (0) = D
5
2
0+u (0) = 0,

T1 (u) = D
3
2
0+u (1) +D

1
2
0+u (1) = 0,

T2 (u) = 3D
3
2
0+u (1) + 2

∫ 1

0

D
1
2
0+u (t) dt = 0,

(11)
where α = 5

2 , β = 1
2 , p = 3

2 , and

f
(
t, u (t) , D

1
2
0+u (t) , D

3
2
0+u (t) , D

5
2
0+u (t)

)
=

1

36
+

1

36
×

[
sin
(√
|u (t)|

)
+ sin

(√∣∣∣D 1
2
0+u (t)

∣∣∣)

+

(√∣∣∣D 3
2
0+u (t)

∣∣∣)+ sin

(√∣∣∣D 5
2
0+u (t)

∣∣∣)] .
FFBVPs (11) is at resonance with

KerM =

{
c

(
t
3
2

Γ
(

5
2

) − 2t
1
2

Γ
(

3
2

)) , c ∈ R

}
,

D
3
2
0+u (t) = c,D

1
2
0+u (t) = c (t− 2) ,

T1

(
t
1
2

)
= γ1 =

√
π

2
6= 0

T1

(
t
3
2

)
= γ2 =

3
√
π

2
,

k = 2, ‖T1‖ = 2.

Obviously, these assumptions (A0)-(A1) satisfy. Take
‖a‖∞ = ‖b‖∞ = ‖c‖∞ = ‖d‖∞ = ‖e‖∞ = 1

36 and q = 3,
then

C2 =
max {(|γ1|+|γ2|) , (|γ1|Γ (α)+|γ2|Γ (α−1))}

γ1Γ (α)
+1

=
max

{
2
√
π, 9

8π
}

3
8π

+ 1

=
16

3
√
π

+ 1,

C2 max
{

1, 2q−2
}

(Γ (β + 1))
q−1 ×(‖b‖∞ + ‖c‖∞ + ‖d‖∞ + ‖e‖∞)

q−1

×
[
1+
‖T1‖∞ (|γ1|Γ (α)+|γ2|Γ (α− 1))

γ2
1Γ (α) + γ2

2Γ (α− 1)

]

=
8
(

16
3
√
π

+ 1
)(

1 + 4√
π

)
81π

< 1,

and
|f (t, u, v, w, z)|

≤ 1

36
+

1

36

√
|u|+ 1

36

√
|v|+ 1

36

√
|w|+ 1

36

√
|z|

=
1

36
+

1

36
|u|p−1

+
1

36
|v|p−1

+
1

36
|w|p−1

+
1

36
|z|p−1

.

Clearly, condition (H5) holds. If
∣∣∣D 3

2
0+u (t)

∣∣∣ > M0
′ = 4,

then
f (t, u, v, w, z)

=
1

36

(
1 + sin

√
|u|+ sin

√
|v|+

√
|w|+ sin

√
|z|
)
> 0,

and

F (Nu)= (T2 − kT1)
(
Iα0+

(
φq

(
Iβ0+Nu

)))
= 3D

3
2
0+

(
I

5
2
0+

(
φq

(
Iβ0+Nu

)))
(1)

+ 2

∫ 1

0

D
1
2
0+

(
I

5
2
0+

(
φq

(
Iβ0+Nu

)))
(s)ds

− 2
[
D

3
2
0+

(
I

5
2
0+

(
φq

(
Iβ0+Nu

)))
(1)

+D
1
2
0+

(
I

5
2
0+

(
φq

(
Iβ0+Nu

)))
(1)
]

=

∫ 1

0

φq

(
Iβ0+Nu

)
ds−2

∫ 1

0

(1−s)φq
(
Iβ0+Nu

)
ds

+2

∫ 1

0

∫ t

0

(t− s)φq
(
Iβ0+Nu

)
dsdt

=

∫ 1

0

s2φq

(
Iβ0+Nu

)
ds 6= 0.

This implies condition (H4) holds. Similarly, choose M1 >
0, such that for

u (t)=c

(
t
3
2

Γ
(

5
2

)− 2t
1
2

Γ
(

3
2

)) , ∣∣∣D 3
2
0+u (t)

∣∣∣= |c|>M0
′>M1,

F (Nu)=(T2−kT1)
(
Iα0+

(
φq
(
Iβ0+f(t, u(t)), c(t−2), c, 0

)))
6=0.

provided |c| > M1. So, condition (H3) holds. Hence,
FFBVPs (11) satisfies all conditions of Theorem 3.2. That
is, there is at least one solution to FFBVPs (11).

IV. CONCLUSION

This paper studies the solvability of fractional p-Laplacian
equations with functional boundary value conditions at non-
resonance and resonance respectively. By applying the
existence theorems and the extension of continuation
theorems, three results on this problem are obtained (see
Theorem 3.1, 3.2, 3.3). Finally, the article uses examples
to verify the rationality of the results. Our article aims to
further extend the results of [12,13] to non-linear cases, and
to some extent, to generalize and enrich the existing results.
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