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Abstract—In order to improve the efficiency of
the modified QHSS (MQHSS) iteration method by
Chen and the co-authors (Appl. Numer. Math. 2020;
doi.org/10.1016/j.apnum.2020.01.018), we employ the
iterative methods in the inner iteration process to accelerate
the convergence speed and then obtain the inexact MQHSS
(IMQHSS) iteration method. The asymptotically convergence
conditions of the IMQHSS iteration method are analyzed
in detail. Numerical experiments are performed to test the
efficiency and robustness of the IMQHSS iteration method
and the corresponding preconditioned Krylov subspace
method.

Index Terms—Complex symmetric linear systems; MQHSS
iteration method; asymptotically convergence; strong skew-
Hermitian matrix.

I. INTRODUCTION

WE are considering the fast solvers for the following
nonsingular complex symmetric linear system of

equations
Ax := (W + iT )x =b := f + ig , (I.1)

where the real parts W ∈Rn×n and the imaginary parts T ∈
Rn×n are symmetric positive semi-definite (SPSD) matrix
and symmetric positive definite (SPD) matrix, respectively.
f , g ∈Rn are known vectors, x ∈Cn is an unknown vector
and i=

p−1 is the imaginary unit. Here, we assume that
T is dominant over W , i.e., in some matrix norm ∥ · ∥∗
holds [21]

∥T ∥∗≫∥W ∥∗.
Complex linear systems of the form (I.1) arise in a lot

of applications, for example, quantum mechanics [25],
lattice quantum chromody-namics [18], nonlinear waves
[1], FFT-based solutions of certain time-dependent PDEs
[15], chemical oscillations, structural dynamics [17] and
so on. For more applications, we refer to [2], [6], [7], [14]
and references therein.

As is known, non-Hermitian matrices possess the Her-
mitian and skew-Hermitian (HS) splitting. Hence, for any
complex symmetric matrix A, it holds A = H +S, where
H = 1

2
(A +A∗) =W and S = 1

2
(A −A∗) = iT . Based on the

HS splitting, Bai, Golub and Ng [10] first constructed the
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Hermitian and skew-Hermitian splitting (HSS) iteration
method for solving the nonsingular linear systems of non-
Hermitian positive definite coefficient matrix. Because
of the unconditionally convergent property and the ele-
gant mathematical properties, a variety of considerable
attentions and results based on HSS iteration method
have been proposed in many papers. Some classical it-
eration methods can be found in existed papers, e.g.,
the preconditioned HSS (PHSS) iteration method [12], the
parameterized SHSS (P-SHSS) iteration method [29], the
lopsided PMHSS iteration method [23], the accelerated
HSS (AHSS) iteration method [8], the generalization of
HSS (GHSS) iteration method [13], the modified HSS
(MHSS) iteration method [6], the modified GHSS iteration
method [22], the new single-step method [28] and the
shift-splitting based C-to-R method [31]. For more details
about the generalization and comprehensive survey on the
HSS iteration method can be seen in [9], [4], [3], [27], [19],
[30].

When T is dominant over W , we rewrite the linear
system (I.1) as a quasi-normal equation equivalently by
multiplying I − iωT to both sides of the equation by left
to obtain (I − iωT )Ax = (I − iωT )b , i.e.,

(I − iωT )(W + iT )x = (W +ωT 2+ iT − iωT W )x , (I.2)

where I is an identity matrix and ω is a chosen reasonably
small constant such that the matrix I − iωT is as far as
well-conditioned. As a matter of fact, if the parameter ω is
small enough, the normalizing effect of the quasi-normal
equation (I.2) is much more significant than the classical
normal equation [5]. By making use of the alternatively it-
erative technique, the quasi-HSS (QHSS) iteration method
for solving the quasi-normal linear system (I.2) given in
[5] can be described as follows.

Algorithm I.1. (The QHSS iteration method)
For any initial guess x (0) ∈Cn and k = 0, 1, 2, . . ., use the

following procedure to compute the next iterate x (k+1) until
the sequence of iterates {x (k )}∞k=0 ⊂Cn converges:(
(αI + iT )x (k+

1
2 ) = (αI −Hω+ iωT W )x (k )+(I − iωT )b ,

(αI +Hω)x (k+1) = (αI − iT )x (k+
1
2
)+ iωT W x (k )+(I − iωT )b ,

where ω is a given nonnegative constant, α is a positive
constant and Hω =W +ωT 2.

It can be easy seen from Algorithm I.1 that, when we
use the QHSS iteration method, we have to solve two sub-
systems of linear equations with respect to the coefficient
matrices αI + iT and αI +Hω. In general, because of the
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SPD property, the linear system of the coefficient matrix
αI +Hω can be solved effectively either exactly by the
Cholesky factorization or inexactly by iterative methods
(e.g., Krylov subspace methods or multigrid methods).
However, if T is dominant over W , then the solution of the
shifted linear system with the coefficient matrix αI + iT is
as difficult as that of the original linear system (I.1).

As the complex linear system (I.2) can be equivalently
rewritten as

iT x = iωT W x − (W +ωT 2)x +(I − iωT )b.

Multiplying −i and then adding αI by both sides of the
above equality, it follows

(αI +T )x = (αI + i(W +ωT 2))x +ωT W x − i(I − iωT )b.

Therefore, the MQHSS iteration method in [16] can be
described as the following algorithm.

Algorithm I.2. (The MQHSS iteration method)
For any initial guess x (0) ∈Cn and k = 0,1, 2, . . ., use the

following procedure to compute the next iterate x (k+1) until
the sequence of iterates {x (k )}∞k=0 ⊂Cn converges:(
(αI +T )x (k+

1
2 ) = (αI + iHω)x (k )+ωT W x (k )− i(I − iωT )b ,

(αI +Hω)x (k+1) = (αI − iT )x (k+
1
2
)+ iωT W x (k )+(I − iωT )b ,

where ω is a given nonnegative constant, α is a positive
constant and Hω =W +ωT 2.

We can see from Algorithm I.2 that, if ω = 0, then the
MQHSS iteration method reduces to the MHSS iteration
method [6]. Besides, because the coefficient matrices of
the two linear subsystems are SPD matrices, then we can
use the symmetric Krylov subspace methods to solve the
linear subsystems at each iterative step. Hence, the main
target of this paper is to further improve the efficiency of
the MQHSS iteration method by focusing on the inexact
inner solvers of the shifted subsystems with the coefficient
matrices being αI +T and αI +Hω.

The rest of this paper is organized as follows. In Section
II, we describe the inexact MQHSS (IMQHSS) iteration
method. Section III is devoted to the detailed asymp-
totically convergence conditions analysis. In Section IV,
we examine the feasibility and efficiency of the IMQHSS
iteration method and the IMQHSS preconditioned GMRES
method by numerical experiments. Finally, a brief conclu-
sion will be given in Section V to end this work.

Throughout the paper, we use σ(M ) and ρ(M ) to denote
the eigenvalues set and the spectral radius of the matrix
M , respectively. ∥ · ∥ denotes the norm of either a vector
or a matrix and ∥ · ∥2 denotes the Euclidean norm.

II. THE IMQHSS ITERATION METHOD

In this section, we firstly reformulate the MQHSS iter-
ation scheme as

x (k+1) = L(ω,α)x (k )+M (ω,α)−1b ,k = 0,1, 2, · · · , (II.1)

where

L(ω,α) = (αI+Hω)−1(αI+T )−1((αI−iT )(αI+iHω)+(1+i)αωT W ).

Rewrite L(ω,α) as M (ω,α)−1N (ω,α), then we have
M (ω,α) =

1+ i

2α
(I − iωT )−1(αI +T )(αI +Hω),

N (ω,α) =
1+ i

2α
(I − iωT )−1((αI − iT )(αI + iHω)

+ (1+ i)αωT W ).

(II.2)

Because both matrices αI + T and αI +Hω are SPD,
then we can further improve the efficiency of the MQHSS
iteration method at each iterate step by solving both of the
two subsystems inexactly by multigrid method [20], [26]
or Krylov subspace methods, e.g., the conjugate gradient
method [24]. By using the same strategy in [11], the
MQHSS iteration method can be equivalently reformulat-
ed as
(αI +T )x (k+

1
2
) = (αI +T )x (k )− i(I − iωT )(b −Ax (k )),

(αI +Hω)x (k+1) = (αI +Hω)x (k+
1
2
)+(I − iωT )(b −Ax (k+

1
2
))

+ iωT W (x (k )−x (k+
1
2 )).

(II.3)
Hence, we describe the inexact MQHSS (IMQHSS) itera-
tion method in the following algorithm.

Algorithm II.1. (The IMQHSS iteration method)
Given any initial guess x (0) ∈ Cn and sequences of

stopping tolerances ϵk and ηk for the inner iteration
process. For k = 0, 1, 2, . . ., we use the following procedure to
compute the next iterate x (k+1) until the sequence of iterates
{x (k )}∞k=0 ⊂Cn converges:

Step 1. solve the shifted SPD residual equation (αI +
T )z (k ) = r̃ (k ), with r̃ (k ) =−i(I − iωT )(b −Ax (k )), by iterating
until z (k ) satisfying ∥p (k )∥= ∥r̃ (k )− (αI +T )z (k )∥ ≤ ϵk ∥r̃ (k )∥,
and then compute x (k+

1
2
) = x (k )+ z (k );

Step 2. solve the shifted SPD residual equation (αI +
Hω)z (k+

1
2
) = s̃ (k+

1
2
), with

s̃ (k+
1
2
) = (I − iωT )(b −Ax (k+

1
2
))+ iωT W (x (k )−x (k+

1
2
)),

by iterating until z (k+
1
2 ) satisfying ∥q (k+ 1

2 )∥ = ∥s̃ (k+ 1
2 ) −

(αI +Hω)z (k+
1
2
)∥ ≤ ηk ∥s̃ (k+ 1

2
)∥, and then compute x (k+1) =

x (k+
1
2
)+ z (k+

1
2
).

III. THE ASYMPTOTICALLY CONVERGENCE ANALYSIS

In this section, we focus on the asymptotically conver-
gence property of the IMQHSS iteration method. Here and
in the sequence, we define a vector norm as |∥x∥|= ∥(αI +
Hω)x∥2 for any vector x ∈ Cn and then induce the cor-
responding matrix norm |∥X∥|= ∥(αI +Hω)X (αI +Hω)−1∥2
for any matrix X ∈Cn×n .

The first theorem describes the convergence conditions
of the MQHSS iteration method.

Theorem III.1. Let A ∈ Cn×n be a nonsingular complex
symmetric matrix with the SPSD matrix W and the SPD
matrix T be its real and imaginary parts, respectively. Let ω
and α be a nonnegative constant and a positive constant,
respectively. Denote by

θ (ω,α) = max
λi∈σ(T )

p
α2+λ2

i

α+λi
· max
µj ∈σ(Hω)

Æ
α2+µ2

j

α+µj

+

p
2ωα
p
ς∥T ∥2∥Hω∥2

(α+ ∥T ∥2)(α+ ∥Hω∥2) ,
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where ς := min{κ(W ),κ(Hω)}, then once θ (ω,α) < 1, the
MQHSS iteration method converges to the exact solution.

Proof: From (II.1), we know L(ω,α) = (αI +Hω)−1(αI +
T )−1((αI − iT )(αI + iHω)+ (1+ i)αωT W ). Denote by

L(1)(ω,α) = (αI +Hω)−1(αI +T )−1(αI − iT )(αI + iHω)

and

L(2)(ω,α) = (αI +Hω)−1(αI +T )−1T W,

then it follows

ρ(L(ω,α)) =ρ(L(1)(ω,α)+ (1+ i)αωL(2)(ω,α))

≤ ∥L(1)(ω,α)+ (1+ i)αωL(2)(ω,α)∥2
≤ ∥L(1)(ω,α)∥2+p2αω∥L(2)(ω,α)∥2
≤ ∥(αI +T )−1(αI − iT )∥2 · ∥(αI

+Hω)−1(αI + iHω)∥2
+
p

2αω∥(αI +T )−1T ∥2 · ∥W H−1
ω ∥2

· ∥Hω(αI +Hω)−1∥2.

After some simple algebra computations, we have

∥(αI +T )−1(αI − iT )∥2 ≤ max
λi∈σ(T )

p
α2+λ2

i

α+λi
,

∥(αI +Hω)−1(αI + iHω)∥2 ≤ max
µj ∈σ(Hω)

Æ
α2+µ2

j

α+µj
,

∥(αI +T )−1T ∥2 ≤ ∥T ∥2
α+ ∥T ∥2 ,∥Hω(αI +Hω)−1∥2 ≤ ∥Hω∥2

α+ ∥Hω∥2
and ∥W H−1

ω ∥2 ≤min{pκ(W ),pκ(Hω)}=pς [5]. Therefore,
after substituting the above inequalities and by making
use of the monotonically increasing property of the func-
tion f (t ) = t

α+t
(t ≥ 0), it follows, ρ(L(ω,α)) ≤ θ (ω,α).

Furthermore, if θ (ω,α) < 1, then ρ(L(ω,α)) < 1, i.e., the
MQHSS iteration method converges.

Theorem III.2. Let A ∈ Cn×n be a nonsingular complex
symmetric matrix with the SPSD matrix W and the SPD
matrix T being its real and imaginary parts, respectively.
Let ω and α be a nonnegative constant and a positive
constant, respectively. Denote by

ϕ(ω,α) = ∥(I − iωT )A(αI +Hω)−1∥2,

ψ(ω,α) = ∥(αI +Hω)(αI +T )−1∥2,

ϵ =max
k
{ϵk }, η=max

k
{ηk }, and ξ=max{ϵ,η}.

If {x (k )} is an iteration sequence generated by the IMQHSS
iteration method, then it holds

|∥x (k+1)−x∗∥| ≤ (θ (ω,α)+ξ(1+ξ)(1+ψ(ω,α))ϕ(ω,α))

·|∥x (k )−x∗∥|, k = 0,1, 2, . . . ,

where x∗ is the exact solution of the linear system (I.1).
Furthermore, if θ (ω,α) + ξ(1+ ξ)(1+ψ(ω,α))ϕ(ω,α) < 1,
then the sequence {x (k )} converges to x∗ ∈Cn . Here θ (ω,α)
is defined in Theorem III.1.

Proof: From Algorithm II.1 and the first equation of
(II.3), we have

x (k+
1
2
)−x∗ = x (k )−x∗+(αI +T )−1(r̃ (k )−p (k ))

= x (k )−x∗+(αI +T )−1(i(I − iωT )A(x (k )−x∗)−p (k ))

= (αI +T )−1(αI +T +ωT W −T + iHω)(x (k )−x∗)
− (αI +T )−1p (k ))

= (αI +T )−1(αI +ωT W + iHω)(x (k )−x∗)− (αI +T )−1p (k ))

and by making use of the results in [5], it follows

x (k+1)−x∗ = x (k+
1
2
)−x∗+(αI +Hω)−1(s̃ (k+

1
2
)−p (k ))

= (αI +Hω)−1(αI − iT )(x (k+
1
2 )−x∗)

+ iω(αI +Hω)−1T W (x (k+
1
2
)−x∗)− (αI +Hω)−1q (k+

1
2
).

Hence, we can acquire

x (k+1)−x∗ = L(ω,α)(x (k )−x∗)

−(αI +Hω)−1((αI +T )−1(αI − iT )p (k )+q (k+
1
2
)),

i.e.,

(αI +Hω)(x (k+1)−x∗) = (αI +Hω)L(ω,α)(αI +Hω)−1

·(αI +Hω)(x (k )−x∗)− (αI +T )−1(αI − iT )p (k )+q (k+
1
2
).

By taking norms on both sides, we have

|∥x (k+1)−x∗∥| ≤ |∥L(ω,α)∥| · |∥x (k )−x∗∥|
+ ∥(αI +T )−1(αI − iT )∥2∥p (k )∥2+ ∥q (k+ 1

2
)∥2

≤ |∥L(ω,α)∥| · |∥x (k )−x∗∥|+ ∥p (k )∥2+ ∥q (k+ 1
2 )∥2

and

∥p (k )∥2 ≤ ϵk · ∥r̃ (k )∥2 ≤ ϵk · ∥(I − iωT )A(αI +Hω)−1∥2 · |∥x (k )−x∗∥|
= ϵkϕ(ω,α)|∥x (k )−x∗∥|.

Besides, it holds

s̃ (k+
1
2
) =−((I − iωT )A + iωT W )(x (k+

1
2
)−x∗)+ iωT W (x (k )−x∗)

=−(Hω+ iT )(x (k+
1
2
)−x∗)+ iωT W (x (k )−x∗)

=−((Hω+ iT )(αI +T )−1(αI + iHω+ωT W )

+ iωT W )(x (k )−x∗)− (Hω+ iT )(αI +T )−1p (k )

= (αI + iHω)(αI +T )−1(I − iωT )A(x (k )−x∗)
+ (I − (αI + iHω)(αI +T )−1)p (k ).

According to the facts

∥(αI + iHω)(αI +Hω)−1∥2 = max
λ∈σ(Hω)

p
α2+λ2

α+λ
< 1

and

∥(αI + iHω)(αI +T )−1∥2 ≤ ∥(αI + iHω)(αI +Hω)−1∥2
·∥(αI +Hω)(αI +T )−1∥2 ≤ψ(ω,α),

and by making use of the second equation of (II.3), it
follows

∥q (k+ 1
2
)∥2 ≤ηk · ∥s̃ (k+ 1

2
)∥2

≤ηk ∥(αI + iHω)(αI +T )−1∥2
· ∥(I − iωT )A(αI +Hω)−1∥2 · |∥x (k )−x∗∥|

+ηk · (1+ ∥(αI + iHω)(αI +T )−1∥2) · ∥p (k )∥2
≤ηkψ(ω,α)ϕ(ω,α) · |∥x (k )−x∗∥|+ηk (1+ψ(ω,α)) · ∥p (k )∥2.

IAENG International Journal of Applied Mathematics, 51:1, IJAM_51_1_12

Volume 51, Issue 1: March 2021

 
______________________________________________________________________________________ 



Therefore, by substituting all of the above equations, we
obtain

|∥x (k+1)−x∗∥| ≤ (θ (ω,α)+ ϵkϕ(ω,α)+ηkϕ(ω,α)ψ(ω,α)

+ ϵkηk (1+ψ(ω,α))ϕ(ω,α))|∥x (k )−x∗∥|
≤ (θ (ω,α)+ ϵϕ(ω,α)+ηϕ(ω,α)ψ(ω,α)

+ ϵη(1+ψ(ω,α))ϕ(ω,α))|∥x (k )−x∗∥|
= (θ (ω,α)+ξ(ξ+1)(1+ψ(ω,α))ϕ(ω,α)) · |∥x (k )−x∗∥|.

Hence, if θ (ω,α)+ξ(ξ+1)(1+ψ(ω,α))ϕ(ω,α)< 1, then the
IMQHSS iteration method converges to the exact solution
of (I.1).

Theorem III.3. Let A =W + iT ∈ Cn×n be a nonsingular
complex symmetric matrix. The SPSD matrix W and the
SPD matrix T are the real and imaginary parts of A,
respectively. Suppose that τ1(k ) and τ2(k ) are nondecreas-
ing and positive sequences of integers satisfying τ1(k )≥ 1,
τ2(k ) ≥ 1, ϵk ≤ c1 · δτ1(k )

1 , ηk ≤ c2 · δτ2(k )
2 , where c1 and

c2 are nonnegative constants. δ1,δ2 ∈ (0,1) are both real
constants. ϵk and ηk are defined in Theorem III.2. Then

|∥x (k+1)−x∗∥| ≤ (
p
θ (ω,α)+γδτ(k ))2 · |∥x (k )−x∗∥|,

where τ(k ) = min{τ1(k ),τ2(k )}, δ = max{δ1,δ2}, c =
max{c1, c2} and

γ= c ·max{ (1+ψ(ω,α))ϕ(ω,α)

2
p
θ (ω,α)

,
p
(1+ψ(ω,α))ϕ(ω,α)}.

Furthermore, the asymptotically convergence rate is

lim
k→+∞sup

|∥x (k+1)−x∗∥|
|∥x (k )−x∗∥| ≤ θ (ω,α).

Or equivalently, the convergence rate of the IMQHSS it-
eration method is asymptotically the same as that of the
MQHSS iteration method.

Proof: According to the proof of Theorem III.2, we
have

|∥x (k+1)−x∗∥| ≤ (θ (ω,α)+ ϵkϕ(ω,α)

+ηkϕ(ω,α)ψ(ω,α)+ ϵkηk (1+ψ(ω,α))ϕ(ω,α))|∥x (k )−x∗∥|
≤ (θ (ω,α)+ c1δ

τ(k )ϕ(ω,α)+ c2δ
τ(k )ψ(ω,α)ϕ(ω,α)

+ c1c2(δτ(k ))2(1+ψ(ω,α))ϕ(ω,α)) · |∥x (k )−x∗∥|
≤ (θ (ω,α)+ cδτ(k )(1+ψ(ω,α))ϕ(ω,α)

+ (c ·p(1+ψ(ω,α))ϕ(ω,α) ·δτ(k ))2) · |∥x (k )−x∗∥|
≤ (θ (ω,α)+2γ

p
θ (ω,α) ·δτ(k )+γ2 · (δτ(k ))2) · |∥x (k )−x∗∥|

= (
p
θ (ω,α)+γ ·δτ(k ))2 · |∥x (k )−x∗∥|.

Divided both sides by |∥x (k )−x∗∥|, it follows

|∥x (k+1)−x∗∥|
|∥x (k )−x∗∥| ≤ (

p
θ (ω,α)+γ ·δτ(k ))2.

Furthermore, we have

sup
|∥x (k+1)−x∗∥|
|∥x (k )−x∗∥| ≤ (

p
θ (ω,α)+γ ·δτ(k ))2.

Let k → +∞, then the results of the theorem can be
obtained immediately.

IV. NUMERICAL EXPERIMENTS

In this section, we will test the effectiveness of the new
methods with respect to both iteration counts (denoted
as ’IT’) and the computing time (in second, denoted as
’CPU’) for solving the complex symmetric linear system of
strong skew-Hermitian parts. The IQHSS iteration method
and the IQHSS preconditioned GMRES method [5] are
used to compare with the IMQHSS iteration method
and the IMQHSS preconditioned method, respectively.
We adopt the conjugate gradient method [24] as inner
iteration process in the case of inexact implementations
for all the proposed methods of SPD coefficient matrix.
Otherwise, we use the LU deccomposition for other coef-
ficient matrix in the case of inner iteration process. The
corresponding inner stopping tolerance is fixed at 0.01,
i.e., ϵk =ηk for any k in Algorithm II.1. Besides, we employ
the matrix M (ω,α) shown in (II.2) and the matrix

1

2α
(I − iωT )−1(αI + iT )(αI +Hω)

shown in [5] as the preconditioners for the IMQHSS
preconditioned GMRES method and the IQHSS precon-
ditioned GMRES method, respectively. The corresponding
methods are denoted as IQHSS-GMRES and IMQHSS-
GMRES. We perform all the experiments using MATLAB
(version R2017a) on Intel(R) Core(TM) CPU 3.4Ghz and
8.00 GB of RAM, with machine precision 10−16. In all the
experiments, we choose the zero vector to be the initial
guess. The iteration is terminated once the current iterate
u (k ) satisfies

RES=
∥b −Au (k )∥2
∥b∥2 < 10−6,

or the number of iteration counts reaches the maximum
number 1000.

Example 1. Consider the complex Helmholtz equation [15],
[23], [29]

−△u +σ1u + iσ2u = f ,

where u satisfies Dirichlet boundary conditions in D =
[0,1]×[0,1]. σ1 and σ2 are real coefficient functions. Using
the centered difference and discretizing the problem on an
m ×m grid with mesh size h = 1/(m +1), we will obtain a
system of linear equations

((K +σ1I )+ iσ2I )x =b ,

where K = I ⊗Vm +Vm ⊗ I is the discretizaton of −△, where
Vm = h−2tridiag(−1, 2,−1) ∈ Rm×m . We set W = −σ2I and
T = K +σ1I . For simplicity, the right-hand side vector b is
taken to be b = −i(W + iT )1, where 1 is the vector of all
ones vector. Furthermore, after multiplying both sides by
h2, we can obtain a normalized coefficient matrix and the
corresponding right-hand side vector.

As is pointed in [5] that ω should be chosen reasonably
small so that the matrix I−iωT could be well-conditioned.
Hence, we fix ω to be 0.01 in all our experiments. To
guarantee the strong skew-Hermitian property, we let σ2 =
1. The parameter σ1 varies as 1, 10 and 100. The number
of iteration counts and the computing time for all the
proposed methods are listed in Table I. The corresponding
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experimental optimal parameters are listed in Table II for
all the proposed methods.

From the results in Table I, we can see that when the
scale of the problem increases, the numbers of iteration
counts and the computing time of the QHSS method and
the IQHSS method increase rapidly. The modified QHSS
iteration method and the inexact modified QHSS iteration
method are more efficient than the QHSS iteration method
and the inexact QHSS iteration method, respectively. The
main reason of these results is the complex calculating
computation. The modified methods are more efficient
because those methods have avoided the complex calcu-
lating.

Moreover, we observe that when the problem is small
scale, the inexact QHSS iteration method and the inexact
MQHSS iteration method are worse than the QHSS itera-
tion method and the MQHSS iteration method, respective-
ly. As the mesh grid increases, the numbers of the iteration
counts of the IMQHSS method and the IQHSS method
keep close to each other, but the inexact methods use
much less CPU time. Because of the computation com-
plexity of the complex shift matrix αI + iT in the IQHSS
iteration method and in the QHSS iteration method, the
IQHSS iteration method and the QHSS iteration method
are less efficient than the IMQHSS iteration method both
in terms of the number of iteration counts and the CPU
time. These results are also illustrated by the numerical
results in Table I.

TABLE II
THE EXPERIMENTAL OPTIMAL PARAMETERS α FOR THE PROPOSED METHODS WITH

RESPECT TO DIFFERENT σ1 AND DIFFERENT m .

σ1 \m : 16 32 64 128 256

QHSS 1 0.06 0.04 0.02 0.01 0.009
10 0.06 0.04 0.02 0.01 0.009

100 0.06 0.04 0.02 0.01 0.009
MQHSS 1 0.5 0.3 0.3 0.3 0.3

10 0.5 0.3 0.3 0.3 0.3
100 0.5 0.3 0.3 0.3 0.3

IQHSS 1 0.05 0.03 0.02 0.01 0.01
10 0.09 0.03 0.02 0.02 0.01

100 0.08 0.03 0.02 0.02 0.01
IMQHSS 1 0.5 0.4 0.3 0.3 0.2

10 0.7 0.4 0.3 0.4 0.3
100 0.7 0.7 0.6 0.5 0.5

IQHSS-GMRES 1 0.7 0.7 0.7 0.7 0.7
10 0.7 0.7 0.7 0.7 0.7

100 0.7 0.5 0.6 0.6 0.7
IMQHSS-GMRES 1 0.6 0.5 0.3 0.2 0.2

10 0.6 0.5 0.3 0.2 0.2
100 0.6 0.3 0.3 0.2 0.2

To further illustrate the efficiency of the IMQHSS itera-
tion method, we plot the eigenvalues distribution in Fig.
1, where the X-axis and the Y-axis denote the real parts
and the imaginary parts of the corresponding eigenvalues,
respectively. Here the figures on the left top, on the right
top, on the left lower and on the right lower plot the
eigenvalues distribution of the original coefficient matrix,
the equivalent quasi-normal coefficient matrix, the QHSS
preconditioned matrix and the MQHSS preconditioned
matrix with the experimental optimal parameter α for
n = 32, σ1 = 10, σ2 = 1. From Fig. 1, we find that the
eigenvalues of the MQHSS preconditioned method are the
most clustered around 1.

Finally, we plot in Fig. 2 about the residual against
the numbers of iteration counts for the IQHSS-GMRES
method and the IMQHSS-GMRES method, respectively.
From Fig. 2, we observe again that the IMQHSS-GMRES
method is more efficient than the IQHSS-GMRES method.
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Fig. 1. Eigenvalues distribution. (Left top: original matrix. Right top:
quasi-normal matrix. Left lower: the QHSS preconditioned matrix. Right
lower: the MQHSS preconditioned matrix. σ1 = 100, m = 32)
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Fig. 2. log10RES against the number of iteration counts for the IQHSS-
GMRES method (On the top) and the IMQHSS-GMRES method (At the
bottom). (σ1 = 100, m = 32)

Above all, we may draw a conclusion that when solving
the complex symmetric linear systems of strong skew-
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TABLE I
NUMERICAL RESULTS FOR THE PROPOSED METHODS CORRESPONDING TO THE EXPERIMENTAL OPTIMAL PARAMETERS.

m: 16 32 64 128 256

σ1 Method
1

QHSS
IT 56 102 158 296 362
CPU 0.01 0.35 1.45 22.17 136.75

IQHSS
IT 69 135 183 339 401
CPU 0.01 0.65 1.55 21.17 106.23

IQHSS-GMRES
IT 13 20 32 37 56
CPU 0.01 0.09 0.44 2.43 42.5

MQHSS
IT 43 44 44 42 42
CPU 0.01 0.14 0.31 3.05 35.85

IMQHSS
IT 44 46 49 50 55
CPU 0.01 0.14 0.31 3.11 33.14

IMQHSS-GMRES
IT 8 10 14 11 11
CPU 0.003 0.03 0.08 0.74 6.55

10
QHSS

IT 57 101 158 296 362
CPU 0.01 0.34 1.47 22.19 135.73

IQHSS
IT 68 135 183 341 404
CPU 0.01 0.64 1.57 21.19 109.73

IQHSS-GMRES
IT 12 20 31 37 55
CPU 0.01 0.09 0.43 2.44 41.49

MQHSS
IT 43 44 44 42 41
CPU 0.01 0.14 0.31 3.05 35.84

IMQHSS
IT 44 46 49 47 48
CPU 0.01 0.14 0.31 2.99 26.04

IMQHSS-GMRES
IT 8 10 14 11 11
CPU 0.003 0.03 0.08 0.74 6.55

100
QHSS

IT 57 101 158 296 362
CPU 0.01 0.64 1.47 22.19 135.73

IQHSS
IT 67 135 178 321 396
CPU 0.01 0.64 2.17 19.09 105.57

IQHSS-GMRES
IT 10 15 23 25 56
CPU 0.01 0.06 0.34 2.23 42.79

MQHSS
IT 43 42 44 42 41
CPU 0.01 0.14 0.31 3.05 35.84

IMQHSS
IT 45 44 48 45 45
CPU 0.01 0.13 0.31 2.92 25.76

IMQHSS-GMRES
IT 7 9 11 11 10
CPU 0.003 0.03 0.07 0.74 6.54

Hermitian parts, the IMQHSS-GMRES method should be
a better choice than the IQHSS-GMRES method.

V. CONCLUDING REMARKS

In this paper, we focus on the fast solvers for com-
plex symmetric linear systems of strong skew-Hermitian
parts. To further improve the efficiency of the MQHSS
iteration method, we introduce an inexact MQHSS iter-
ation method. The asymptotically convergence conditions
are analyzed theoretically. Numerical experiments have
shown that the inexact MQHSS iteration method and the
corresponding preconditioned GMRES method are more
efficient than the IQHSS iteration method and the IQHSS
preconditioned GMRES method, respectively. Moreover,
the IMQHSS-GMRES method keeps the most efficient
among all the proposed methods.
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