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Abstract—Recently Wu, Wang and Teng introduced the
division ring over conjugate product as a tool to investigate
antilinear systems. In this paper we show that the division ring
is a special case of a known construction of a right ring of
fractions of a right Ore domain. We also investigate similarity
and consimilarity of complex polynomials over conjugate prod-
uct and characterize all the polynomials which are similar to
a given polynomial of degree less than 3, solving partially a
problem posed by Wu, Wang and Teng.

Index Terms—Sylvester-polynomial-conjugate matrix equa-
tion, division ring, right Ore domain, right ring of fractions,
skew polynomial ring, similarity, consimilarity.

I. INTRODUCTION

THE Sylvester matrix equation is the equation
AX − XB = C, where all matrices are complex

of appropriate sizes, the matrices A,B,C are given, and
the problem is to find the matrices X that satisfy this
equation. The matrix equation AX − XB = C, where
X denotes the matrix obtained by taking the complex
conjugate of each element of X , is called the Sylvester-
conjugate matrix equation. These equations, their versions
and generalizations (e.g., the well-known Lyapunov matrix
equation AX + XAT = C and the Kalman-Yakubovich-
conjugate matrix equation X − AXB = C) have wide
applications, among others in systems and control theory,
signal processing, stability theory, differential equations,
model reduction, filtering and image restoration. There is a
vast literature on the existence, uniqueness and properties
of solutions of these matrix equations; the reader is referred
to the monographs [4], [5], [18] for more information on
the theory and applications of these matrix equations.

In [15] a class of complex matrix equations was studied,
the so-called Sylvester-polynomial-conjugate matrix equa-
tions

A(s)
F
� X +B(s)

F
� Y = C(s)

F
� R, (1)

where
F
� is the Sylvester-conjugate sum operator (introduced

in [15]), the complex polynomial matrices A(s), B(s), C(s)
and complex matrices F,R are given, and complex matrices
X,Y are unknown (the Sylvester-conjugate matrix equation
and the Kalman-Yakubovich-conjugate matrix equations are
special cases of (1)).

In the same paper [15], in order to establish a unified
approach for solving the Sylvester-polynomial-conjugate ma-
trix equations (1), the concept of conjugate product ~ of
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complex polynomial matrices was proposed. The essence of
the conjugate product ~ is that, to multiply two complex
polynomials in a variable s, the variable s is multiplied by a
complex number z according to the rule s~ z = zs, where
z is the complex conjugate of z. The conjugate product
of complex polynomials was investigated in [14], where,
among other results, it was shown that the set of complex
polynomials with the usual addition and the multiplication ~
is a ring, denoted by (C[s],+,~) and called the polynomial
ring in the framework of conjugate product.

In [17], a polynomial description in the framework of
conjugate product was given for antilinear systems. With
the aim of getting tools to investigate antilinear systems, in
[16] Wu, Wang and Teng introduced a construction which
extends the ring (C[s],+,~) to a division ring, which in
[16] is denoted by (C(s),+,~) and called the division ring
of rational fractions in the framework of conjugate product.

In [16, Section I] the authors assert that the conjugate
product ~ is a new concept and that rational fractions
over the conjugate product have not been investigated so
far. In this paper we show, however, that the division ring
(C(s),+,~) of rational fractions introduced in [16] is a
special case of a known general construction of a right
ring of fractions, introduced by Ore in 1931 in [11]. To
show this, we start by recalling some necessary definitions
from ring theory in a later part of this Section. Next, in
Section II, we show that the ring (C[s],+,~), which in
[16] is a basis for constructing the division ring of rational
fractions (C(s),+,~), is a case of another known algebraic
construction called the skew polynomial ring. In Section III
we briefly present the Ore construction, and in Section IV we
show that the division ring of rational fractions (C(s),+,~)
from [16] is indeed an immediate outcome of Ore’s general
construction.

Recall that complex matrices A and B are said to be
similar (resp. consimilar) if there exists an invertible complex
matrix X such that X−1AX = B (resp. X

−1
AX = B),

or in other words, if the homogeneous Sylvester (resp.
Sylvester-conjugate) matrix equation AX −XB = 0 (resp.
AX − XB = 0) has a solution in invertible matrices.
Similarly to the case of complex matrices, in [16] the
concepts of similarity and consimilarity were proposed for
rational fractions in the framework of conjugate product. In
[16, Subsection VI-A] the authors asked for necessary and
sufficient conditions for similarity of given rational fractions
A,B from the division ring (C(s),+,~), i.e., the problem is
to characterize when there exists a nonzero rational fraction
P such that AP = PB. In Subsection V-A we solve the
problem in the case where the rational fractions A,B, P
are assumed to belong to the polynomial ring (C[s],+,~)
and the polynomial B is either constant, linear or quadratic.
In the same subsection we also show that similarity is an
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equivalence relation on the ring (C[s],+,~). In Subsection
V-B we prove that rational fractions A and B are consimilar
if and only if As and Bs are similar, which shows that the
notions of similarity and consimilarity of rational fractions
are, in a sense, parallel.

As promised, below we recall some necessary definitions
from ring theory. It is worthy of mention that rings often
appear in systems and control theory (see, e.g., [1], [8], [9],
[10], [13], [14], [16]).

A ring is a set R equipped with two binary operations,
denoted by + and · (called addition and multiplication,
respectively), which satisfy the following axioms:

1) (a + b) + c = a + (b + c) for all a, b, c ∈ R (that is,
addition is associative).

2) a + b = b + a for all a, b ∈ R (that is, addition is
commutative).

3) There exists an element 0 ∈ R such that a+0 = a for
all a ∈ R (that is, 0 is the additive identity).

4) For every a ∈ R there exists −a ∈ R such that
a+(−a) = 0 (that is, −a is the additive inverse of a).

5) (a · b) · c = a · (b · c) for all a, b, c ∈ R (that is,
multiplication is associative).

6) There exists an element 1 ∈ R such that a·1 = 1·a = a
for all a ∈ R (that is, 1 is the multiplicative identity).

7) a·(b+c) = (a·b)+(a·c) and (b+c)·a = (b·a)+(c·a)
for all a, b, c ∈ R (that is, multiplication is distributive
over addition).

The multiplication symbol · is often omitted: we will fre-
quently write ab rather than a · b. If multiplication is com-
mutative (that is, ab = ba for all a, b ∈ R), then the ring R
is said to be commutative. If ab 6= 0 for all a, b ∈ R \ {0},
then R is called a domain.

Let R be a ring and a an element of R. If there exists
b ∈ R such that ab = ba = 1, then a is called an invertible
element of R, and b is called the multiplicative inverse of a
and denoted by a−1. If all elements of the set R \ {0} are
invertible, then R is called a division ring. A commutative
division ring is called a field.

The set Rn×n of n × n real matrices (which very often
appears in applied mathematics), with usual addition and
multiplication of matrices, is an example of a ring that
is neither commutative nor a domain for n > 1. The
set Z of integers, with usual addition and multiplication,
is an example of a commutative domain which is not a
field. The set R of real numbers as well as the set C of
complex numbers, with usual addition and multiplication, are
examples of fields. Examples of division rings that are not
fields will be presented in Section IV.

Let R with addition + and multiplication · be a ring.
A subset T of R is called a subring of R if T is itself a
ring under the operations + and · restricted to T . If a ring
T is a subring of R, then R is called an overring of T . For
example, the ring Z of integers is a subring of the polynomial
ring Z[s] (and Z[s] is an overring of Z).

II. SKEW POLYNOMIAL RINGS

Given a ring R, a map σ : R → R is called an
automorphism of R if σ is bijective and for all a, b ∈ R,

σ(a+ b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b).

For example, the map σ : C → C defined for all z ∈ C by
σ(z) = z (the complex conjugate of z) is an automorphism
of C.

Let R be a ring and let σ be an automorphism of R.
Let P be the set of polynomials over R in one variable s,
i.e., P consists of all formal sums

∑n
i=0 ais

i, where n is a
nonnegative integer and ai ∈ R for i = 0, 1, . . . , n. These
polynomials can be added in an obvious way:

n∑
i=0

ais
i +

n∑
i=0

bis
i =

n∑
i=0

(ai + bi)s
i, (2)

and multiplied formally, assuming that the elements of R
commute with the variable s, i.e.,

sa = as for any a ∈ R. (3)

Thus the multiplication is as follows:
m∑
i=0

ais
i ·

n∑
j=0

bjs
j =

m∑
i=0

n∑
j=0

aibjs
i+j .

With these operations of addition and multiplication, P is
a ring, denoted by R[s] and called the ring of polynomials
over R. We can use the automorphism σ of R to define
another multiplication in P , by replacing the rule (3) with
the rule

sa = σ(a)s for any a ∈ R. (4)

Assuming (4) and the associativity of multiplication, we
obtain

s2a = (ss)a = s(sa) = s
(
σ(a)s

)
=
(
sσ(a)

)
s

=
(
σ
(
σ(a)

)
s
)
s =

(
σ2(a)s

)
s = σ2(a)

(
ss
)
= σ2(a)s2,

and by induction it follows that for any a ∈ R and
nonnegative integer i we have

sia = σi(a)si, (5)

where σi is the composition σ◦σ◦ · · · ◦σ with σ repeated i
times. Hence the “new” multiplication in P is as follows:

m∑
i=0

ais
i ·

n∑
j=0

bjs
j =

m∑
i=0

n∑
j=0

aiσ
i(bj)s

i+j . (6)

It is well known (see, e.g., [12, §1.6]) that the set P with
addition (2) and multiplication (6) is a ring. The ring is
called the skew polynomial ring and denoted by R[s;σ].
We will denote polynomials by capital letters, and to save
space, without indicating the indeterminate s (e.g., A instead
of A(s)).

In conclusion, the “usual” polynomial ring R[s] and the
skew polynomial ring R[s;σ] have the same set P of
polynomials over R as the underlying set, and the same
addition, but the multiplication in R[s;σ] is “skewed” by
the rule (4). Let us note that the identity map idR of R
is an automorphism of R and for σ = idR the rings R[s]
and R[s;σ] coincide. Hence the polynomial ring R[s] is a
special case of the skew polynomial ring construction, i.e.,
the notion of a skew polynomial ring generalizes the notion
of a polynomial ring.

In [16], for complex polynomials (i.e., polynomials with
coefficients in C) the concept of conjugate product, denoted
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by ~, is considered. First, in [16], for a complex number c
the authors define c∗0 = c, and

c∗k = c∗(k−1) for any positive integer k.

Let us observe that if σ is the complex conjugation, then,
simply, c∗k = σk(c). Next, in [16, Definition 1] (see also
[14]), the conjugate product ~ of complex polynomials A =∑m
i=0 ais

i and B =
∑n
j=0 bjs

j is defined as

A~B =
m∑
i=0

n∑
j=0

aib
∗i
j s

i+j . (7)

In [14, Theorem 1] it is shown that the set of complex
polynomials with usual addition (2) and the multiplication
~ is a ring; we refer to the ring as (C[s],+,~), adopting
the notation from [14]. By comparing (7) and (6) it is
obvious that the ring (C[s],+,~) is just the skew polynomial
ring C[s;σ], where σ is the complex conjugation. The
advantage of this observation is that known general results
on skew polynomial rings can be applied to the concrete
ring (C[s],+,~) considered in [16], as we will see in
Section IV. Since in the ring (C[s],+,~) = C[s;σ] we have
si = σ(i)s = −is 6= is, the ring is not commutative. The
ring (C[s],+,~) is well known in the literature; e.g., in [2,
p. 54] the ring is called the complex-skew polynomial ring
and denoted by C[s;−].

III. RIGHT RING OF FRACTIONS

A. Right Ore domains

One of basic ring constructions is the field of fractions of
a commutative domain R, constructed as a set of fractions,
that is, expressions a

b with a ∈ R and b ∈ R \{0} subject to
an obvious equivalence relation (see, e.g., [6, Section III.4]).
For example, the field Q of rationals is the field of fractions
of the domain Z of integers. In the non-commutative case,
it is not always possible to pass from a domain to a division
ring built from fractions. Below we explain when such a
division ring exists.

Let R be a domain and R∗ = R \ {0} the set of non-zero
elements of R. A right ring of fractions of R is defined to be
any overring Q of R satisfying the following two conditions:

1) Every element of R∗ is invertible in Q.
2) Every element of Q can be written in the form as−1

for some a ∈ R and s ∈ R∗.
Let R be a domain and R×R∗ the Cartesian product of R
and R∗ (i.e., the set of all ordered pairs (a, s) where a ∈ R
and s ∈ R∗). In 1931, in [11] Ore proved that a right ring
of fractions of R exists if and only if

for every (a, s) ∈ R×R∗ there exists
(a1, s1) ∈ R×R∗ such that as1 = sa1.

(8)

Nowadays, if R satisfies condition (8), then R is called a right
Ore domain. Hence Ore’s theorem can be stated as follows.

Theorem 1: (Ore, 1931) A domain R has a right ring of
fractions if and only if R is a right Ore domain.

In Subsection III-B we will outline Ore’s construction of
a right ring of fractions. In the context of the paper [16] it is
worth recalling the following property of skew polynomial
rings (see, e.g., [7, Theorem 10.28]).

Theorem 2: If R is a right Ore domain and σ is an
automorphism of R, then R[s;σ] is a right Ore domain.

As we have already observed in the last paragraph of
Section II, the ring (C[s],+,~) of polynomials in the
framework of conjugate product considered in [16] is just
the skew polynomial ring C[s;σ], where σ is the complex
conjugation. Since clearly the field C is a right Ore domain,
Theorem 2 implies that so is the ring (C[s],+,~). Some
important consequences of this observation will be presented
in Section IV.

B. The Ore construction of a right ring of fractions

In this subsection we outline the Ore construction of a right
ring of fractions of a right Ore domain. The construction is
presented in detail in many ring theory textbooks (e.g., [3,
Section 3.8], [7, §10A], [12, §3.1]).

Let R be a right Ore domain and let R∗ = R \ {0}. The
following relation ∼ on R×R∗ is an equivalence relation:

(a, s) ∼ (a′, s′) if and only if there exist b, b′ ∈ R∗

such that ab = a′b′ and sb = s′b′.

The equivalence class of (a, s) ∈ R×R∗ is denoted by a
s .

Let Q be the set of all equivalence classes and let
a1
s1
, a2s2 ∈ Q. By (8) there exist r ∈ R and s ∈ R∗ such

that s1s = s2r ∈ R∗. The sum of a1
s1

and a2
s2

is defined by

a1
s1

+
a2
s2

=
a1s+ a2r

s1s

(see Example 1 for an illustration of the operation). This is
a well-defined binary operation on Q satisfying axioms 1–4
of the definition of a ring, with the additive identity 0

1 . In
order to multiply a1

s1
with a2

s2
, we use (8) to find r ∈ R and

s ∈ R∗ such that s1r = a2s. Then we define
a1
s1
· a2
s2

=
a1r

s2s
. (9)

It can be checked that (9) gives a well-defined multiplication
on Q, and finally that Q, with the addition and multiplication
just defined, is a ring. Note that 1

1 is the multiplicative
identity in Q. Furthermore, if a

s 6=
0
1 , then a 6= 0 and thus

s
a ∈ Q and a

s ·
s
a = s

a ·
a
s = 1

1 , which shows that Q is a
division ring.

By identifying an element a ∈ R with the fraction a
1 ∈ Q,

we get the containment R ⊆ Q with R 3 a = a
1 ∈ Q. Since

addition and multiplication in R agree with these in Q, Q is
an overring of R. Furthermore,

a

s
=
a

1
· 1
s
=
a

1
·
(s
1

)−1
= as−1

and thus the division ring Q is a right ring of fractions of R.

Example 1: As we will show in Section IV, the Ore
construction of a right ring of fractions can be applied to
the skew polynomial ring C[s;σ], where σ is the complex
conjugation. To illustrate this construction, let us consider
the following four complex polynomials:

A = (1− i)s+ 2 + i, B = s2 + (1 + 3i)s+ 2− i,
C = s+ 2− 2i, D = (1 + i)s+ 3 + i ∈ C[s;σ].

To calculate the sum A
B + C

D in the right ring of fractions of
C[s;σ], we first make the denominators of the fractions the
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same, that is, we find nonzero polynomials R, T such that
BR = DT . It can be verified that for R = (1+ i)s+2i and
T = s2 + (2− i)s+ 1 + i in the ring C[s;σ] we have

BR = DT = (1+ i)s3+(4+4i)s2+(9− i)s+2+4i (10)

and thus
A

B
+
C

D
=
AR

BR
+
CT

DT
=
AR

BR
+
CT

BR
=
AR+ CT

BR

=
s3 + (4− 3i)s2 + (2− 6i)s+ 2 + 4i

(1 + i)s3 + (4 + 4i)s2 + (9− i)s+ 2 + 4i
.

We can also use (10) to calculate the product A
B ·

D
C :

A

B
· D
C

=
AR

BR
· DT
CT

=
AR

BR
· BR
CT

=
AR

CT

=
−2is2 + (−1 + i)s− 2 + 4i

s3 + (4− i)s2 + (3− 7i)s+ 4
.

IV. AN APPLICATION: THE DIVISION RING OVER
CONJUGATE PRODUCT

Let D be a commutative domain and σ : D → D an
automorphism of D. Then obviously D is a right Ore domain
and thus, by Theorem 2, the skew polynomial ring D[s;σ]
is a right Ore domain. Hence by Theorem 1, a right ring
of fractions of D[s;σ] exists, automatically being a division
ring, and can be constructed by the Ore method as described
in Subsection III-B. This path from a commutative domain
D with an automorphism σ to the division ring is presented
in Figure 1.

given a commutative domain D
with an automorphism σ : D → D

⇓

the skew polynomial ring D[s;σ]

is a right Ore domain

⇓

the right ring of fractions of D[s;σ]

exists, is a division ring, and can be
obtained via Ore’s construction

Figure 1. Three-step construction of a division ring

As we have observed in Section II, the ring (C[s],+,~)
from [16] is simply the skew polynomial ring C[s;σ],
where σ is the complex conjugation. Since σ is an auto-
morphism of the field C, according to the scheme presented
in Figure 1 the ring R = C[s;σ] is a right Ore domain and
a right ring of fractions of R can be constructed via the Ore
method outlined in Subsection III-B. To sum up, it follows
from general results of the theory of rings that Ore’s con-
struction can be applied to the ring (C[s],+,~) = C[s;σ],
giving as the result a division ring, which is just the right
ring of fractions of the ring (C[s],+,~).

In [16] a construction of a division ring is presented,
called the division ring of rational fractions in the framework
of conjugate product and denoted by (C(s),+,~). The
construction starts from the polynomial ring in the framework

of conjugate product (C[s],+,~) and follows the same
path as the general Ore construction recalled in Subsection
III-B (in fact it is well known that the only way to pass
from a right Ore domain to its right ring of fractions is to
follow Ore’s construction; see, e.g., [3, p. 71]). Hence the
division ring over conjugate product from [16] is just the
right ring of fractions of the ring (C[s],+,~). The detailed
verifications of correctness of the construction of the division
ring (C(s),+,~), which form a major part of [16], are
unnecessary, since the Ore machinery works for any right
Ore domain, so in particular for the ring (C[s],+,~).

Now it is easy to find other examples of rings for which
the method presented in Figure 1 works. For instance, one
can consider the ring D = {a + b

√
2 | a, b ∈ Z} (with

usual addition and multiplication of numbers) and its auto-
morphism σ(a+ b

√
2) = a−b

√
2. Since D is a commutative

domain, the right ring of fractions of the skew polynomial
ring D[s;σ] exists, is a division ring (but not a field) and
can be obtained via the Ore construction.

V. SIMILARITY AND CONSIMILARITY OF COMPLEX-SKEW
POLYNOMIALS

Throughout this section, σ denotes the complex conjugate
operator, i.e., σ(z) = z for any z ∈ C.

According to [16, Definition 8], for a polynomial A =∑n
i=0 ais

i ∈ C[s;σ], its conjugate is defined as

A =
n∑
i=0

ais
i.

Furthermore, if Q is the right ring of fractions of C[s;σ] and
F = AB−1 is an element of Q (where A,B ∈ C[s;σ]), then
according to [16, Definition 9] the conjugate of F is defined
to be F = AB

−1
.

In [16, Section VI], two similarity concepts for elements
of the right ring of fractions Q are considered: an element
A ∈ Q is said to be similar (resp. consimilar) to an element
B ∈ Q if there exists a nonzero element P ∈ Q such that

AP = PB (resp. AP = PB). (11)

In [16, Subsection VI-A] the authors left open the problem
of giving necessary and sufficient conditions for similarity
of elements of Q, describing it as nontrivial. Below (in
Theorem 4) we solve the problem in the case where A,B, P
appearing in (11) are assumed to belong to C[s;σ] and the
polynomial B is either constant, linear or quadratic.

A. Similarity

Definition 1: Let A,B ∈ C[s;σ]. We say that the poly-
nomial A is similar to the polynomial B if there exists a
nonzero polynomial P ∈ C[s;σ] such that AP = PB.

Our first aim in this subsection is to show that the
similarity relation defined above is an equivalence relation
on C[s;σ]. For that we introduce the following operator
(denoted by tilde) on complex-skew polynomials.

Definition 2: For a polynomial A =
∑n
i=0 ais

i ∈ C[s;σ]
we denote

Ã =
n∑
i=0

(−1)i+1σn+1(ai)s
i,
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i.e., to get Ã, for every even (resp. odd) i the si-coefficient
of A is replaced with the additive inverse of its complex
conjugate (resp. remains unchanged).

For example, if A = a3s
3 + a2s

2 + a1s + a0, then
Ã = a3s

3 − a2s2 + a1s− a0.

Lemma 1: In the ring C[s;σ], for any polynomial A ∈
C[s;σ] we have AÃ ∈ R[s2], i.e., AÃ is a polynomial with
real coefficients such that for any odd k the sk-coefficient of
AÃ is equal to zero.

Proof: Let A =
∑n
i=0 ais

i ∈ C[s;σ], let k be a given
nonnegative integer, and let bk be the sk-coefficient of AÃ.
Denote by S the set of all ordered pairs (i, j) of nonnegative
integers such that i+ j = k, i.e.,

S = {(0, k), (1, k − 1), . . . , (k − 1, 1), (k, 0)}.

Then it follows from Definition 2 and (6) that

bk =
∑

(i,j)∈S

aiσ
i((−1)j+1σj+1(aj)). (12)

To complete the proof, it suffices to show that if k is odd,
then bk = 0, and if k is even, then bk ∈ R.

Assume that k is odd. Then the number of elements of S
is equal to k + 1, so it is even and each element (i, j) of S
can be paired with the element (j, i), that is, S splits into
disjoint 2-element subsets of the form {(i, j), (j, i)}. Since
k + 1 is even, σk+1(z) = z for any z ∈ C and thus each
such a 2-element subset {(i, j), (j, i)} of S contributes the
following value to the total sum (12):

aiσ
i((−1)j+1σj+1(aj)) + ajσ

j((−1)i+1σi+1(ai))

= ai(−1)j+1σk+1(aj) + aj(−1)i+1σk+1(ai) (13)

= ai(−1)j+1aj+aj(−1)i+1ai = ((−1)j+1+(−1)i+1)aiaj .

Since i+ j = k is odd, j+1 and i+1 are of different parity
and thus (−1)j+1 + (−1)i+1 = 0. Hence (13) is equal to
zero, and consequently so is bk.

We are left with the case where k is even, say k = 2m.
Then S is a disjoint sum of 2-element subsets of the form
{(i, j), (j, i)} and the singleton {(m,m)}. Since k + 1 is
odd, σk+1(z) = z for any z ∈ C and thus each 2-element
subset {(i, j), (j, i)} contributes to (12) the following value:

ai(−1)j+1σk+1(aj) + aj(−1)i+1σk+1(ai)

= ai(−1)j+1aj + aj(−1)i+1ai.
(14)

Since i + j = k is even, j + 1 and i + 1 are of the same
parity and thus (−1)j+1 = (−1)i+1. Hence (14) is equal
to (−1)i+1(aiaj + aiaj) = (−1)i+1(aiaj + aiaj). Since
z + z ∈ R for any z ∈ C, it follows that (14) is a real
number. Furthermore, the singleton {(m,m)} contributes to
(12) the value

am(−1)m+1σ2m+1(am) = (−1)m+1amam = (−1)m+1|am|2,

which is a real number, since the modulus |am| of am is
real. Hence bk ∈ R, as desired.

Since in the ring C[s;σ] we have sr = rs and s2a = as2

for any r ∈ R and a ∈ C, it follows from Lemma 1 that for
any A ∈ C[s;σ], AÃ commutes with all B ∈ C[s;σ], i.e.,
in C[s;σ] we have that (AÃ)B = B(AÃ). We will use this
observation in the proof of the following theorem.

Theorem 3: The similarity of complex-skew polynomials
(as defined in Definition 1) is an equivalence relation, i.e.,
the following properties hold.

(a) Reflexivity: for any A ∈ C[s;σ], A is similar to A;
(b) Symmetry: for any A,B ∈ C[s;σ], if A is similar to B,

then B is similar to A;
(c) Transivity: for any A,B,C ∈ C[s;σ], if A is similar

to B and B is similar to C, then A is similar to C.
Proof: Since for P = 1 we have that AP = PA,

(a) holds. To prove (b), assume that AP = PB for some
A,B, P ∈ C[s;σ] with P 6= 0. Then APP̃ = PBP̃ . From
Lemma 1 it follows that A and PP̃ commute and thus

PP̃A = PBP̃ . (15)

Since C[s;σ] is a domain and P 6= 0, (15) implies that
BP̃ = P̃A with P̃ 6= 0. Hence B is similar to A.

To prove (c), assume that AP = PB and BQ = QC
for some A,B,C, P,Q ∈ C[s;σ] with P 6= 0 and Q 6= 0.
Then APQ = PBQ = PQC and since C[s;σ] is a domain,
PQ 6= 0. Hence A is similar to C.

In the theorem below we characterize all pairs of polyno-
mials A,B ∈ C[s;σ] such that the polynomial B is either
constant, linear or quadratic (i.e., B = αs2+βs+γ for some
α, β, γ ∈ C) and A is similar to B.

Theorem 4: Let B = αs2 + βs + γ ∈ C[s;σ]. Then for
any polynomial A ∈ C[s;σ] the following conditions are
equivalent.

(i) The polynomial A is similar to the polynomial B.
(ii) A = as2 + bs + c, where a ∈ {α, α} and for some

k ∈ {0, 1}, c = σk(γ) and
(a− σk(α))(c− c) = |β|2 − |b|2. (16)

Proof: (i) ⇒ (ii): Assume (i). Hence there exists a
polynomial P = pns

n + pn−1s
n−1 + · · · + pks

k ∈ C[s;σ]
with pn 6= 0 and pk 6= 0, such that AP = PB. In particular,
the degrees of A and B satisfy degA = degB ≤ 2, and thus
A = as2 + bs + c for some a, b, c ∈ C. Let us observe that
Bsm = smB for any even positive integer m. Thus, from
the equation AP = PB it follows that A(Psm) = (Psm)B
for any even m, and thus A(Psm + P ) = (Psm + P )B as
well. Hence we can assume that n > k + 2. Therefore, we
have

(as2 + bs+ c)(pns
n + pn−1s

n−1 + · · ·+ pks
k)

= (pns
n + pn−1s

n−1 + · · ·+ pks
k)(αs2 + βs+ γ)

(17)

with pn 6= 0, pk 6= 0 and n > k+2. Looking at, respectively,
the sn+2, sk+2, sk+1, sk-coefficients of both sides of (17) we
obtain the following four equations:

apn = pnσ
n(α) (18)

apk + bpk+1 + cpk+2

= pk+2σ
k+2(γ) + pk+1σ

k+1(β) + pkσ
k(α)

(19)

bpk + cpk+1 = pk+1σ
k+1(γ) + pkσ

k(β) (20)

cpk = pkσ
k(γ) (21)

Since pn and pk are both nonzero, (18) and (21) imply that

a = σn(α) ∈ {α, α} and c = σk(γ).
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Since c = σk(γ), it follows that σk+1(γ) = c and
σk+2(γ) = c, and thus (19) and (20) are equivalent to,
respectively,

pk(a− σk(α)) = pk+1σ
k+1(β)− bpk+1 (22)

pk+1(c− c) = pkσ
k(β)− bpk (23)

By conjugating both sides of (23) we obtain

pk+1(c− c) = bpk − pkσk+1(β). (24)

Now by multiplying (22) by c− c and using (23) and (24),
we obtain

pk(a− σk(α))(c− c) = pk(|β|2 − |b|2),

and since pk 6= 0, the desired equation (16) follows. Ob-
viously, if k is even, then σk = σ0, and if k is odd, then
σk = σ1. Thus, in the equations c = σk(γ) and (16), we can
assume that k ∈ {0, 1}.

(ii) ⇒ (i): Assume (ii). To show that the polynomial A is
similar to B, we consider two cases.

Case 1: a = σk(α). Then (16) implies |b| = |β|. We claim
that

there exists v ∈ C \ {0} such that bv = vσk(β). (25)

Indeed, if β = 0, then |b| = |β| = 0, so also b = 0 and we
can put v = 1. Assume β 6= 0 and let v be a square root of
b

σk(β)
, i.e., v ∈ C and v2 = b

σk(β)
. Since

|v|2 =
∣∣∣ b

σk(β)

∣∣∣ = |b|
|σk(β)|

=
|b|
|β|

= 1,

it follows that v
v = v2 and thus v

v = b
σk(β)

, i.e., bv =

vσk(β), which proves (25).
Now, by using (25), for the nonzero polynomial P = vsk

we obtain

AP = (as2 + bs+ c)vsk =
(
σk(α)s2 + bs+ σk(γ)

)
vsk

= vσk(α)sk+2 + bvsk+1 + vσk(γ)sk

= vσk(α)sk+2 + vσk(β)sk+1 + vσk(γ)sk

= vskαs2 + vskβs+ vskγ = vsk(αs2 + βs+ γ)

= PB,

which shows that A is similar to B.
Case 2: a 6= σk(α). Since a ∈ {α, α} =
{σk(α), σk+1(α)}, it follows that a = σk+1(α) and a =
σk+2(α) = σk(α) 6= a. Let

d =
σk+1(β)− b

a− a
and P = sk+1 + dsk.

Then AP = ask+3 + (ad + b)sk+2 + (bd + c)sk+1 + cdsk

and PB = σk+1(α)sk+3 +
(
σk+1(β) + dσk(α)

)
sk+2 +(

σk+1(γ) + dσk(β)
)
sk+1 + dσk(γ)sk.

We show that AP = PB. Since c = σk(γ) and a =
σk+1(α), the sk-coefficients of AP and PB are equal, and so
are the sk+3-coefficients. To show that the sk+2-coefficients
of AP and PB are equal, we show that their difference is
equal to 0:

ad+ b− (σk+1(β) + dσk(α)) = d(a− a) + b− σk+1(β)

= (σk+1(β)− b) + b− σk+1(β) = 0.

To show that also the sk+1-coefficients of AP and PB are
equal, we consider their difference:

bd+ c− (σk+1(γ) + dσk(β)) = (bd− dσk(β)) + (c− c).

Since d = b−σk(β)
a−a , using (16) we obtain

bd− dσk(β) = b
b− σk(β)
a− a

− σk+1(β)− b
a− a

σk(β)

=
bb− σk+1(β)σk(β)

a− a
=
|b|2 − |β|2

a− a
= c− c.

Hence the difference of sk+1-coefficients of AP and PB
is equal to 0, which completes the proof that AP = PB.
Therefore, A is similar to B.

Example 2: Using Theorem 4 it is easy to verify that the
polynomial

A = (5− 2i)s2 + (4 + 5i)s+ 4i ∈ C[s;σ]

is similar to the polynomial

B = (5 + 2i)s2 + (3 + 8i)s+ 4i ∈ C[s;σ].

As an immediate consequence of Theorem 4 we obtain the
following characterizations of polynomials that are similar to
a given polynomial of degree, respectively, 0, 1, or 2.

Corollary 2: Let γ ∈ C. A polynomial A ∈ C[s;σ] is
similar to the polynomial B = γ if and only if A = γ or
A = γ.

Corollary 3: Let β, γ ∈ C with β 6= 0. A polynomial
A ∈ C[s;σ] is similar to the polynomial B = βs+ γ if and
only if A = bs+ c with |b| = |β| and c ∈ {γ, γ}.

Example 3: (cf. [16, Example 3]) As an applica-
tion of Corollary 3, we can see that the polynomial
A = (1+i)s+1 is similar to the polynomial B = 7+17i

13 s+1.

Corollary 4: Let α, β, γ ∈ C with α 6= 0. A polynomial
A ∈ C[s;σ] is similar to the polynomial B = αs2+βs+γ if
and only if A = as2+bs+c, where a ∈ {α, α} and for some
k ∈ {0, 1}, c = σk(γ) and (a− σk(α))(c− c) = |β|2− |b|2.

We make the following remark on similarity of polynomi-
als of degree 4.

Remark 1: Analogously as in the first part of the proof of
Theorem 4 one can show that if a polynomial

A = as4 + bs3 + cs2 + ds+ e ∈ C[s;σ]

is similar to the polynomial

B = αs4 + βs3 + γs2 + δs+ ε ∈ C[s;σ],

then for some k, n ∈ {0, 1} we have

a = σn(α) and (c− σn(γ))(a− a) = |β|2 − |b|2, (26)

and

e = σk(ε) and (c− σk(γ))(e− e) = |δ|2 − |d|2. (27)

Hence (26) and (27) are necessary conditions for A to be
similar to B. These conditions, however, are not sufficient.
Indeed, for A = −is4+i and B = is4+i both the conditions
(26) and (27) are satisfied but, as we show below, A is not
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similar to B. Suppose for a contradiction that the polynomial
A is similar to the polynomial B. Then there exists a
polynomial P = pns

n+pn−1s
n−1+ · · ·+p0 ∈ C[s;σ] with

pn 6= 0 such that AP = PB. Without loss of generality
we can assume that n ≥ 4. By comparing sn+4-coefficients
of AP and PB we obtain −ipn = pnσ

n(i), and thus
−i = σn(i), which implies that n is odd. Hence compar-
ison of sn-coefficients of AP and PB yields i = σn(i).
Thus i = σn(i) = −i, and this contradiction shows that
A = −is4 + i is not similar to B = is4 + i.

Given polynomials A,B ∈ C[s;σ], Theorem 4 character-
izes, in terms of coefficients of A and B, when A is similar to
B in the case where the degree of B is less than 3. We leave
as an open problem to characterize, in terms of coefficients
of A and B, when A is similar to B in the general case, i.e.,
with no assumption on the degree of B (the problem is very
closely related to the questions asked in [16, p. 64025]).

B. Consimilarity

Definition 3: We say that a polynomial A ∈ C[s;σ] is
consimilar to a polynomial B ∈ C[s;σ] if there exists a
nonzero polynomial P ∈ C[s;σ] such that AP = PB.

Theorem 5: For any polynomials A,B ∈ C[s;σ] the
following conditions are equivalent.

(i) A is consimilar to B.
(ii) As is similar to Bs.

(iii) sA is similar to sB.
(iv) sAs is consimilar to sBs.

Proof: Let P ∈ C[s;σ]. Since C[s;σ] is a domain and
Ps = sP , the following equivalences hold

AP = PB ⇔ APs = PBs⇔ (As)P = P (Bs) (28)

AP = PB ⇔ sAP = sPB ⇔ (sA)P = P (sB) (29)

AP =PB ⇔ sAPs=sPBs⇔ (sAs)P =P (sBs) (30)

Now it is clear that conditions (i) and (ii) are equivalent by
(28), (i) and (iii) are equivalent by (29), and (i) and (iv) are
equivalent by (30).

As a consequence of Theorems 3 and 5 we obtain the
following corollary.

Corollary 5: The consimilarity of complex-skew polyno-
mials (as defined in Definition 3) is an equivalence relation.

Proof: Obviously, consimilarity is reflexive. To prove
that it is symmetric, assume that A,B ∈ C[s;σ] and A is
consimilar to B. Then by Theorem 5, As is similar to Bs,
and thus by Theorem 3, Bs is similar to As. Now Theorem 5
implies that B is consimilar to A.

To prove that consimilarity is transitive, assume that
A,B,C ∈ C[s;σ] are such that A is consimilar to B, and
B is consimilar to C. Then Theorem 5 implies that As is
similar to Bs, and Bs is similar to Cs. Hence it follows from
Theorem 3 that As is similar to Cs, and thus by Theorem
5, A is consimilar to C.

By combining Theorem 5 with Corollary 3 we obtain the
following characterization of polynomials that are consimilar
to a given constant polynomial.

Corollary 6: Let β ∈ C. A polynomial A ∈ C[s;σ] is
consimilar to the polynomial B = β if and only if A = b
with |b| = |β|.

The following characterization of polynomials that are
consimilar to a given linear polynomial is an immediate
consequence of Theorem 5 and Corollary 4.

Corollary 7: Let α, β ∈ C with α 6= 0. A polynomial
A ∈ C[s;σ] is consimilar to the polynomial B = αs+ β if
and only if A = as+ b with a ∈ {α, α} and |b| = |β|.

Example 4: (cf. [16, Example 4]) It is an immedi-
ate consequence of Corollary 7 that the polynomial
A = (1 − i)s + 2 is consimilar to the polynomial B =
(1 + i)s+ 2i.

Let Q be the right ring of fractions of the ring C[s;σ]
(i.e., Q is the division ring (C(s),+,~) considered in [16]).
We close this subsection with the following remark on the
consimilarity relation in the ring Q.

Remark 2: Let Q be the right ring of fractions of the
ring C[s;σ]. As in [16], elements of Q are called rational
fractions. Let us recall that according to [16, Definitions 10,
11], a rational fraction A ∈ Q is similar (resp. consimilar) to
a rational fraction B ∈ Q if there exists a nonzero rational
fraction P ∈ Q such that AP = PB (resp. AP = PB). We
claim that

Ps = sP for any P ∈ Q. (31)

Indeed, let P = CD−1, where C,D ∈ C[s;σ] and D 6= 0.
Since obviously Ts = sT for any T ∈ C[s;σ], we obtain
D
−1
s = sD−1 (observe that since D 6= 0, D

−1
and D−1

exist) and Cs = sC, and thus

Ps = (C D
−1

)s = C(D
−1
s) = C(sD−1)

= (Cs)D−1 = (sC)D−1 = s(CD−1) = sP,

which proves (31). Hence the same argument as in the proof
of Theorem 5 shows that for any rational fractions A,B ∈ Q
the following conditions are equivalent:

(i) A is consimilar to B.
(ii) As is similar to Bs.

(iii) sA is similar to sB.
(iv) sAs is consimilar to sBs.

This observation shows that the notions of similarity and
consimilarity (considered in [16]) are, in a sense, parallel.

C. Some further properties of similarity

In this subsection, similarity is meant in the sense of
Definition 1.

As we have already noted, for any polynomial A ∈ C[s;σ]
we have As = sA and thus A is always similar to A. Below
we consider another operator (denoted by hat) on complex-
skew polynomials which for any polynomial A ∈ C[s;σ]
gives a polynomial similar to A.

Definition 4: For a polynomial A =
∑n
i=0 ais

i ∈ C[s;σ]
we denote

Â =

n∑
i=0

(−1)iaisi,

i.e., for every odd (resp. even) i the si-coefficients of Â and
A are opposite in sign (resp. are equal).
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For example, if A = a3s
3 + a2s

2 + a1s + a0, then
Â = −a3s3 + a2s

2 − a1s+ a0.
Parts (a), (b) and (c) of the following lemma show that

the “hat” operator is an automorphism of the ring C[s;σ].

Lemma 8: For any polynomials A,B ∈ C[s;σ] the fol-
lowing equations hold.

(a) ̂̂A = A.

(b) Â+B = Â+ B̂.
(c) ÂB = ÂB̂.
(d) Ai = iÂ.

Proof: (a) and (b) are obvious. To prove (c), let A =∑m
i=0 ais

i and B =
∑n
j=0 bjs

j . Then using (6) we obtain

ÂB̂ =
m∑
i=0

(−1)iaisi ·
n∑
j=0

(−1)jbjsj

=
m∑
i=0

n∑
j=0

(−1)iaiσi
(
(−1)jbj

)
si+j

=
m∑
i=0

n∑
j=0

(−1)i+jaiσi(bj)si+j = ÂB,

which proves (c). Finally, (d) follows from the observation
that, by (5), for any nonnegative integer k we have ski =
σk(i)sk = (−1)kisk.

From Lemma 8 it follows that for any A ∈ C[s;σ] the
polynomial A is similar to Â. We will use Lemma 8 to prove
one more result on similarity of complex-skew polynomials.
For that, we need the following observation.

Let A =
∑n
k=0 aks

k be a complex polynomial. Then
each ak, being a complex number, can be uniquely written
in the form ak = bk+ick, where bk and ck are real numbers.
Hence

A =
n∑
k=0

(bk + ick)s
k =

n∑
k=0

bks
k + i

n∑
k=0

cks
k,

and thus A can be uniquely written in the form A =
A1 + iA2, where A1, A2 are real polynomials (i.e., polyno-
mials with real coefficients). Conversely, if A1 =

∑n
k=0 bks

k

and A2 =
∑n
k=0 cks

k are real polynomials, then

A1 + iA2 =
n∑
k=0

(bk + ick)s
k

is a complex polynomial and thus A1 + iA2 is an element
of the ring C[s;σ].

Theorem 6: For any real polynomials A1, A2, B1, B2 the
following conditions are equivalent in the ring C[s;σ].

(i) A1 + iA2 is similar to B1 + iB2.
(ii) B1 + i B̂2 is similar to Â1 + iA2.

Proof: Obviously (i) holds if and only if there exist real
polynomials P1, P2, not both equal to zero, such that

(A1 + iA2)(P1 + iP2) = (P1 + iP2)(B1 + iB2). (32)

By performing the multiplication on both sides of (32) and
applying Lemma 8(d), we can see that (32) is equivalent to

A1P1 − Â2P2 + i(Â1P2 +A2P1)

= P1B1 − P̂2B2 + i(P̂1B2 + P2B1),

i.e., to the system of equations

A1P1 − Â2P2 = P1B1 − P̂2B2

Â1P2 +A2P1 = P̂1B2 + P2B1.

Since all the polynomials appearing in the second equation of
the system are real, they commute in the ring C[s;σ] and thus
we can rewrite the second equation in the equivalent form

B1P2 +B2P̂1 = P2Â1 + P1A2. (33)

Furthermore, by applying the “hat” operator to both sides of
the first equation of the system and using Lemma 8 we can
see that the first equation is equivalent to the equation

−B̂1P̂1 + B̂2P2 = P̂2A2 − P̂1Â1. (34)

Now it is easy to verify that the system of equations (33)
and (34) is equivalent to the equation

(B1 + i B̂2)(P2 − iP̂1) = (P2 − iP̂1)(Â1 + iA2). (35)

We proved that equations (32) and (35) are equivalent, which
implies that conditions (i) and (ii) are equivalent as well.

VI. CONCLUSION

In this paper, we have shown that the polynomial ring
(C[s],+,~) in the framework of conjugate product, consid-
ered in [14], [16] and [18], is a special case of the known
skew polynomial ring construction. The advantage of this
observation is that known general results of the theory of
rings can be applied to the concrete ring (C[s],+,~). In
particular, the division ring over conjugate product, which
was introduced in [16] as a tool for investigating antilinear
systems, can be obtained via the known ring-theoretic Ore
construction dating from 1930s. We have also shown that the
similarity and consimilarity over conjugate product are par-
allel notions, in the sense that a complex polynomial (resp.
rational fraction) A is consimilar to a complex polynomial
(resp. rational fraction) B if and only if As is similar to
Bs. We have proved that the similarity and consimilarity
over conjugate product are equivalence relations on the set
of complex polynomials. Furthermore, we have characterized
all the complex polynomials which are similar over conjugate
product to a given complex polynomial of degree less than 3,
which gives a partial solution to a problem posed in [16].
We believe that this partial solution will help to solve the
problem in full generality.
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