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Abstract—Interval-valued intuitionistic fuzzy preference re-
lation (IVIFPR) is an appropriate tool for describing the group
decision making (GDM) problems with complex and uncertain
information because of its inclusiveness and flexibility. Based
on the newly defined multiplicative consistency, this paper
investigates an algorithm for the GDM method with IVIFPRs.
Firstly, a novel multiplicative consistency concept is proposed,
which is proved to satisfy an important property: robustness. A
conversion formula is devised to accomplish the multiplicative
consistent IVIFPRs by utilizing the normalized interval-valued
intuitionistic fuzzy (IVIF) weights. Subsequently, a consistency
measure and inconsistent repairing process are put forward to
ensure that every individual IVIFPR is of acceptable multiplica-
tive consistency. Afterward, in the context of minimizing the
deviations between the given IVIFPRs and their corresponding
consistent IVIFPRs, two fractional programming models are
constructed to generate the normalized individual IVIF weights
and collective ones, where the experts are considered as individ-
uals and a group, respectively. Finally, an example is cited and
comparative analyses with previous approaches are conducted
to demonstrate the applicability and validity of the proposed
method.

Index Terms—Group decision making, multiplicative consis-
tency, interval-valued intuitionistic fuzzy preference relation.

I. INTRODUCTION

GROUP decision making (GDM) [1], [2], [3], with the
purpose of inviting decision makers (DMs) to estimate

alternatives then prioritize the optimal one, is utilized in
diverse areas of operations research. Preference relations are
comprehensively applied to the GDM process to express the
preference information[4] of DMs over the alternative set [5],
such as fuzzy preference relation (FPR) [6], multiplicative
preference relation [7], interval-valued fuzzy preference rela-
tion [8] and triangular fuzzy preference relation [9]. Howev-
er, only the membership degree of one alternative to another
can be represented by these preference relations, while the
inherent uncertainty and hesitation are often ignored. To
deal with this issue, Szmidt and Kacprzyk [10] proposed
intuitionistic fuzzy preference relation (IFPR), which used
degrees of membership, non-membership and hesitation to
represent the preferences of DMs for alternatives. Hinduja
and Pandey [11] explored an approach to determine the
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priorities from crisp values in IFPRs. Due to the diversity
of values and goals of group DMs and the complexity in
acquired information, it might be hard for DMs to give
expression of preferences for a certain alternative or attribute
by exact numbers. Thus, Xu and Chen [12] put forward the
conception of interval-valued intuitionistic fuzzy preference
relation (IVIFPR), in which the degrees of membership,
non-membership and hesitation were presented by interval-
valued intuitionistic fuzzy values (IVIFVs) [13], [14]. When
describing uncertain preferences, IVIFPRs [15], [16], [17]
are often more effective, practical and comprehensive.

In the context of GDM environment, exploring the meth-
ods with IVIFPRs has been focused by the worldwide schol-
ars. Yang et al. [18] yielded the priorities from the IVIFPR by
building interval-valued optimal priority optimization model,
and established the corresponding algorithm flow of IVIF
analytic network process. Zhou et al. [19] solved GDM
with IVIFPRs through combining the fuzzy cooperative
game method with the continuous IVIF ordered weighted
averaging operator. Mohammadi and Makui [20] integrated
Multi-attribute GDM with evidential reasoning methodology,
then based on IVIFPRs, they proposed a new approach
for supporting such decision situation. To rank alternatives,
Wu and Chiclana [21] defined the IVIF continuous OWA
(IVIF-COWA) operator, and gave an original score function
for IVIFPRs. Different from Wu and Chiclana [21], the
ranking order of alternatives defined by Wang et al. [22] was
generated according to the proposed order relation of IVIFVs
which were obtained by defining the possibility degree and
divergence degree.

Recently, consistency analysis is an area of research value
in GDM with IVIFPRs. Due to the complexity of GDM
problems, DMs often cannot give a completely consistent
judgment, and then cannot use priority weights to obtain
scientific results. Therefore, it is of vital importance to pay
attention to the defining, checking and repairing processes of
the consistency. The current research is mainly divided into
additive consistency [23], [24] and multiplicative consistency
[25], [26], [27], we concentrate on the latter here. Based
on the consistency, Li et al. [28] introduced two algorithms
for GDM problems to deduce the optimal choice. Xu [29]
defined IFPR, consistent IFPR and acceptable IFPR, and
analyzed their properties. According to the definition of
multiplicative consistency in [30], Xu and Liao [31] investi-
gated a method to modify the inconsistent IFPRs. However,
Liao and Xu [32] indicated the defects of the multiplicative
consistency concept in [31], and proposed a new conception
of multiplicative consistent IFPR. Subsequently, the multi-
plicative consistency in [32] is modified via a programming
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model by Xu et al. [33]. Based on multiplicative consistency,
Li et al. [34] devised two techniques for multi-criteria GDM
with IFPRs. Wan et al. [35] defined the consistency of
IVIFPR. Liao et al. [36] described different kinds of mul-
tiplicative consistent IVIFPRs, and explored a multiplicative
consistency improving procedure. Wan et al. [37] pointed
out that when an IVIFPR degenerated into an IFPR, the
definition of Liao et al. [36] would be unreasonable. Then
a new acceptable multiplicative consistency was introduced,
and a new algorithm was designed to repair inconsistent
IVIFPRs. However, Wan et al. [26] emphasize that the
parameters of iterative algorithm are hard to determine during
the consistency repairing process in [37]. Furthermore, the
consistency definition given by Wan et al. [37] might be
unreliable because it did not satisfy robustness [38].

Based on the limitations mentioned above, we initiate a
novel multiplicative consistency concept and put forward an
approach for dealing with GDM with IVIFPRs. The major
innovations are listed as follows:

1) A new multiplicative consistency definition of IVIFPRs
is introduced which is confirmed to overcome the limitations
in [36] and [37], i.e., the satisfaction of robustness can be
proved, furthermore, when the IVIFPRs degenerate to IFPRs
or even FPRs, this new definition is still valid.

2) A new normalized IVIF weight concept is put forward
and a conversion formula is developed to transform the
priority weights into consistent IVIFPRs. Subsequently, con-
sidering the minimized deviations of the given IVIFPRs and
the corresponding consistent ones, two new programming
models are constructed to derive normalized IVIF weights
from aspects of individual expert and an expert group.

3) The consistency measure is calculated between IVIFPRs
given by experts and the derived multiplicative consistent
IVIFPRs to choose the inconsistent ones. Inspired by Liao
et al.’s repairing process of IFPR [39], an inconsistency
repairing process is presented to transform IVIFPRs into
acceptable multiplicative consistent IVIFPRs.

4) Considering experts as individuals and a group, respec-
tively, two fractional programming models are built to retrive
the normalized individual and collective IVIF weights.

The rest parts is designed below: Section 2 briefly reflects
on the relevant conceptions of IFPRs and IVIFPRs and
the ranking method of interval-valued intuitionistic fuzzy
numbers (IVIFNs). In section 3, we describe the definitions
of multiplicative consistency characterized in [36] and [37]
and analyzes their limitations. Later, a multiplicative con-
sistency of IVIFPRs is newly introduced. Then we obtain
the normalized IVIF weights based on this innovative defini-
tion. Afterwards, a transformation formula is introduced, by
which the corresponding multiplicative consistent IVIFPRs
are composed. With respect to Section 4, we propose consis-
tency checking and inconsistency repairing procedure for an
IVIFPR. In Section 5, considering all experts as a group, we
establish a programming model to gain the collective IVIF
weights, and introduce a specific algorithm process to solve
GDM problems. Section 6 uses a mathematical example to
expound the practicability and highlights the advantages of
this method by comparing it with methods in Wan [37] and
Liao [36]. The paper ends with the conclusion in Section 7.

II. PRELIMINARIES

In order to facilitate our introduction, let us first do some
reviews about the related concepts.

Definition 1: ([29]) An IFPR on the discrete set X =
{x1, x2, · · · , xn} is denoted by a preference matrix R =(
rij
)
n×n, where rij = 〈(xi, xj), µ(xi, xj), ν(xi, xj)〉 (i, j =

1, 2, · · · , n). Let rij = (µij , νij), where µij indicates the
degree to which xi is preferred to xj , νij represents the
degree to which xi is not preferred to xj . Furthermore, µij
and νij satisfy the following conditions:
µij , νij ∈ [0, 1], 0 ≤ µij + νij ≤ 1, µij = νji, νij =

µji, µii = νii = 0.5 for all i, j = 1, 2, · · · , n.
Definition 2: ([32]) An IFPR R = (rij)n×n with rij =

(µij , νij) on the set X is called multiplicative consistent if
it satisfies the following transiivity:

µij · µjk · µki = νij · νjk · νki, (1)

for all i, j, k = 1, 2, · · · , n.
Definition 3: ([12]) An IVIFPR on the set X is denoted

by a preference matrix R̃ =
(
r̃ij
)
n×n ⊂ X × X , where

r̃ij = 〈(xi, xj), µ̃(xi, xj), ν̃(xi, xj)〉 (i, j = 1, 2, · · · , n). For
convenience, let r̃ij = (µ̃ij , ν̃ij), where µ̃ij =

[
µ
ij
, µij

]
represents the degree range to which xi is preferred to xj ,
ν̃ij =

[
νij , νij

]
indicates the degree range to which the

object xi is not preferred to xj . Moreover, µ̃ij and ν̃ij fulfill
the conditions:
µ̃ij =

[
µ
ij
, µij

]
⊆ [0, 1], ν̃ij =

[
νij , νij

]
⊆ [0, 1], 0 ≤

µij + νij ≤ 1, µ̃ij = ν̃ji, ν̃ij = µ̃ji, µ̃ii = ν̃ii = [0.5, 0.5],
for all i, j = 1, 2, · · · , n.

To rank IVIFNs, the score function and accuracy function
given by Xu[40] are shown as follows.

Definition 4: ([40]) Let β̃ = ([a, b], [c, d]) be an IVIFN,
then

s(β̃) =
1

2
(a− c+ b− d) (2)

and

h(β̃) =
1

2
(a+ c+ b+ d) (3)

are called the score function and accuracy function of β̃,
respectively.

Let β̃1 and β̃2 be any two IVIFNs. Based on above two
functions, the order relations between IVIFNs are demon-
strated as follows [40].

If s(β̃1) > s(β̃2), then β̃1 > β̃2.
If s(β̃1) = s(β̃2), and

if h(β̃1) > h(β̃2), then β̃1 > β̃2;
if h(β̃1) = h(β̃2), then β̃1 = β̃2.

III. MULTIPLICATIVE CONSISTENCY OF IVIFPRS

A. A New Multiplicative Consistency Definition of IVIFPRs

In the evaluation procedure through decision making, it
may be challenging for a DM to give the crisp numbers
of membership degrees about alternatives. This is owning
to the inadequate information and imprecise evaluation of
the preference degree between alternatives. In this situation,
the pairwise comparison judgments can be appropriately
presented by IVIFNs, then an IVIFPR can be constituted.

Similar to IFPR, due to the lack of consistency in IVIFPRs,
irrational conclusions can be drawn. Liao et al.[36] and
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Wan et al.[37] characterized the multiplicative consistency
of IVIFPRs, respectively.

Definition 5: ([36]) The IVIFPR R̃ =
(
r̃ij
)
n×n is multi-

plicative consistent if

µ
ij

=0,
(
µ
ik
, µ
kj

)
∈{(0,1),(1,0)}

µ
ik
µ
kj

µ
ik
µ
kj
+(1−µ

ik
)(1−µ

kj
), otherwise

,

µ̄ij ={
0,

(
µik, µkj

)
∈{(0,1), (1,0)}

µikµkj
µikµkj+(1−µik)(1−µkj)

, otherwise
,

νij ={
0,

(
νik, νkj

)
∈{(0,1), (1,0)}

νikνkj
νikνkj+(1−νik)(1−νkj)

, otherwise
,

ν̄ij ={
0,

(
νik, νkj

)
∈{(0,1), (1,0)}

νikνkj
νikνkj+(1−νik)(1−νkj) , otherwise

,

(4)

for all i < k < j.
Definition 6: ([37]) An IVIFPR R̃ =

((
µ̃ij , ν̃ij

))
n×n

with µ̃ij =
[
µ
ij
, µij

]
and ν̃ij =

[
νij , νij

]
is multiplicative

consistent if

µ
ij
· µ

jk
· µki = νij · νjk · νki,

µij · µjk · µki = νij · νjk · νki,
(5)

for all i, j, k = 1, 2, · · · , n.
Remark 1: ([38]) Definition 5 indicates that Eq. (4) is a

development of the multiplicative consistency conception in
Tanino [41]. Note that Tanino’s multiplicative consistency
conception has the most important property: robustness,
while Definition 5 does not satisfy it. Definition 6 has the
same drawback as Definition 5, which means that consistency
defined by Wan et al. [37] is also lack of robustness. That
is to say, contradictory consistency conclusions might be
accessed by different comparison orders.

For more details, one can see the Example 2 and Example
3 in Meng et al. [38]

Since the above two descriptions in [36] and [37] do
not meet the robust condition [41], a novel multiplicative
consistency is depicted below.

Definition 7: An IVIFPR R̃ =
(
r̃ij
)
n×n =((

µ̃ij , ν̃ij
))
n×n with µ̃ij =

[
µ
ij
, µij

]
and ν̃ij =

[
νij , νij

]
is

called multiplicative consistent if the following multiplicative
transitivity satisfies:

µ
ij
·µij ·µjk ·µjk ·µki ·µki=νij ·νij ·νjk ·νjk ·νki ·νki, (6)

for all i, j, k = 1, 2, · · · , n.
In particular, if µ

ij
= µij = µij and νij = νij = νij , R̃

will reduce to an IFPR R =
(
rij
)
n×n with rij =

(
µij , νij

)
.

Then the multiplicative transitivity reduces to Eq. (1). Fur-
thermore, if µij + νij = 1, R reduces to a FPR.

Then we will check the robustness of Definition 7.
Let R̃ι =

(
r̃ιij
)
n×n =

((
µ̃ιij , ν̃

ι
ij

))
n×n, where

µ̃ιij =
[
µι
ij
, µιij

]
=
[
µ
ι(i)ι(j)

, µι(i)ι(j)
]
, ν̃ιij =

[
νιij , ν

ι
ij

]
=[

νι(i)ι(j), νι(i)ι(j)
]
, and ι is a permutation of {1, 2, · · · , n}.

Set ι(i) = i′, ι(j) = j′, then µ̃ιij =
[
µ
i′j′
, µi′j′

]
, ν̃ιij =[

νi′j′ , νi′j′
]
.

Theorem 8: The IVIFPR R̃ is multiplicative consistent if
and only if there exists a multiplicative consistent R̃ι for any
permutation ι.

Proof: Necessity. Presume that R̃ is multiplicative con-
sistent, according to Definition 7, we have µ

ij
· µij · µjk ·

µjk · µki · µki = νij · νij · νjk · νjk · νki · νki, for all
i, j, k = 1, 2, · · · , n. Therefore, µι

ij
·µιij ·µιjk ·µ

ι
jk ·µιki ·µ

ι
ki =

µ
i′j′
· µi′j′ · µj′k′ · µj′k′ · µk′i′ · µk′i′ = νi′j′ · νi′j′ · νj′k′ ·

νj′k′ · νk′i′ · νk′i′ = νιij · νιij · νιjk · νιjk · νιki · νιki, for all
i, j, k = 1, 2, · · · , n. Through Definition 7, we can get R̃ι is
multiplicative consistent.

Sufficiency. A multiplicative consistent R̃ι is equal to µι
ij
·

µιij · µιjk · µ
ι
jk · µιki · µ

ι
ki = νιij · νιij · νιjk · νιjk · νιki · νιki, i.e.,

µ
i′j′
· µi′j′ · µj′k′ · µj′k′ · µk′i′ · µk′i′ = νi′j′ · νi′j′ · νj′k′ ·

νj′k′ · νk′i′ · νk′i′ . In accordance with the Definition 7, R̃ is
multiplicative consistent.

B. Deriving the IVIF Weights Based on the Multiplicative
Consistency

During the decision making with IVIFPR, it is of vital
importance to obtain the priority weights. In this part, we
will concentrate on this theme and come up with an approach
for generating the priority weight vector of IVIFPRs under
the condition of multiplicative consistency.

Let $̃ = ($̃1, $̃2, · · · , $̃n)T be an IVIF prior-
ity weight vector of the IVIFPR R̃, where $̃i =(
$̃µ
i , $̃

ν
i

)
=
([
$µ
i , $

µ
i

]
,
[
$ν
i , $

ν
i

])
is an IVIFN, which

satisfies
[
$µ
i , $

µ
i

]
⊆ [0, 1],

[
$ν
i , $

ν
i

]
⊆ [0, 1] and $µ

i +
$ν
i ≤ 1 for i = 1, 2, · · · , n.
We first introduce the definition of normalized IVIF pri-

ority weights as:
Definition 9: An IVIF priority weight vector $̃ =

($̃1, $̃2, · · · , $̃n)T with $̃i =
([
$µ
i , $

µ
i

]
,
[
$ν
i , $

ν
i

])
,[

$µ
i , $

µ
i

]
⊆ [0, 1],

[
$ν
i , $

ν
i

]
⊆ [0, 1] and $µ

i + $ν
i ≤ 1

is said to be normalized if it satisfies
n∑

j=1,j 6=i

$µ
j ≤ $

ν
i , $µ

i + n− 2 ≥
n∑

j=1,j 6=i

$ν
j (7)

for i = 1, 2, · · · , n.
Influenced by the multiplicative consistent IFPR defined

by [32] and Eq. (6), we confirm the multiplicative consistent
IVIFPR.

Assume that
r̃ij =

(
µ̃ij , ν̃ij

)
=


([0.5, 0.5], [0.5, 0.5]), if i = j( [

$µi
2−$νi−$νj

,
$µi

2−$νi−$νj

]
,[

$µj
2−$νi−$νj

,
$µj

2−$νi−$νj

] )
if i 6= j

(8)

where
[
$µ
i , $

µ
i

]
⊆ [0, 1],

[
$ν
i , $

ν
i

]
⊆ [0, 1], $µ

i +$ν
i ≤ 1,∑n

j=1,j 6=i$
µ
j ≤ $ν

i , and $µ
i + n− 2 ≥

∑n
j=1,j 6=i$

ν
j (i =

1, 2, · · · , n). Then we can obtain:
Theorem 10: R̃ =

(
r̃ij
)
n×n is an IVIFPR if all r̃ij(i, j =

1, 2, · · · , n) are represented as in Eq. (8).
Proof: Obviously, µ̃ij = ν̃ji for i, j = 1, 2, · · · , n. Since[

$µ
i , $

µ
i

]
⊆ [0, 1],

[
$ν
i , $

ν
i

]
⊆ [0, 1], and $µ

i +$ν
i ≤ 1, it

follows that $µi
2−$νi−$νj

+
$µj

2−$νi−$νj
≤ $µi

$νi+$
ν
j

+
$µj

$νi+$
ν
j

= 1.
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According to Definition 3, R̃ =
(
r̃ij
)
n×n is an IVIFPR,

then the proof is completed.
Theorem 11: The IVIFPR R̃ =

(
r̃ij
)
n×n is multiplicative

consistent, where the elements r̃ij(i, j = 1, 2, · · · , n) are
identified as in Eq. (8).

Proof: Since Eq. (6) is equal to

µ
ij
·µij ·µjk ·µjk ·µki ·µki=νij ·νij ·νjk ·νjk ·νki ·νki,

where i < j < k, then from Eq. (8), we have

µ
ij
· µij · µjk · µjk · µki · µki

=
$µ
i

2−$ν
i −$ν

j

· $µ
i

2−$ν
i −$ν

j

·
$µ
j

2−$ν
j −$ν

k

·
$µ
j

2−$ν
j −$ν

k

·
$µ
k

2−$ν
k −$ν

i

·
$µ
k

2−$ν
k −$ν

i

,

νij · νij · νjk · νjk · νki · νki

=
$µ
j

2−$ν
i −$ν

j

·
$µ
j

2−$ν
i −$ν

j

·
$µ
k

2−$ν
j −$ν

k

·
$µ
k

2−$ν
j −$ν

k

· $µ
i

2−$ν
k −$ν

i

· $µ
i

2−$ν
k −$ν

i

.

It is obvious that µ
ij
· µij · µjk · µjk · µki · µki = νij · νij ·

νjk · νjk · νki · νki, which satisfies Eq. (6).
Especially, when i = j, which equals µ

ij
= µij = 0.5,

νij = νij = 0.5, then

µ
ij
· µij · µjk · µjk · µki · µki

= 0.25 ·
$µ
j

2−$ν
j −$ν

k

·
$µ
j

2−$ν
j −$ν

k

·
$µ
k

2−$ν
k −$ν

i

·
$µ
k

2−$ν
k −$ν

i

= 0.25 ·
$µ
k

2−$ν
j −$ν

k

·
$µ
k

2−$ν
j −$ν

k

· $µ
i

2−$ν
k −$ν

i

· $µ
i

2−$ν
k −$ν

i

= νij · νij · νjk · νjk · νki · νki,

which also satisfies Eq. (6). Similarly, Eq. (6) still holds when
j = k or k = i.

Consequently, the IVIFPR R̃ =
(
r̃ij
)
n×n defined as in

Eq. (8) fulfills the multiplicative consistency in Definition 7,
then the proof is completed.

Note that if wµi = $µ
i = $µ

i , $ν
i = $ν

i = $ν
i ,

i.e., all IVIF weights are degraded to intuitionistic fuzzy
weights, then R̃ reduces to an IFPR R, and r̃ij reduces to
rij = (µij , νij), where µij =

$µi
2−$νi −$νj

, νij =
$µj

2−$νi −$νj
.

Moreover, the multiplicative transitivity reduces to Eq. (1).
Corollary 1: R̃∗ =

(
r̃∗ij
)
n×n is called a multiplicative

consistent IVIFPR if there is a normalized IVIF priority
weight vector $̃ = ($̃1, $̃2, · · · , $̃n)T , which satisfies

r̃∗ij =
(
µ̃∗ij , ν̃

∗
ij

)
=


([0.5, 0.5], [0.5, 0.5]), if i = j( [

$µi
2−$νi−$νj

,
$µi

2−$νi−$νj

]
,[

$µj
2−$νi−$νj

,
$µj

2−$νi−$νj

] )
if i 6= j

(9)

where
[
$µ
i , $

µ
i

]
⊆ [0, 1],

[
$ν
i , $

ν
i

]
⊆ [0, 1], $µ

i +$ν
i ≤ 1,∑n

j=1,j 6=i$
µ
j ≤ $ν

i , and $µ
i + n− 2 ≥

∑n
j=1,j 6=i$

ν
j (i =

1, 2, · · · , n), then R̃∗ is called to be multiplicative consistent.
In order to access reasonable results, the IVIFPRs giv-

en by experts are supposed to be multiplicative consistent
then denoted as in Corollary 1. However, it may be too
difficult for experts to establish such an IVIFPR in actu-
al decision making, especially when there are too many
alternatives. Therefore, the smallest deviation between an
IVIFPR and its corresponding consistent IVIFPR is request-
ed. Inspired by Corollary 1, a novel method is exploited
to deduce the normalized priority weights for an IVIFPR.
Let R̃(h) =

(
r̃
(h)
ij

)
n×n be an IVIFPR given by expert

Eh(h = 1, 2, · · · , s), the deviation variables are indicated
as follows:

ϑ
(h)
ij =

$µ
i

2−$ν
i −$ν

j

− µ(h)
ij
, (10)

ϑ
(h)

ij =
$µ
i

2−$ν
i −$ν

j

− µ(h)
ij , (11)

ζ(h)
ij

=
$µ
j

2−$ν
i −$ν

j

− ν(h)ij , (12)

ζ
(h)

ij =
$µ
j

2−$ν
i −$ν

j

− ν(h)ij , (13)

where i, j = 1, 2, · · · , n; i 6= j, h = 1, 2, · · · , s.
For the propose of producing more exact results, the

deviations should be as small as possible. Then we obtain
the following objective function for the kth expert:

Min Z =

n∑
i=1

n∑
j=1

(|ϑ(h)ij |+ |ϑ
(h)

ij |+ |ξ
(h)

ij
|+ |ζ(h)ij |), (14)

where k = 1, 2, · · · , s.
Considering µ

ij
= νji, µij = νji, νij = µ

ji
, νij = µji,

and ϑ(h)ij = ζ(h)
ji

, ϑ
(h)

ij = ζ
(h)

ji , Eq. (14) is equivalent to:

Min Z =
n−1∑
i=1

n∑
j=i+1

(|ϑ(h)ij |+ |ϑ
(h)

ij |+ |ζ
(h)

ij
|+ |ζ(h)ij |), (15)

where h = 1, 2, · · · , s.
Let ϑ(h)+ij =

|ϑ(h)
ij |+ϑ

(h)
ij

2 , ϑ(h)−ij =
|ϑ(h)
ij |−ϑ

(h)
ij

2 , ϑ
(h)+

ij =
|ϑ(h)
ij |+ϑ

(h)
ij

2 , ϑ
(h)−
ij =

|ϑ(h)
ij |−ϑ

(h)
ij

2 , ζ(h)+
ij

=
|ζ(h)
ij
|+ζ(h)

ij

2 ,

ζ(h)−
ij

=
|ζ(h)
ij
|−ζ(h)

ij

2 , ζ
(h)+

ij =
|ζ(h)ij |+ζ

(h)
ij

2 , ζ
(h)−
ij =

|ζ(h)ij |−ζ
(h)
ij

2 ,

then ϑ
(h)
ij = ϑ

(h)+
ij − ϑ

(h)−
ij , |ϑ(h)ij | = ϑ

(h)+
ij + ϑ

(h)−
ij ,

ϑ
(h)

ij = ϑ
(h)+

ij − ϑ
(h)−
ij , |ϑ(h)ij | = ϑ

(h)+

ij + ϑ
(h)−
ij , ζ(h)

ij
=

ζ(h)+
ij
−ζ(h)−

ij
, |ζ(h)

ij
| = ζ(h)+

ij
+ζ(h)−

ij
, ζ

(h)

ij = ζ
(h)+

ij −ζ(h)−ij ,

|ζ(h)ij | = ζ
(h)+

ij + ζ
(h)−
ij , where ϑ

(h)+
ij ≥0, ϑ(h)−ij ≥0,

ϑ
(h)+

ij ≥0, ϑ
(k)−
ij ≥0, ζ(h)+

ij
≥0, ζ(h)−

ij
≥0, ζ

(h)+

ij ≥0,

ζ
(h)−
ij ≥0, ϑ(h)+ij ·ϑ(h)−ij =0, ϑ

(h)+

ij ·ϑ(h)−ij =0, ζ(h)+
ij
· ζ(h)−
ij

=0,

and ζ
(h)+

ij · ζ(h)−ij =0. Thus, the fractional Model 1 composed
for the hth expert is established.

We solve Model 1 by using LINGO. The optimal solution
f∗ and the normalized IVIF priority weighs are soon gener-
ated. If f∗ = 0, the IVIFPR R̃(h) is multiplicative consistent,
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Model 1 Min f =

n−1∑
i=1

n∑
j=i+1

(ϑ
(h)+
ij + ϑ

(h)−
ij + ϑ

(h)+
ij + ϑ

(h)−
ij + ζ(h)+

ij
+ ζ(h)−

ij
+ ζ

(h)+

ij + ζ
(h)−
ij )

s.t.



$
µ
i

2−$νi −$
ν
j
− µ(h)

ij
− ϑ

(h)+
ij + ϑ

(h)−
ij = 0, i, j = 1, 2, · · · , n; i < j; h = 1, 2, · · · , s

$
µ
i

2−$νi −$
ν
j
− µ

(h)
ij − ϑ

(h)+
ij + ϑ

(h)−
ij = 0, i, j = 1, 2, · · · , n; i < j; h = 1, 2, · · · , s

$
µ
j

2−$νi −$
ν
j
− ν

(h)
ij − ζ(h)+

ij
+ ζ(h)−

ij
= 0, i, j = 1, 2, · · · , n; i < j; h = 1, 2, · · · , s

$
µ
j

2−$νi −$
ν
j
− ν

(h)
ij − ζ

(h)+

ij + ζ
(h)−
ij = 0, i, j = 1, 2, · · · , n; i < j; h = 1, 2, · · · , s[

$µ
i , $

µ
i

]
⊆ [0, 1],

[
$ν
i , $

ν
i

]
⊆ [0, 1], $µ

i +$ν
i ≤ 1, i = 1, 2, · · · , n∑n

j=1,j 6=i$
µ
j ≤ $ν

i ,
∑n
j=1,j 6=i$

ν
j ≤ $µ

i + n− 2, i = 1, 2, · · · , n
ϑ
(h)+
ij , ϑ

(h)−
ij , ϑ

(h)+
ij , ϑ

(h)−
ij , ζ(h)+

ij
, ζ(h)−

ij
, ζ

(h)+

ij , ζ
(h)−
ij ≥ 0, i, j = 1, 2, · · · , n; i < j; h = 1, 2, · · · , s

ϑ
(h)+
ij ·ϑ(h)−

ij = 0, ϑ
(h)+
ij ·ϑ(h)−

ij = 0, ζ(h)+
ij

·ζ(h)−
ij

= 0, ζ
(h)+

ij ·ζ(h)−ij = 0, i, j=1, 2,· · ·,n; i < j; h=1,2,· · · ,s

additionally, the yielded normalized IVIF priority weights are
rational.

IV. CONSISTENCY CHECKING AND INCONSISTENCY
REPAIRING PROCESS FOR IVIFPRS

Under the consideration of various problems that may be
encountered in decision making and the limitations of expert-
s’ knowledge, completely multiplicative consistent IVIFPRs
may be extremely hard to be established. Inspired from the
acceptable multiplicative consistent IFPR [42], we define the
acceptable multiplicative consistent IVIFPR.

Definition 12: R̃ =
(
r̃ij
)
n×n =

((
µ̃ij , ν̃ij

))
n×n (i, j =

1, 2, · · · , n) is called an acceptable multiplicative consistent
IVIFPR if

d
(
R̃, R̃∗

)
≤ 1− α. (16)

α is the consistency threshold, d
(
R̃, R̃∗

)
represents the

distance measure between R̃ and its corresponding multi-
plicative consistent IVIFPR R̃∗, which can be counted by

d
(
R̃, R̃∗

)
=

1

2n(n− 1)

n−1∑
i=1

n∑
j=i+1

(|µ
ij
− µ∗

ij
|

+ |µij − µ∗ij |+ |νij − ν∗ij |+ |νij − ν∗ij |).
(17)

In the course of Eq. (17), the consistency index is intro-
duced below.

Definition 13: Let R̃ =
(
r̃ij
)
n×n be an IVIFPR, where

r̃ij =
(
µ̃ij , ν̃ij

)
=
([
µ
ij
, µij

]
,
[
νij , νij

])
, i, j = 1, 2, · · · , n.

The consistency measure CR̃ of R̃ satisfies

CR̃ = 1− 1

2n(n− 1)

n−1∑
i=1

n∑
j=i+1

(|µ
ij
− µ∗

ij
|

+ |µij − µ∗ij |+ |νij − ν∗ij |+ |νij − ν∗ij |).

(18)

Note that R̃∗ is the corresponding multiplicative consistent
IVIFPR of R̃ generated by Eq. (9).

Hence, according to Eq. (9) and Eq. (18), the consistency
measure can be computed for the IVIFPR R̃.

Taking the little possibility for developing a perfectly
consistent IVIFPR into account, the experts should also give
a threshold α for the consistency degree, which is used to
judge whether the IVIFPRs are acceptable consistent. If yes,
proceed to the subsequent steps, otherwise repair IVIFPRs

until they are of acceptable consistency. The repairing pro-
cess for IVIFPRs is planned as follows.

Let t be the iteration times and ε be the step size, where
0 ≤ tε ≤ 1. The inconsistency IVIFPR R̃t =

(
r̃tij
)
n×n with

CR̃t < α can be transformed into R̃t+1 =
(
r̃t+1
ij

)
n×n by the

application of the iterative formulas below:

µt+1
ij

= (µt
ij

)1−tε · (µt∗
ij

)tε, (19)

µt+1
ij = (µtij)

1−tε · (µt∗ij )tε, (20)

νt+1
ij = (νtij)

1−tε · (νt∗ij )tε, (21)

νt+1
ij = (νtij)

1−tε · (νt∗ij )tε, (22)

where R̃t∗ =
(
r̃t∗ij
)
n×n =

(
µ̃t∗ij , ν̃

t∗
ij

)
n×n being the corre-

sponding multiplicative consistent IVIFPR of R̃t generated
by Eq. (9), i, j = 1, 2, · · · , n.

Theorem 14: The iteration process using Eqs. (19) - (22)
is convergent.

Proof: We complete the iteration when the repaired
IVIFPR R̃t meets acceptable consistency, i.e., CR̃t ≥ α.
Let γ = tε, then γ ∈ [0, 1] under the condition that
0 ≤ tε ≤ 1. Suppose M to be the maximum iteration number
and step size ε = 1/M , according to Eqs. (19) - (22), after
t = M iterations of calculation, we can yield µt+1

ij
= µt∗

ij
,

µt+1
ij = µt∗ij , νt+1

ij = νt∗ij and νt+1
ij = νt∗ij , i.e., R̃t+1 = R̃t∗.

Since R̃t∗ is multiplicative consistent, R̃t+1 should have the
same property. Therefore, the iteration process is convergent.

V. FRACTIONAL PROGRAMMING MODEL AND THE
PROCEDURE FOR INTERVAL-VALUED INTUITIONISTIC

FUZZY GDM

A. Fractional Programming Model for Interval-valued Intu-
itionistic Fuzzy GDM

Suppose in a GDM problem with IVIFPRs, P =
{P1, P2, · · · , Pn} represents a set of alternatives, E =
{E1, E2, · · · , Es} represents the experts set and λ =
(λ1, λ2, · · · , λs)T is the weight vector of the experts, with
the conditions that λh ≥ 0 and

∑s
h=1 λh = 1. After pairwise

comparisons of alternatives, every expert can accomplish an
IVIFPR R̃(h) =

(
r̃
(h)
ij

)
n×n(h = 1, 2, · · · , s).

Considering the original IVIFPRs may not be perfectly
consistent, the overall IVIF priority weights $̃1, $̃2, · · · , $̃n
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are used to establish a multiplicative consistent IVIFPR with
Eq. (9). Inspired by Model 1, a fractional programming mod-
el will be constructed to identify the normalized collective
IVIF priority weights $̃1, $̃2, · · · , $̃n with treating experts
as a group. That is to say, the minimum deviations should
exist between each initial IVIFPR R̃(h) given by the expert
Eh(h = 1, 2, · · · , s) and the corresponding multiplicative
consistent IVIFPR R̃. Thus, the overall deviation between
R̃(h) and R̃ can be denoted as follows:

Min Z=
s∑

h=1

n−1∑
i=1

n∑
j=i+1

λh(|ϑ(h)ij |+|ϑ
(h)

ij |+|ζ
(h)

ij
|+|ζ(h)ij |). (23)

Similarly, Eq. (23) is identical to

Min Z=
s∑

h=1

n−1∑
i=1

n∑
j=i+1

λh(ϑ
(h)+
ij +ϑ

(h)−
ij +ϑ

(h)+

ij +ϑ
(h)−
ij

+ ζ(h)+
ij

+ ζ(h)−
ij

+ ζ
(h)+

ij + ζ
(h)−
ij ),

(24)

for i, j = 1, 2, · · · , n; i < j; h = 1, 2, · · · , s. Then, Model
2 can be established.

For the equation $µi
2−$νi−$νj

− µ(h)
ij
− ϑ(h)+ij + ϑ

(h)−
ij = 0,,

let the both sides multiply λh, it yields

$µ
i

2−$ν
i −$ν

j

λh−λhµ(h)
ij
−λhϑ(h)+ij +λhϑ

(h)−
ij = 0. (25)

Since
∑s
h=1 λh = 1, summing all the s equations, we can

obtain

$µ
i

2−$ν
i −$ν

j

−
s∑

h=1

λhµ
(h)
ij
−

s∑
h=1

λhϑ
(h)+
ij +

s∑
h=1

λhϑ
(h)−
ij = 0.

Similarly,

$µ
i

2−$ν
i −$ν

j

−
s∑

h=1

λhµ
(h)
ij −

s∑
h=1

λhϑ
(h)+

ij +
s∑

h=1

λhϑ
(h)−
ij = 0,

$µ
j

2−$ν
i −$ν

j

−
s∑

h=1

λhν
(h)
ij −

s∑
h=1

λhζ
(h)+

ij
+

s∑
h=1

λhζ
(h)−
ij

= 0,

$µ
j

2−$ν
i −$ν

j

−
s∑

h=1

λhν
(h)
ij −

s∑
h=1

λhζ
(h)+

ij +
s∑

h=1

λhζ
(h)−
ij = 0.

Let ϑ−ij =
∑s
h=1 λhϑ

(h)−
ij , ϑ+ij =

∑s
h=1 λhϑ

(h)+
ij ,

ϑ
−
ij =

∑s
h=1 λhϑ

(h)−
ij , ϑ

+

ij =
∑s
h=1 λhϑ

(h)+

ij ,
ζ−
ij

=
∑s
h=1 λhζ

(h)−
ij

, ζ+
ij

=
∑s
h=1 λhζ

(h)+

ij
,

ζ
−
ij =

∑s
h=1 λhζ

(h)−
ij , and ζ

+

ij =
∑s
h=1 λhζ

(h)+

ij . Then,
Model 2 can be rewritten as Model 3.

Utilizing LINGO, we solve the model and yield the overall
IVIF priority weights $̃i =

([
$µ
i , $

µ
i

]
,
[
$ν
i , $

ν
i

])
(i =

1, 2, · · · , n). The ranking order can be further derived.

B. Procedure For GDM with IVIFPRs

Based on all the above analyses, a step by step procedure
for GDM with IVIFPRs is described as follows.

Algorithm:
Step 1: Invite an expert group E = {E1, E2,· · ·, Eh,

· · ·, Es} to give their preferences over alternatives Pi(i =
1, 2, · · · , n). The weighting vector of experts is λ =
(λ1, λ2, · · · , λs)T with λh > 0, (h = 1, 2, · · · , s), and

∑s
h=1 λh = 1. The consistency threshold α is determined

in advance by experts and DMs. Let R̃(t)(h) = R̃(h), and set
t=1.

Step 2: According to the programming Model 1, com-
pute the normalized IVIF priority vector $̃(t)(h) =

($̃
(t)(h)
1 , $̃

(t)(h)
2 , · · · , $̃(t)(h)

n )T for the IVIFPR R̃(t)(h), then
build the corresponding multiplicative consistent IVIFPR
R̃(t)(h)∗ =

(
r̃
(t)(h)∗

ij

)
n×n by Eq. (9).

Step 3: Calculate the consistency degree CR̃(t)(h) via Eq.
(18), and then judge the acceptable consistency of each
IVIFPR R̃(t)(h) by comparing with the consistency threshold
α. If CR̃(t)(h) ≥ α, then R̃(t)(h) is acceptable consistent, go
to Step 5; otherwise, go to the next step.

Step 4: Repair the inconsistent IVIFPR. Let the param-
eter ε ∈ [0, 1] and use the following formulas to iterate
R̃(t)(h) to R̃(t+1)(h) with R̃(t+1)(h) =

(
r̃
(t+1)(h)
ij

)
n×n =((

µ̃
(t+1)(h)
ij , ν̃

(t+1)(h)
ij

))
n×n, where

µ(t+1)(h)
ij

= (µ(t)(h)
ij

)1−tε · (µ(t)(h)∗
ij

)tε, (26)

µ
(t+1)(h)
ij = (µ

(t)(h)
ij )1−tε · (µ(t)(h)∗

ij )tε, (27)

ν
(t+1)(h)
ij = (ν

(t)(h)
ij )1−tε · (ν(t)(h)∗ij )tε, (28)

ν
(t+1)(h)
ij = (ν

(t)(h)
ij )1−tε · (ν(t)(h)∗ij )tε, (29)

for i, j = 1, 2, · · · , n. Let t = t+ 1. Go to step 2.
Step 5: Establish a fractional programming model by

Model 3. According to LINGO, the model can be solved
and the normalized collective IVIF priority weight vector
$̃ = ($̃1, $̃2, · · · , $̃n)T is retrived.

Step 6: Using Eq. (2) and Eq. (3) in Definition 4 to
generate the rank of alternatives, then find the best alternative
P ∗. End.

VI. NUMERICAL EXAMPLE

In this section, the algorithm is applied to a quoted
example from [37]. Then we compare our approach with two
previous methods in [37] and [36] to illustrate the advantages
of our method.

A. A Practical Example of Virtual Enterprise Partner Se-
lection

To facilitate health reimbursement management, AHEAD
Information Technology Co., LTD (AHEAD for short) plans
to establish a new-type rural cooperative medical care man-
agement information system. The system is made up of a
software system and hardware devices with integrated chips.
Since software systems can be developed by itself, a partner
is in need to produce the hardware device.Four partners
{P1, P2, P3, P4} remain for further evaluation. Three experts
{E1, E2, E3}, whose weighting vector are established as
λ = (1/3, 1/3, 1/3)T , are invited to estimate these four
partners. After comparing the partners in pairs, experts give
their IVIFPRs R̃(1), R̃(2) and R̃(3) as follows.

Next, this example will be solved with the application of
our approach.

Step 1: Take the consistency threshold α = 0.9.
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Model 2 Min f =
s∑

h=1

n−1∑
i=1

n∑
j=i+1

λh(ϑ
(h)+
ij + ϑ

(h)−
ij + ϑ

(h)+

ij + ϑ
(h)−
ij + ζ(h)+

ij
+ ζ(h)−

ij
+ ζ

(h)+

ij + ζ
(h)−
ij )

s.t.



$µi
2−$νi−$νj

− µ(h)
ij
− ϑ(h)+ij + ϑ

(h)−
ij = 0, i, j = 1, 2, · · · , n; i < j; h = 1, 2, · · · , s

$µi
2−$νi−$νj

− µ(h)
ij − ϑ

(h)+

ij + ϑ
(h)−
ij = 0, i, j = 1, 2, · · · , n; i < j; h = 1, 2, · · · , s

$µj
2−$νi−$νj

− ν(h)ij − ζ
(h)+

ij
+ ζ(h)−

ij
= 0, i, j = 1, 2, · · · , n; i < j; h = 1, 2, · · · , s

$µj
2−$νi−$νj

− ν(h)ij − ζ
(h)+

ij + ζ
(h)−
ij = 0, i, j = 1, 2, · · · , n; i < j; h = 1, 2, · · · , s[

$µ
i , $

µ
i

]
⊆ [0, 1],

[
$ν
i , $

ν
i

]
⊆ [0, 1], $µ

i +$ν
i ≤ 1, i = 1, 2, · · · , n∑n

j=1,j 6=i$
µ
j ≤ $ν

i ,
∑n
j=1,j 6=i$

ν
j ≤ $

µ
i + n− 2, i = 1, 2, · · · , n

ϑ
(h)+
ij , ϑ

(h)−
ij , ϑ

(h)+

ij , ϑ
(h)−
ij ≥ 0, i, j = 1, 2, · · · , n; i < j; h = 1, 2, · · · , s

ζ(h)+
ij

, ζ(h)−
ij

, ζ
(h)+

ij , ζ
(h)−
ij ≥ 0, i, j = 1, 2, · · · , n; i < j; h = 1, 2, · · · , s

ϑ
(h)+
ij · ϑ(h)−ij = 0, ϑ

(h)+

ij · ϑ(h)−ij = 0, i, j = 1, 2, · · · , n; i < j; h = 1, 2, · · · , s
ζ(h)+
ij
· ζ(h)−
ij

= 0, ζ
(h)+

ij · ζ(h)−ij = 0, i, j = 1, 2, · · · , n; i < j; h = 1, 2, · · · , s

Model 3 Min f =
n−1∑
i=1

n∑
j=i+1

(ϑ+ij + ϑ−ij + ϑ
+

ij + ϑ
−
ij + ζ+

ij
+ ζ−

ij
+ ζ

+

ij + ζ
−
ij)

s.t.



$µi
2−$νi−$νj

−
∑s
h=1 λhµij − ϑ

+
ij + ϑ−ij = 0, i, j = 1, 2, · · · , n; i < j

$µi
2−$νi−$νj

−
∑s
h=1 λhµij − ϑ

+

ij + ϑ
−
ij = 0, i, j = 1, 2, · · · , n; i < j

$µj
2−$νi−$νj

−
∑s
h=1 λhνij − ζ

+

ij
+ ζ−

ij
= 0, i, j = 1, 2, · · · , n; i < j

$µj
2−$νi−$νj

−
∑s
h=1 λhνij − ζ

+

ij + ζ
−
ij = 0, i, j = 1, 2, · · · , n; i < j[

$µ
i , $

µ
i

]
⊆ [0, 1],

[
$ν
i , $

ν
i

]
⊆ [0, 1], $µ

i +$ν
i ≤ 1, i = 1, 2, · · · , n∑n

j=1,j 6=i$
µ
j ≤ $ν

i ,
∑n
j=1,j 6=i$

ν
j ≤ $

µ
i + n− 2, i = 1, 2, · · · , n

ϑ+ij , ϑ
−
ij , ϑ

+

ij , ϑ
−
ij , ζ

+

ij
, ζ−

ij
, ζ

+

ij , ζ
−
ij ≥ 0, i, j = 1, 2, · · · , n; i < j

R̃
(1)

=


([0.5000, 0.5000], [0.5000, 0.5000]) ([0.1400, 0.3000], [0.6500, 0.7000]) ([0.6200, 0.6500], [0.1200, 0.1500]) ([0.8300, 0.9000], [0.0400, 0.1000])
([0.6500, 0.7000], [0.1400, 0.3000]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.7300, 0.7800], [0.0400, 0.0500]) ([0.9000, 0.9500], [0.0200, 0.0220])
([0.1200, 0.1500], [0.6200, 0.6500]) ([0.0400, 0.0500], [0.7300, 0.7800]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.5500, 0.6000], [0.1000, 0.2000])
([0.0400, 0.1000], [0.8300, 0.9000]) ([0.0200, 0.0220], [0.9000, 0.9500]) ([0.1000, 0.2000], [0.5500, 0.6000]) ([0.5000, 0.5000], [0.5000, 0.5000])



R̃
(2)

=


([0.5000, 0.5000], [0.5000, 0.5000]) ([0.6500, 0.7000], [0.0500, 0.3300]) ([0.6200, 0.6500], [0.0360, 0.3500]) ([0.7800, 0.8200], [0.0060, 0.1400])
([0.0500, 0.3300], [0.6500, 0.7000]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.5000, 0.5500], [0.3000, 0.4000]) ([0.7500, 0.8000], [0.0800, 0.1800])
([0.0360, 0.3500], [0.6200, 0.6500]) ([0.3000, 0.4000], [0.5000, 0.5500]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.7000, 0.7500], [0.1000, 0.2000])
([0.0060, 0.1400], [0.7800, 0.8200]) ([0.0800, 0.1800], [0.7500, 0.8000]) ([0.1000, 0.2000], [0.7000, 0.7500]) ([0.5000, 0.5000], [0.5000, 0.5000])



R̃
(3)

=


([0.5000, 0.5000], [0.5000, 0.5000]) ([0.4500, 0.5000], [0.1000, 0.2000]) ([0.5000, 0.6000], [0.1100, 0.1700]) ([0.8000, 0.8500], [0.1000, 0.1200])
([0.1000, 0.2000], [0.4500, 0.5000]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.7500, 0.8000], [0.1500, 0.2000]) ([0.6500, 0.7000], [0.1000, 0.1500])
([0.1100, 0.1700], [0.5000, 0.6000]) ([0.1500, 0.2000], [0.7500, 0.8000]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.8000, 0.8500], [0.0500, 0.1000])
([0.1000, 0.1200], [0.8000, 0.8500]) ([0.1000, 0.1500], [0.6500, 0.7000]) ([0.0500, 0.1000], [0.8000, 0.8500]) ([0.5000, 0.5000], [0.5000, 0.5000])



Step 2: According to Model 1, three fractional program-
ming models are constructed for IVIFPRs above (we only
show the first model as Model 4 here).

Use LINGO to solve the models and acquire the underly-
ing normalized IVIF priority weight vectors for the individual
IVIFPRs as follows:

$̃(1) =
(
([0.2441,0.2646], [0.7281,0.7281]), ([0.5840,0.5912],

[0.3734,0.3734]), ([0.0793, 0.0865], [0.8781,0.8781]),

([0.0144, 0.0223], [0.9423, 0.9777])
)T
.

$̃(2) =
(
([0.4722,0.4722], [0.4962,0.4962]), ([0.2375,0.2534],

[0.7162, 0.7361]), ([0.1847,0.1900], [0.7880,0.7889]),

([0.0253, 0.0528], [0.9211, 0.9472])
)T
.

$̃(3) =
(
([0.4933,0.4991], [0.3920,0.3920]), ([0.2755,0.2813],

[0.6098, 0.6098]), ([0.0932,0.0990], [0.8154,0.8952]),

([0.0058, 0.0116], [0.9500, 0.9884])
)T
.

Correspondingly, the multiplicative consistent IVIFPRs R̃∗

can be generated as R̃(1)∗, R̃(2)∗ and R̃(3)∗ by Eq. (9).
Step 3: Via Eq. (18), the consistency degree of these three

IVIFPRs are calculated as CR̃(1) = 0.9715, CR̃(2) = 0.9503,
CR̃(3) = 0.8727. Note that the consistency threshold α = 0.9,
IVIFPRs R̃(1) and R̃(2) are both acceptable consistent. Since
CR̃(3) = 0.8727 < 0.9, then we repair the third IVIFPR R̃(3)

because it is inconsistent.
Step 4: Let t = 1 and R̃(1)(3) = R̃(3); then, according to

Eqs. (26)-(29) with the parameter ε = 0.2, we can obtain
R̃(2)(3) as follows.
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Model 4

Min f = (ϑ
(1)+
12 + ϑ

(1)−
12 + ϑ

(1)+

12 + ϑ
(1)−
12 + ζ(1)+

12
+ ζ(1)−

12
+ ζ

(1)+

12 + ζ
(1)−
12 + ϑ

(1)+
13 + ϑ

(1)−
13 + ϑ

(1)+

13 + ϑ
(1)−
13

+ ζ(1)+
13

+ ζ(1)−
13

+ ζ
(1)+

13 + ζ
(1)−
13 + ϑ

(1)+
14 + ϑ

(1)−
14 + ϑ

(1)+

14 + ϑ
(1)−
14 + ζ(1)+

14
+ ζ(1)−

14
+ ζ

(1)+

14 + ζ
(1)−
14

+ ϑ
(1)+
23 + ϑ

(1)−
23 + ϑ

(1)+

23 + ϑ
(1)−
23 + ζ(1)+

23
+ ζ(1)−

23
+ ζ

(1)+

23 + ζ
(1)−
23 + ϑ

(1)+
24 + ϑ

(1)−
24 + ϑ

(1)+

24 + ϑ
(1)−
24

+ ζ(1)+
24

+ ζ(1)−
24

+ ζ
(1)+

24 + ζ
(1)−
24 + ϑ

(1)+
34 + ϑ

(1)−
34 + ϑ

(1)+

34 + ϑ
(1)−
34 + ζ(1)+

34
+ ζ(1)−

34
+ ζ

(1)+

34 + ζ
(1)−
34 )

s.t.



$µ1
2−$ν1−$ν2

− 0.14− ϑ(1)+12 + ϑ
(1)−
12 = 0,

$µ1
2−$ν1−$ν3

− 0.62− ϑ(1)+13 + ϑ
(1)−
13 = 0,

$µ1
2−$ν1−$ν4

− 0.83− ϑ(1)+14 + ϑ
(1)−
14 = 0,

$µ2
2−$ν2−$ν3

− 0.73− ϑ(1)+23 + ϑ
(1)−
23 = 0,

$µ2
2−$ν2−$ν4

− 0.9− ϑ(1)+24 + ϑ
(1)−
24 = 0,

$µ3
2−$ν3−$ν4

− 0.55− ϑ(1)+34 + ϑ
(1)−
34 = 0,

$µ1
2−$ν1−$ν2

− 0.3− ϑ(1)+12 + ϑ
(1)−
12 = 0,

$µ1
2−$ν1−$ν3

− 0.65− ϑ(1)+13 + ϑ
(1)−
13 = 0,

$µ1
2−$ν1−$ν4

− 0.9− ϑ(1)+14 + ϑ
(1)−
14 = 0,

$µ2
2−$ν2−$ν3

− 0.78− ϑ(1)+23 + ϑ
(1)−
23 = 0,

$µ2
2−$ν2−$ν4

− 0.95− ϑ(1)+24 + ϑ
(1)−
24 = 0,

$µ3
2−$ν3−$ν4

− 0.6− ϑ(1)+34 + ϑ
(1)−
34 = 0,

$µ1
2−$ν1−$ν2

− 0.65− ζ(1)+
12

+ ζ(1)−
12

= 0,
$µ1

2−$ν1−$ν3
− 0.12− ζ(1)+

13
+ ζ(1)−

13
= 0,

$µ1
2−$ν1−$ν4

− 0.04− ζ(1)+
14

+ ζ(1)−
14

= 0,
$µ2

2−$ν2−$ν3
− 0.04− ζ(1)+

23
+ ζ(1)−

23
= 0,

$µ2
2−$ν2−$ν4

− 0.02− ζ(1)+
24

+ ζ(1)−
24

= 0,
$µ3

2−$ν3−$ν4
− 0.1− ζ(1)+

34
+ ζ(1)−

34
= 0,
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− 0.7− ζ(1)+12 + ζ
(1)−
12 = 0,

$µ1
2−$ν1−$ν3

− 0.15− ζ(1)+13 + ζ
(1)−
13 = 0,

$µ1
2−$ν1−$ν4
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14 = 0,

$µ2
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23 = 0,

$µ2
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(1)−
24 = 0,

$µ3
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− 0.2− ζ(1)+34 + ζ
(1)−
34 = 0,[
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3 ≤ 1, $µ
4 +$ν

4 ≤ 1,

$µ
1 +$µ

2 +$µ
3 ≤ $ν

4 , $
µ
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3 , $
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1 +$µ
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2 , $
µ
2 +$µ

3 +$µ
4 ≤ $ν

1 ,

$µ
4 + 2 ≥ $ν

1 +$ν
2 +$ν

3 , $
µ
3 + 2 ≥ $ν

1 +$ν
2 +$ν

4 ,

$µ
2 + 2 ≥ $ν

1 +$ν
3 +$ν

4 , $
µ
1 + 2 ≥ $ν

2 +$ν
3 +$ν

4 ,

ϑ
(1)+
12 ≥ 0, ϑ

(1)−
12 ≥ 0, ϑ

(1)+

12 ≥ 0, ϑ
(1)−
12 ≥ 0, ζ(1)+

12
≥ 0, ζ(1)−

12
≥ 0, ζ

(1)+

12 ≥ 0, ξ
(1)−
12 ≥ 0,

ϑ
(1)+
13 ≥ 0, ϑ

(1)−
13 ≥ 0, ϑ

(1)+

13 ≥ 0, ϑ
(1)−
13 ≥ 0, ζ(1)+

13
≥ 0, ζ(1)−

13
≥ 0, ζ

(1)+

13 ≥ 0, ζ
(1)−
13 ≥ 0,

ϑ
(1)+
14 ≥ 0, ϑ

(1)−
14 ≥ 0, ϑ

(1)+

14 ≥ 0, ϑ
(1)−
14 ≥ 0, ζ(1)+

14
≥ 0, ζ(1)−

14
≥ 0, ζ

(1)+

14 ≥ 0, ζ
(1)−
14 ≥ 0,

ϑ
(1)+
23 ≥ 0, ϑ

(1)−
23 ≥ 0, ϑ

(1)+

23 ≥ 0, ϑ
(1)−
23 ≥ 0, ζ(1)+

23
≥ 0, ζ(1)−

23
≥ 0, ζ

(1)+

23 ≥ 0, ζ
(1)−
23 ≥ 0,

ϑ
(1)+
24 ≥ 0, ϑ

(1)−
24 ≥ 0, ϑ

(1)+

24 ≥ 0, ϑ
(1)−
24 ≥ 0, ζ(1)+

24
≥ 0, ζ(1)−

24
≥ 0, ζ

(1)+

24 ≥ 0, ζ
(1)−
24 ≥ 0,

ϑ
(1)+
34 ≥ 0, ϑ

(1)−
34 ≥ 0, ϑ

(1)+

34 ≥ 0, ϑ
(1)−
34 ≥ 0, ζ(1)+

34
≥ 0, ζ(1)−

34
≥ 0, ζ

(1)+

34 ≥ 0, ζ
(1)−
34 ≥ 0,

ϑ
(1)+
12 · ϑ(1)−12 = 0, ϑ

(1)+

12 · ϑ(1)−12 = 0, ζ(1)+
12
· ζ(1)−

12
= 0, ζ

(1)+

12 · ζ(1)−12 = 0,

ϑ
(1)+
13 · ϑ(1)−13 = 0, ϑ

(1)+

13 · ϑ(1)−13 = 0, ζ(1)+
13
· ζ(1)−

13
= 0, ζ

(1)+

13 · ζ(1)−13 = 0,

ϑ
(1)+
14 · ϑ(1)−14 = 0, ϑ

(1)+

14 · ϑ(1)−14 = 0, ζ(1)+
14
· ζ(1)−

14
= 0, ζ

(1)+

14 · ζ(1)−14 = 0,

ϑ
(1)+
23 · ϑ(1)−23 = 0, ϑ

(1)+

23 · ϑ(1)−23 = 0, ζ(1)+
23
· ζ(1)−

23
= 0, ζ

(1)+

23 · ζ(1)−23 = 0,

ϑ
(1)+
24 · ϑ(1)−24 = 0, ϑ

(1)+

24 · ϑ(1)−24 = 0, ζ(1)+
24
· ζ(1)−

24
= 0, ζ

(1)+

24 · ζ(1)−24 = 0,

ϑ
(1)+
34 · ϑ(1)−34 = 0, ϑ

(1)+

34 · ϑ(1)−34 = 0, ζ(1)+
34
· ζ(1)−

34
= 0, ζ

(1)+

34 · ζ(1)−34 = 0.

R̃
(1)∗

=


([0.5000, 0.5000], [0.5000, 0.5000]) ([0.2717, 0.2946], [0.6500, 0.6580]) ([0.6200, 0.6721], [0.2014, 0.2197]) ([0.8300, 0.8997], [0.0490, 0.0758])
([0.6500, 0.6580], [0.2717, 0.2946]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.7802, 0.7898], [0.1060, 0.1156]) ([0.9000, 0.9111], [0.0222, 0.0343])
([0.2014, 0.2197], [0.6200, 0.6721]) ([0.1060, 0.1156], [0.7802, 0.7898]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.5500, 0.6000], [0.1000, 0.1545])
([0.0490, 0.0758], [0.8300, 0.8997]) ([0.0222, 0.0343], [0.9000, 0.9111]) ([0.1000, 0.1545], [0.5500, 0.6000]) ([0.5000, 0.5000], [0.5000, 0.5000])



R̃
(2)∗

=


([0.5000, 0.5000], [0.5000, 0.5000]) ([0.6150, 0.6150], [0.3094, 0.3300]) ([0.6604, 0.6604], [0.2584, 0.2658]) ([0.8483, 0.8483], [0.0455, 0.0949])
([0.3094, 0.3300], [0.6150, 0.6150]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.5000, 0.5333], [0.3889, 0.4000]) ([0.8000, 0.9019], [0.0799, 0.1667])
([0.2584, 0.2658], [0.6604, 0.6604]) ([0.3889, 0.4000], [0.5000, 0.5333]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.7000, 0.7200], [0.0959, 0.2001])
([0.0455, 0.0949], [0.8483, 0.8483]) ([0.0799, 0.1667], [0.8000, 0.9019]) ([0.0959, 0.2001], [0.7000, 0.7200]) ([0.5000, 0.5000], [0.5000, 0.5000])



R̃
(3)∗

=


([0.5000, 0.5000], [0.5000, 0.5000]) ([0.4942, 0.5000], [0.2760, 0.2818]) ([0.6920, 0.7002], [0.1307, 0.1389]) ([0.0094, 0.0187], [0.0455, 0.0949])
([0.2760, 0.2818], [0.4942, 0.5000]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.5565, 0.5682], [0.1883, 0.2000]) ([0.6855, 0.7000], [0.0144, 0.0289])
([0.1307, 0.1389], [0.6920, 0.7002]) ([0.1883, 0.2000], [0.5565, 0.5682]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.8001, 0.8499], [0.0498, 0.0996])
([0.0094, 0.0187], [0.0455, 0.0949]) ([0.0144, 0.0289], [0.6855, 0.7000]) ([0.0498, 0.0996], [0.8001, 0.8499]) ([0.5000, 0.5000], [0.5000, 0.5000])
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R̃
(2)(3)

=


([0.5000, 0.5000], [0.5000, 0.5000]) ([0.4585, 0.5000], [0.1225, 0.2142]) ([0.5336, 0.6188], [0.1139, 0.1633]) ([0.3289, 0.3962], [0.0623, 0.0827])
([0.1225, 0.2142], [0.4585, 0.5000]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.7065, 0.7471], [0.1570, 0.2000]) ([0.6569, 0.7000], [0.0679, 0.1079])
([0.1139, 0.1633], [0.5336, 0.6188]) ([0.1570, 0.2000], [0.7065, 0.7471]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.8000, 0.8500], [0.0500, 0.0999])
([0.0623, 0.0827], [0.3289, 0.3962]) ([0.0679, 0.1079], [0.6569, 0.7000]) ([0.0500, 0.0999], [0.8000, 0.8500]) ([0.5000, 0.5000], [0.5000, 0.5000])



In virtue of Model 4, the underlying IVIF weights of
R̃(2)(3) can be yielded as:

$̃(2)(3)=
(
[0.3985,0.3985],[0.4700,0.4700]),([0.3202,0.3386],

[0.6260,0.6608]),([0.1052,0.1052],[0.8618,0.8860]),

([0.0168, 0.0262], [0.8423, 0.8518])
)T
.

Therefore, the corresponding multiplicative consistent IVIF-
PR R̃(2)(3)∗ for R̃(2)(3) can be shown.

The consistency degree CR̃(2)(3) = 0.9087 > α with Eq.
(18), so R̃(2)(3) is acceptably consistent. Till now, all the
IVIFPRs are acceptably consistent.

Step 5: Using Model 5, we can derive the normalized
collective IVIF priority weight vector

$̃=($̃1, $̃2, $̃3, $̃4)T=
(
[0.3806,0.3830], [0.5335,0.5335]),

([0.3746, 0.3792], [0.5521, 0.5521]), ([0.1172, 0.1257],

[0.8591, 0.8677]), ([0.0143,0.0286], [0.9546,0.9609])
)T
.

Step 6: Using Eq. (2), we have s($̃1) = −0.1517,
s($̃2) = −0.1752, s($̃3) = −0.7419, s($̃4) = −0.9363.
Since s($̃1) > s($̃2) > s($̃3) > s($̃4), the optimal
alternative is A1.

B. Comparative Analyses

To demostrate the advantages of our approach, this sub-
section conducts comparisons with Wan et al.’s method [37]
and Liao et al.’s method [36].

1) Comparison with Wan et al.’s method: In this part, the
Example is solved by Wan’s method [37].

Step 1: Check and repair the consistency of individual
IVIFPRs.

Wan et al. [37] take the consistency threshold α = 0.2.
According to Eqs. (4) and (5) in [37], the consistency indices
can be obtained: MCI(R̃L1 ) = 0.1738, MCI(R̃U1 ) = 0.4507,
MCI(R̃L2 ) = 0.2181, MCI(R̃U2 ) = 0.1638, MCI(R̃L3 ) =
1.1575, and MCI(R̃U3 ) = 1.9883. According to Theorem
5 in [37], all IVIFPRs R̃1, R̃2 and R̃3 are of unacceptable
consistency. Then we can get the repaired IVIFPRs ¯̃R1, ¯̃R2

and ¯̃R3 by Algorithm II and Eq. (33) in [37]. And the new
consistency indices can be calculated: MCI( ¯̃RU1 ) = 0.1694,
MCI( ¯̃RL2 ) = 0.1727, MCI( ¯̃RU2 ) = 0.1984, MCI( ¯̃RL3 ) =

0.1646 and MCI( ¯̃RU3 ) = 0.1638. Compared with the thresh-
old α, they are all acceptable consistent, thus, by Theorem
5 in [37], all the repaired IVIFPRs meet the acceptable
consistent condition.

Step 2: Determine the experts’ weight vector. Here we set
the weights of experts as λ = (1/3, 1/3, 1/3)T .

Step 3: The collective IVIFPR can be obtained via Eq.
(34) in [37] with experts’ weight vector λ. According to the
solution of the model Eq. (53) in [37], the optimal solution
can be derived. With Eq. (45) in [37], the IVIF priority
weight vector is derived and shown in Table 1.

Step 4: According to Eq. (2), the ranking results of
alternatives can be derived. As Table 1 shows, in accordance
with Wan et al.’s method [37], we can generate the ranking

result P1 > P2 > P3 > P4, which means the optimal
alternative is P1.

2) Comparison with Liao et al.’s method: In this part, the
Example is solved by Liao’s method [36].

Step 1: Let R̃(0)
k = R̃k (k = 1, 2, 3). According to

Algorithm 2 in [36], consistent IVIFPRs ¯̃R
(0)
1 , ¯̃R

(0)
2 and ¯̃R

(0)
3

can be constructed. Then use Eq. (31) in [36] to integrate
individual IVIFPRs into the collective ¯̃R(0). By Eq. (34)
in [36], the distances between ¯̃R

(0)
k and ¯̃R(0) are calculat-

ed as: d( ¯̃R
(0)
1 , ¯̃R(0)) = 0.2007, d( ¯̃R

(0)
2 , ¯̃R(0)) = 0.1377,

d( ¯̃R
(0)
3 , ¯̃R(0)) = 0.0985. Take the consistency threshold γ∗

= 0.2. Owing to d( ¯̃R
(0)
1 , ¯̃R(0)) > γ∗, ¯̃R

(0)
1 is unacceptable

consistent, so we need to repair it.
Step 2: Let the parameter η = 0.2. With Eqs. (35)-(38) in

[36], the repaired IVIFPR ¯̃R
(1)
1 can be generated. Then we

derive the new collective IVIFPR ¯̃R(1). Thus, the distances
between ¯̃R

(1)
k and ¯̃R(1) are obtained as: d( ¯̃R

(1)
1 , ¯̃R(1)) =

0.1813, d( ¯̃R
(1)
2 , ¯̃R(1)) = 0.0920, d( ¯̃R

(1)
3 , ¯̃R(1)) = 0.1313.

Since all the distances d( ¯̃R
(1)
k , ¯̃R(1)) < γ∗ = 0.2, the repair

process can be finished.
Step 3: By Eq. (39) in [36], the priority weights and

the ranking orders are acquired and viewed in Table 1.
Furthermore, the same result P1 > P2 > P3 > P4 can be
found according to Eq. (2) and then the optimal alternative
P1 can be selected.

Compared with above two previously approaches given in
[37] and [36], our approach has the following advantages:

1) A more reasonable multiplicative consistency definition
of IVIFPRs has been characterized. When an IVIFPR reduces
to an IFPR, the multiplicative consistency definitions in the
proposed method and Liao’s method respectively degenerate
into the definitions of an IFPR in Xu [30] and Liao [32].
Since Liao and Xu [32] has indicated that their consistency
definition is more rational than that presented in [30], our
definition is more reliable. Furthermore, the definitions of
multiplicative consistency described in [36] and [37] do not
satisfy robustness. In this situation, the consistency of an
IVIFPR described in this paper is more reasonable.

2) It is necessary to emphasize that intervals in our paper
are normalized, while in [36] and [37] are not. Since the
weights derived by a symmetric IVIF weighted averaging
(SIVIFWA) operator in Liao et al.’s method [36] are not nor-
malized, which may lead to imprecise results. Furthermore,
as is defined in [37], an IVIFPR can deduce two matching
IFPRs by Eqs. (22) and (23) in [37]. However, the IVIF
weights are not equal to the weights of corresponding IFPRs.
Thus, Wan et al.’s method is lack of rationality. We build
up an optimization model which can overcome this issue
adequately. With paying attention to the normalizing process
of the IVIF weights, our method is more convincing.

VII. CONCLUSION

This paper presents a novel approach for GDM problems
with IVIFPRs. An innovative definition of the multiplicative
consistency for IVIFPRs has been proposed. One distinctive
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R̃
(2)(3)∗

=


([0.5000, 0.5000], [0.5000, 0.5000]) ([0.4585, 0.4585], [0.3684, 0.3895]) ([0.6188, 0.6188], [0.1633, 0.1633]) ([0.5876, 0.5876], [0.0248, 0.0386])
([0.3684, 0.3895], [0.4585, 0.4585]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.7065, 0.7471], [0.2321, 0.2321]) ([0.6569, 0.6946], [0.0345, 0.0538])
([0.1633, 0.1633], [0.6188, 0.6188]) ([0.2321, 0.2321], [0.7065, 0.7471]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.4010, 0.4010], [0.0641, 0.0999])
([0.0248, 0.0386], [0.5876, 0.5876]) ([0.0345, 0.0538], [0.6569, 0.6946]) ([0.0641, 0.0999], [0.4010, 0.4010]) ([0.5000, 0.5000], [0.5000, 0.5000])
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s.t.



$µ1
2−$ν1−$ν2

− 1
3 (0.14+0.65+0.4585)−ϑ+12+ϑ−12 =0,

$µ1
2−$ν1−$ν3

− 1
3 (0.62+0.62+0.5336)−ϑ+13+ϑ−13 =0,

$µ1
2−$ν1−$ν4

− 1
3 (0.83+0.78+0.3289)−ϑ+14+ϑ−14 =0,

$µ2
2−$ν2−$ν3

− 1
3 (0.73+0.5+0.7065)−ϑ+23+ϑ−23 =0,

$µ2
2−$ν2−$ν4

− 1
3 (0.9+0.75+0.6569)− ϑ+24 + ϑ−24 =0,

$µ3
2−$ν3−$ν4

− 1
3 (0.55+0.7+0.8)− ϑ+34 + ϑ−34 =0,

$µ1
2−$ν1−$ν2

− 1
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−
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− 1
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TABLE I
COMPARISONS OF PRIORITY WEIGHT VECTORS AND THE RANKING RESULTS OF ALTERNATIVES FOR DIFFERENT METHODS.

Methods Priority weight vector ($̃1, $̃2, $̃3, $̃4)
T Ranking orders

The proposed method
(
([0.3806, 0.3830], [0.5335, 0.5335]), ([0.3746, 0.3792], [0.5521, 0.5521]),

([0.1172, 0.1257], [0.8591, 0.8677]), ([0.0143, 0.0286], [0.9546, 0.9609])
)T P1 > P2 > P3 > P4

Wan et al.’s method
(
([0.3015, 0.4307], [0.3871, 0.4673]), ([0.3265, 0.3629], [0.4476, 0.5445]),

([0.0567, 0.0846], [0.8738, 0.9061]), ([0.0039, 0.0199], [0.9801, 0.9801])
)T P1 > P2 > P3 > P4

Liao et al.’s method
(
([0.5595, 0.6600], [0.0950, 0.2454]), ([0.5349, 0.6504], [0.1935, 0.2817]),

([0.2860, 0.4073], [0.4084, 0.5120]), ([0.0652, 0.1531], [0.7012, 0.7702])
)T P1 > P2 > P3 > P4
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characteristic is that it satisfies robustness, which means that
during the IVIFPR establishing procedure, the multiplicative
consistent conclusion remains stable whether the comparison
order of objects changes or not. By virtue of the newly
defined normalized IVIF weights, a conversion formula has
been developed to transform the normalized weights into
multiplicative consistent IVIFPRs. Consistency measure and
inconsistent repairing process have been introduced to guar-
antee that all IVIFPRs derived conform to the acceptable
consistency. Furthermore, the normalized individual and col-
lective IVIF weights have been obtained from two different
programming models corresponding to individual and group
experts respectively. In this way, a step-by-step algorithm
has been formed. The practical validation of the proposed
algorithm are analyzed subsequently and the advantages of
this method have been demonstrated by comparing with other
approaches.

We have given consistency checking and inconsisten-
cy repairing process of interval-valued intuitionistic fuzzy
GDM. However, further studies need to be fulfilled. In
GDM problems with IVIFPRs, as an equally important part,
the consensus reaching procedure is also an open question.
Furthermore, in the proposed method, the weight vector
of experts is determined in advance, how to achieve the
objectiveness of expert weights is also a crucial issue worth
analysing in the future.
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