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Abstract—An iterative scheme which is free of derivative is
employed to approximately solve nonlinear ill-posed Hammer-
stein type operator equations )� (G) = H, where � is a non-
linear monotone operator and ) is a bounded linear operator
defined on Hilbert spaces -,. , /. The convergence analysis
adapted in the paper includes weaker Lipschitz condition and
adaptive choice of Perverzev and Schock(2005) is employed
to choose the regularization parameter U. Furthermore, order
optimal error bounds are obtained and the method is validated
by a numerical example.

Index Terms—Derivative free Iterative method, Newton type
method, Non-linear Ill-posed problems, Lipschitz condition,
Hammerstein Operators, Adaptive Choice, Tikhonov regular-
ization

I. Introduction

Consider a nonlinear Hammerstein integral operator

(�G) (C) :=

∫

1

0

: (B, C) 5 (B, G(B))3B

where

: (B, C) ∈ !2( [0, 1] × [0, 1]), G ∈ !2 [0, 1]

and C ∈ [0, 1] . The above integral operator � admits a

representation of the form � = )� where

) : !2 [0, 1] → !2 [0, 1]

is a linear integral operator with kernel : (C, B) : defined as

)G(C) =
∫

1

0

: (C, B)G(B)3B

and

� : � (�) ⊆ !2 [0, 1] → !2 [0, 1]

is a nonlinear superposition operator (cf. [13]) defined as

�G(B) = 5 (B, G(B)).
The non-linear integral equation arises in a variety of

application in various fields such as geophysics, electricity

and magnestism, radiation, fluid mechanics, reactor theory,

etc. and equations of Hammerstein type play a crucial role

in the theory of optimal control systems and in automation

and network theory.

In this paper, our study focuses on regularization of such

non-linear ill-posed Hammerstein type operator([6]- [10])

equation of the form

()�)G = H. (1)
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Here � : � (�) ⊆ - → -, is a nonlinear operator, ) :

- → . is a bounded linear operator and - and . are Hilbert

spaces with corresponding inner product 〈., .〉 and norm ‖.‖
respectively. We study the case where � is a monotone

operator (i.e., 〈� (G) − � (H), G − H〉 ≥ 0, ∀G, H ∈ � (�))
([15], [18]) and � ′(G0)−1 does not exist. Hence, G is ill-

posed and thus along with non-closedness of the range of

the operator ), we see that now (1) is ill-posed.

It is further assumed that H X is the available data with

‖H − H X ‖ ≤ X

and hence we approximate

()�)G = H X (2)

instead of (1). Observe that (2) can be approximated by

solving

)I = H X (3)

for z and then solving the non-linear problem

� (G) = I. (4)

We also assume that the solution Ĝ of (1) satisfies G0-

minimum norm solution i.e.,

‖� (Ĝ) − � (G0)‖ :=min{‖� (G) − � (G0)‖ :

)� (G) = H, G ∈ � (�)}. (5)

Various methods have been proposed for approximating

the solution of (2) which involves Frechet derivative of �.

The most common method for solving the linear operator

equation (3) is Tikhonov regularization ([5]-[11]). In partic-

ular, we consider

IXU = ()∗) + U�)−1)∗ (H X − )� (G0)) + � (G0) (6)

to approximate (3).

Newton method is usually applied to solve nonlinear

equation (4). In the literature, ([1], [2], [3], [4], [12], [14],

[17]) we see that a series of modification to Newton’s

scheme, which is studied and analyzed to improve the local

convergence. In all these methods, one has to compute the

inverse involving Fr4́chet derivative of � at each iterate G:
or at initial guess G0. The high computational efficiency

of Newtons formula, would still fail at some stages of

evaluation, if the derivative of the functions vanishes or is

too small. These limitations of the existing method led us to

define a new iterative sequence for (3) which do not involve

the Fr4́chet derivative and is given in Section 3.

Note that the regularization parameter U is chosen as

per the adaptive scheme studied by Pereverzev and Schock

([16]) for the linear ill-posed operator equations and the

same parameter U is used for solving the non-linear operator

equation (4).
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The paper is structured as follows. Preparatory results

and adaptive choice strategy is given in section 2 and

section 3 comprises the proposed derivative free iterative

method. Section 4 deals with the algorithm for implementing

the proposed method. Finally, in section 5, the method is

elaborated with a numerical example where the performance

of the proposed method is better when compared to that of

the method in [9], [10].

II. Preliminaries

Let �A (G0) and �A (G0) denotes the open and closed ball

of radius A with centre at G0. The following assumption is

required for error estimation.

Assumption 2.1: There exists a continuous, strictly mono-

tonically increasing function

i : (0, 0] → (0,∞)

with 0 ≥ ‖)2‖ satisfying;

• ;8<
_→0

i(_) = 0

•
BD?

_ ≥ 0

Ui(_)
_ + U

≤ i(U), ∀_ ∈ (0, 0]

and

• there exists E ∈ -, ‖E‖ ≤ 1 such that

� (Ĝ) − � (G0) = i()∗))E.

It can be seen that (see (4.3) in [8] ) under Assumption 2.1,

‖� (Ĝ) − IXU ‖ ≤ i(U) + X√
U
. (7)

A. A priori choice of the parameter

For the choice, U := UX the estimate

i(U) + X√
U

in (7) is of optimal order if it satisfies i(UX) = X√
UX

. Let

k(_) := _

√

i−1 (_), 0 < _ ≤ ‖) ‖2.

Then we have

X =
√
UXi(UX) = k(i(UX))

and

UX = i−1(k−1 (X)).

So the relation (7) leads to

‖� (Ĝ) − IXU‖ ≤ 2k−1(X).

B. Adaptive scheme for choice of the parameter

Pereverzev and Shock[16], introduced a parameter choice

strategy called adaptive parameter choice strategy, modified

suitably to choose the regularization parameter U in our

method.

Let

�" = {U8 = U0`
28 , 8 = 0, 1, 2, ...., "}, ` > 1,

: := max{8 : U8 ∈ �+
" } (8)

and

; := max{8 : i(U8) ≤
X

√
U8

}, (9)

where, �+
"

= {U8 ∈ �" : ‖IXU8
− IXU 9

‖ ≤ 4X√
U 9
, 9 =

0, 1, 2, ...., 8 − 1}.
THEOREM 2.2: (cf. [8], Theorem 4.3) Let ; be as in (9),

: be as in (8) and IXU:
be as in (6) with U = U: . Then ; ≤ :

and

‖� (Ĝ) − IXU:
‖ ≤ (2 + 4`

` − 1
)`k−1(X).

III. Iterative Method and Convergence Analysis

Let X ∈ (0, 3] and U ∈ (X, 0], for some positive constants

a, d with 3 < 0, and ‖� ′(G)‖ ≤ V0, for all G ∈ � (�). Let

G X=+1,U:
= G X=,U:

− V[� (G X=,U:
) − IXU:

+ U:

2
(G X=,U:

− G0)] (10)

where U: is as in Theorem 2.2, G X
0,U:

:= G0 is the initial

guess and V := 2
V02+0 , with 2 ≤ U: . First we prove that G X=,U:

converges to the zero G X2,U:
of

� (G) + U:

2
(G − G0) = IXU:

(11)

and then we prove that G X2,U:
is an approximation for Ĝ.

The following parameters and notation are necessary for

the analysis. Let

0 < V < min{1, 1

2
}

and

‖Ĝ − G0‖ := d < A

where A = <8={ 1

V
, V0d + 3√

U0
}.

Define

Wd := V[V0d + 3
√
U0

]

and

@ = 1 − VU:

2
.

LEMMA 3.1: Let G X=,U:
and IXU:

be as in (10) and (6)

respectively, then G X
1,U:

∈ �Wd (G0).
Proof. From (10), we have that

‖G X
1,U:

− G0‖ = ‖V(� (G0) − IXU:
)‖

≤ V‖� (G0) − IU:
+ IU:

− IXU:
‖

≤ V[‖� (G0) − � (Ĝ)‖ + ‖IU:
− IXU:

‖]

≤ V[V0d + X
√
U:

] = Wd.

THEOREM 3.2: Let G X=,U:
be as in (10) and Lemma

3.1 holds. Then (G X=,U:
) ∈ �A (G0) is a Cauchy sequence

converging to G X2,U:
∈ �A (G0). Further

� (G X2,U:
) + U:

2
(G X2,U:

− G0) = IXU:

and

‖G X=,U:
− G X2,U:

‖ ≤ �@=

where � =
Wd

1−@ .
Proof. Note that

G X
=+1,U:

− G X=,U:
= G X=,U:

− G X
=−1,U:

− V[� (G X=,U:
)

−� (G X=−1,U:
) + U:

2
(G X=,U:

− G X=−1,U:
)]

= (G X=,U:
− G X=−1,U:

) − V[�= +
U:

2
�] (G X=,U:

− G X
=−1,U:

)
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where �= =

∫

1

0
� ′(G= + C(G= − G=−1))3C.

Then,

‖G X=+1,U:
− G X=,U:

‖ ≤ ‖� − V(�= +
U:

2
�)‖

×‖(G X=,U:
− G X

=−1,U:
)‖.

Since the operator �= is positive self adjoint operator with

‖�=‖ ≤ V0, we have

‖� − V(�= +
U:

2
�)‖ = sup

‖G ‖=1

|〈[(� − VU:

2
)� − V�=]G, G〉|

≤ 1 − VU:

2

Therefore,

‖G X=+1,U:
− G X=,U:

‖ ≤ @‖G X=,U:
− G X=−1,U:

‖. (12)

Next we show that G X=,U:
∈ �A (G0), for all = ≥ 0. By

Lemma 3.1, we have ‖G X
1,U:

− G0‖ ≤ A.

Further,

‖G X=+1,U:
− G0‖ ≤ ‖G X=+1,U:

− G X=,U:
‖ + ‖G X=,U:

− G X=−1,U:
‖

+ · · · + ‖G X
1,U:

− G0‖
≤ @=‖G X

1,U:
− G0‖ + @=−1‖G X

1,U:
− G0‖

+ · · · + ‖G X
1,U:

− G0‖
≤ (@= + @=−1 + · · ·

· · · + @2 + @ + 1)‖G X
1U:

− G0‖

≤ 1 − @=

1 − @
Wd

≤
Wd

1 − @
≤ A

i.e., G X
=+1,U:

∈ �A (G0).
Observe that by (12),

‖G=+< − G=‖ ≤
8=<−1
∑

8=0

‖G X=+8+1,U:
− G X=+8,U:

‖

≤
8=<−1
∑

8=0

@‖G X=+8,U:
− G X=−1+8,U:

‖

≤ (@= + @=+1 + @=+2 +
... + @=+<)‖G X

1,U:
− G0‖

≤ @= (1 + @ + @2 + .... + @<)Wd

≤ @= [1 − @<+1)
1 − @

]Wd
≤ �@=

Thus G X=,U:
∈ �A (G0) is a Cauchy sequence in and hence

it converges, say to G X2,U:
∈ �A (G0) and

V‖� (G X=,U:
) − IXU:

+ U:

2
(G X=,U:

− G0)‖ = ‖G X=+1,U:
− G X=,U:

‖
≤ @=Wd (13)

As = → ∞ in (13) we see that

� (G X2,U:
) + U:

2
(G X2,U:

− G0) = IXU:
. (14)

Hence the proof of the Theorem.

The assumption below leads us to prove our desired

results.

Assumption 3.3: (cf.[18]) Let G0 ∈ - be fixed. There

exists a constant :0 such that for every E ∈ �A (G0) ⊆ � (�)
and F ∈ -, there exists an element Φ(G0, D, E) ∈ - satisfying

[� ′(G0) − � ′(E)]F = � ′(G0)Φ(G0, E, F), ‖Φ(G0, E, F)‖ ≤
:0‖F‖‖G0 − E‖.

Assumption 3.4: There exists a continuous, strictly mono-

tonically increasing function

i1 : (0, 1] → (0,∞)

with 1 ≥ ‖� ′(G0)‖ satisfying;

• ;8<
_→0

i1 (_) = 0,

•
BD?

_ ≥ 0

Ui1 (_)
_ + U

≤ i1 (U) ∀_ ∈ (0, 1]

• there exists F ∈ - with ‖F‖ ≤ 1 (cf. [15]) such that

G0 − Ĝ = i1 (� ′(G0))F.

• For each H ∈ �A (G0) there exists a bounded linear

operator ((H, G0) (see [17]) such that

� ′(H) = � ′(G0)((H, G0)

with ‖((H, G0)‖ ≤ :1.

Assume that

:1 <
1 − :0A

1 − V2

and for U > 0, consider i1 (U) ≤ i(U) for the sake of

simplicity.

THEOREM 3.5: Suppose G X2,U:
is the zero of (11) and

Assumptions 3.3 and 3.4 hold. Then

‖Ĝ − G X2,U:
‖ = $ (k−1(X)).

Proof. Let "1 =

∫

1

0
� ′(Ĝ + C(G X2,U:

− Ĝ))3C. Then

� (G X2,U:
) − � (Ĝ) = "1(G X2,U:

− Ĝ)

and hence by (14),

2V[� (G X2,U:
) − IXU:

] + U: (G X2,U:
− G0) = 0,

so

2V"1(G X2,U:
− Ĝ) + UV(G X2,U:

− Ĝ) = 2V(IXU:
− � (Ĝ))

+U: V(G0 − Ĝ),

� ′(G0) (G X2,U:
− Ĝ) + V2("1 + U: V�) (G X2,U:

− Ĝ) = 2V(IXU:
−

� (Ĝ)) + U: V(G0 − Ĝ) + � ′(G0) (G X2,U:
− Ĝ).

Note that

‖G X2,U:
− Ĝ‖ ≤ ‖U: V(� ′(G0) + U: V�)−1(G0 − Ĝ)‖ +

‖(� ′(G0) + U: V�)−1V2(� (Ĝ) − IXU:
)‖ +

‖(� ′(G0) + U: V�)−1(� ′(G0) −
V2"1) (G X2,U:

− Ĝ)‖
≤ ‖U: V(� ′(G0) + U: V�)−1(G0 − Ĝ)‖ +

‖� (Ĝ) − IXU:
‖ + Γ (15)

where

Γ := ‖(� ′(G0) + U: V�)−1(� ′(G0) − V2"1) (G X2,U:
− Ĝ)‖.
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Further by Assumption 3.4, we obtain

Γ ≤ ‖(� ′(G0) + U: V�)−1

∫

1

0

[� ′(G0) − � ′(Ĝ + C(G X2,U:

−Ĝ))] (G X2,U:
− Ĝ)3C‖ + (1 − V2)‖(� ′(G0) + U: V�)−1

� ′(G0)
∫

1

0

((Ĝ + C(G X2,U:
− Ĝ), Ĝ) (G X2,U:

− Ĝ)3C‖

≤ :0A‖G X2,U:
− Ĝ‖ + (1 − V2):1‖G X2,U:

− Ĝ‖ (16)

and hence by (15) and (16) we have

‖G X2,U:
− Ĝ‖ ≤ ‖U: V(� ′(G0) + U: V�)−1(G0 − Ĝ)‖

1 − (1 − 2):1 − :0A

+
‖� (Ĝ) − IXU:

‖
1 − (1 − 2):1 − :0A

≤
i1 (U:) + (2 + 4`

`−1
)`k−1(X)

1 − (1 − 2):1 − :0A
.

THEOREM 3.6: Let G X=,U:
be as in (10) and hypotheses

of Theorem 3.2 and Theorem 3.5 hold. Then

‖Ĝ − G X=,U:
‖ ≤ �@= +$ (k−1(X)),

where � is as given in Theorem 3.2.

THEOREM 3.7: Suppose the assumptions in Theorem 2.2

and Theorem 3.6 hold and let

=: := min{= : @= ≤ X
√
U:

}.

Then

‖Ĝ − G=: ‖ = $ (k−1(X)).

IV. Algorithm

Note that for 8, 9 ∈ {0, 1, 2, · · · , "}, IXU8
− IXU 9

= (U 9 −
U8) ()∗) + U 9 �)−1()∗) + U8 �)−1 [)∗ (H X − )� (G0))] .

The algorithm for implementing the iterative methods

discussed in section 3 consists of the following steps.

• U0 = X2; and U8 = `28U0, ` > 1;

• solve for E8 : ()∗) + U8 �)E8 = )∗ (H X − )� (G0));
• solve for 9 < 8, I8 9 : ()∗) + U 9 �)I8 9 = (U 9 − U8)F8;

• if ‖I8 9 ‖ > 4

` 9 , then take : = 8 − 1;

• else, repeat with 8 + 1 in place of 8.

• choose =: = min{= : @= ≤ X√
U:

}
• solve G=: using the iteration (10).

V. Numerical Example

EXAMPLE 5.1: Let the operator )� : �1(0, 1) −→
!2 (0, 1) with ) : !2 (0, 1) −→ !2(0, 1) defined by

) (G) (C) =
∫

1

0

: (C, B)G(B)3B (17)

and � : � (�) ⊆ �1 (0, 1) −→ !2(0, 1) defined by

� (E) :=

∫

1

0

: (C, B)E3(B)3B, (18)

where

: (C, B) =
{

(1 − C)B, 0 ≤ B ≤ C ≤ 1

(1 − B)C, 0 ≤ C ≤ B ≤ 1
.

Then for all G(C), H(C) : G(C) > H(C) : (see [18], section 4.3)

〈� (G) − � (H), G − H〉 =

∫

1

0

[
∫

1

0

: (C, B) (G3 − H3) (B)3B
]

×(G − H) (C)3C ≥ 0.

Hence � is a monotone operator. Let � ′ be the Fréchet

derivative of � that is,

� ′(E)F = 3

∫

1

0

: (C, B) (E(B))2F(B)3B.

So for any E ∈ �A (G0), G0 (B) ≥ :3 > 0,∀B ∈ (0, 1), we have

� ′(E)F = � ′(G0)((E, G0)F,

where

((E, G0) = ( E
G0

)2.

For the computation, we take

H(C) = 1

720
(26 − 36C + 15C4 − 6C5 − C6)

and H X = H + X. Then, the actual solution is

Ĝ(C) = 1
√

2
(1 − C).

With i1 (_) = _ the function G0 − Ĝ satisfies the source

condition

G0 − Ĝ = i1 (� ′(G0))1.

Thus, an accuracy of order at least $ (X 1

2 ) is expected.

We use the Gauss-Legendre quadrature formula:

∫

1

0

5 (C)3C ≈
=
∑

9=1

F 9 5 (C 9 ),

where the abscissa C 9 and the weight F 9 for n = 25 are as in

[19].

The discretized form of (10) is as follows: G X
=+1,U:

(C8) =

G X=,U:
(C8) − V[� (G X=,U:

) (C8) − IXU:
+ U:

2
(G X=,U:

(C8) − G0 (C0))]
where

IXU = ()∗) + U: �)−1)∗ (H X − )� (G0) (C0)) + � (G0) (C0)

and
∑

25

9=1
08 9G(C 9 )3 with

08 9 =

{

F 9 C 9 (1 − C8) if 9 ≤ 8

F 9 C8 (1 − C 9 ) if 8 < 9
.

We choose 0 = 1.5, U0 = (1.3)X, and ` = 1.1.

The relative error
| |G:−Ĝ | |
| | Ĝ | | and the residual error

‖)� (G: )−Ĝ ‖
X1/2 for V = 0.5 are given in Table I below.

TABLE I
Iterations and corresponding error estimates

X U:
| |G:−Ĝ | |
| | Ĝ | |

‖)� (G: )−HX ‖
‖HX ‖

0.01 0.014641 0.60548222632 1.13715579036

0.005 0.0073205 0.60548222632 1.209913876288

0.001 0.0014641 0.58876640464 1.212214660751

IAENG International Journal of Applied Mathematics, 51:1, IJAM_51_1_18

Volume 51, Issue 1: March 2021 (Revised online publication:  16 May 2021)

 
______________________________________________________________________________________ 



References

[1] Argyros, I. K. Convergence and Application of Newton-type Iterations,
Springer, 2008.

[2] Argyros, I. K. A Semilocal convergence for directional Newton meth-
ods, Math.Comput.(AMS). 80, 327-343, 2011.

[3] Bakushinskii, A. B. The problem of convergence of the iteratively
regularized Gauss-Newton method, Comput. Math. Math. Phys., 32,
1353-1359, 1992.

[4] Blaschke, B., Neubauer, A. and Scherzer, O. On convergence rates for
the iteratively regularized Gauss-Newton method IMA J.Numer.Anal.,
17, 421-436, 1997.

[5] Engl, H. W., Kunisch, K. and Neubauer, A. Convergence rates for
Tikhonov regularization of nonlinear ill-posed problems, Inverse Prob-
lems, 5, 523-540, 1989.

[6] George, S. Newton-Tikhonov regularization of ill-posed Hammerstein
operator equation, J. Inverse and Ill-Posed Problems, 14(2), 135-146,
2006.

[7] George, S. and Thamban Nair, M. A modified Newton-Lavrentiev
regularization for nonlinear ill-posed Hammerstein operator equations,
J. Complexity and Ill-Posed Problems, 24, 228-240, 2008.

[8] George, S. and Kunhanandan, M. An iterative regularization method
for Ill-posed Hammerstein type operator equation, J.Inv.Ill-Posed Prob-
lems 17, 831-844, 2009.

[9] Santhosh George and Monnanda Erappa Shobha, Newton type iter-
ation for Tikhonov regularization of non-linear ill-posed Hammer-
stein type equations, J Appl Math Comput (2014) 44:69–82, DOI
10.1007/s12190-013-0681-1. ISSN: 1598-5865 (print version)ISSN:
1865-2085 (electronic version) , 2014.

[10] Monnanda Erappa Shobha and Santhosh George, On Improving the
Semilocal Convergence of Newton-Type Iterative Method for Ill-posed
Hammerstein Type Operator Equations, IAENG International Journal
of Applied Mathematics, vol. 43, no.2, pp.64-70, 2013

[11] Groetsch, C. W. Theory of Tikhonov regularization for Fredholm
Equation of the first kind, Pitmann Books, 1984.

[12] Kaltenbacher, B. A posteriori parameter choice strategies for some
Newton-type methods for the regularization of nonlinear ill-posed
problems, Numer. Math., 79, 501-528, 1998.

[13] Krasnoselskii, M. A., Zabreiko, P. P., Pustylnik, E. I. and Sobolevskii,
P. E. Integral operators in spaces of summable functions (Translated
by T.Ando, Noordhoff International publishing, Leyden, 1976).

[14] Langer, S. and Hohage, T. Convergence analysis of an inexact it-
eratively regularized Gauss-Newton method under general source
conditions, J.Inverse Ill-Posed Probl., 15, 19-35, 2007.

[15] Mahale, P. and Nair, M. T. A simplified generalized Gauss-Newton
method for nonlinear ill-posed problems, Math. Comp., 78(265), 171-
184, 2009.

[16] Pereverzev, S. and Schock, E. On the adaptive selection of the
parameter in regularization of ill-posed problems, SIAM. J. Numer.
Anal., 43(5), 2060-2076, 2005.

[17] Ramm, A. G., Smirnova, A. B. and Favini, A. Continuous modified
Newton’s-type method for nonlinear operator equations. Ann.Mat.Pura
Appl. 182, 37-52, 2003.

[18] Semenova, E.V. Lavrentiev regularization and balancing principle
for solving ill-posed problems with monotone operators, Comput.
Methods Appl. Math., 4, 444-454, 2010.

[19] Sreedeep, C.D. Iterative Regularization Theory for Non-Linear Ill-
Posed Problems, Doctoral Thesis NITK, 2019.

Modification:

1) Modified on 3rd of May 2021.

2) Affiliation of the first author was MAHE earlier, which

is elaborated in the revised form as "Manipal Academy of

Higher Education"

Shobha M Erappa recieved Ph.D from department of Mathematical and
Computational Sciences, National Institute of Technology Karantaka under
the supervision of Prof. Santhosh George At present she is a favulty in
the department of Mathematics, Manipal Institute of Technology, Manipal
Academy of Higher Education, Manipal, India. Her research topics are
inverse and ill-posed problems.

Santhosh George pursued his Ph.D in Mathematics from Goa University.
He is presently working as a Professor in the department of Mathematical
and Computational Sciences, National Institute of Technology Karnataka,
India. He has several publications in the reputed international journals
and proceedings of international conferences. His research area includes
Functional Analysis, Inverse and Ill-posed problems and its applications.
He has guided nine PhDs and two are ongoing.

IAENG International Journal of Applied Mathematics, 51:1, IJAM_51_1_18

Volume 51, Issue 1: March 2021 (Revised online publication:  16 May 2021)

 
______________________________________________________________________________________ 




