
 

 

Abstract—Numerous studies points out that the return rate 

distribution of portfolio is generally asymmetric. To quantify 

the asymmetry of return distribution, the third-order central 

moment is introduced to generate a larger payoff in addition to 

expected mean and variance. This study regards the return rate 

as asymmetric triangular fuzzy number and then constructs a 

tri-objective fuzzy portfolio model, including mean, variance 

and skewness, within the constraint of V-shape transaction cost. 

To effectively solve the tri-objective model, a novel algorithm 

named tolerantly complete layering method is designed. This 

method takes investors’ tolerance for each objective into 

account, expands the feasible region, and can provides different 

optimal solutions. By a practical numerical example, we present 

the effectiveness of our model and method. Finally, compared 

with the method given by Chang (2009), it is pointed out that 

our method can generate diverse optimal solutions, which is 

more flexible to satisfy investors’ subjective preference for each 

objective. 

 

Index Terms—third-order central moment, Triangular 

fuzzy number, credibility theory, mean-variance- 

skewness, tolerantly complete layering method 

 

I. INTRODUCTION 

S a hot topic of modern finance theory, portfolio 

selection aims to obtain a kind of combination of 

securities which can best meet an investor’s demand for 

return and risk. The classical mean-variance model [1]–[2] is 

proposed by Markowitz. This model takes expected value 

and variance as the measures to quantify return and risk, and 

assumes that asset return follows a normal distribution. This 

model is viewed as the pioneer for modern portfolio selection, 

and some typical researchers, such as Sharpe et al. [3], 

Merton [4], Giove et al. [5] and Gupta et al. [6], have done 
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lots of research work to develop this model. In addition, 

considering that investors’ demand is always complex, it is 

necessary to build up the multi-objective portfolio model in 

practical financial market, which has been studied  by [7]–

[11]. 

As mentioned above, the mean-variance model regards 

expected value and variance as the measures to quantify 

return and risk of a portfolio. Namely, the model only 

considers the first-order moment and the second-order 

moment of asset return rate. In fact, these two factors are not 

typically competent to explain the performance of portfolios 

in the practical financial market. Afterwards, many studies 

indicate that some higher order moments of asset return can 

better account for the problem. For example, Arditti et al. [12] 

analyzed the multi-period portfolio efficiency with the 

consideration of third-order moment; Bhattacharyya et al. [13] 

presented a fuzzy tri-objective model within third-order 

moment based on the interval analysis; Li et al. [14] 

presented a model that uses the moments of first, second and 

third order of fuzzy returns; Jiang et al. [15] constructed a 

model for assets with systematic skewness and then 

researched on the influence of systematic skewness. Thus, it 

is meaningful to build up a portfolio model that considers 

expected value, variance and skewness, simultaneously. 

Meanwhile, many researchers also realized that transaction 

cost is another critical factor for the portfolio optimization 

problem. For example, in [16], it is pointed out that portfolio 

will lose efficiency if the transaction cost is not taken into 

account; By analyzing the empirical data, Yoshimoto [17] 

obtained the similar conclusion to [16]; Roy et al. [18] 

presented the model that quantifies the transaction cost as 

fuzzy number and then adopted different methods to defuzzy; 

Fang et al. [19] also put forward a portfolio model within the 

constraint of  transaction cost in fuzzy environment; Liu et al. 

[20] took the small transaction cost into account and make the 

analysis about the allocation of investment ratios; Deng et al. 

[21] adopted skewness and entropy in an intuitionistic fuzzy 

model and then presented an operator named “max-min” to 

solve their model. Except for transaction cost, some of the 

portfolio applications involve some revision of an existing 

portfolio according to the variation of financial market and 

the investors’ risk preference. Similarly, in our paper, we will 

take three criteria into account: expected value, variance and 

skewness, to build up the corresponding portfolio model 

within transaction cost which can rebalance the existing 

portfolio. 

We also pay attention to the fact that in recent years, more 

and more researchers prefer to use fuzzy variable rather than 
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random variable to denoted return rate. As we know, Bellman 

and Bellman [22] proposed the fuzzy decision theory in 1970 

which can offer some theory basis for portfolio research. 

Since then, many researchers did the portfolio research in 

fuzzy environment. For example, Ramaswamy [23] found a 

new way for portfolio selection on the basis of fuzzy decision 

theory; Deng et al. [24] researched on the possibility theory 

and then presented a fuzzy portfolio model within borrowing 

constraint; [25] – [29] also studied fuzzy portfolio from 

different aspects. As portfolio models become more and more 

complex, how to solve the model becomes another hottest 

topic. For different kinds of models, many researchers 

proposed various solving algorithms, such as [30] – [32] 

presented several linear or nonlinear programming methods; 

Chang et al. [33]–[34], Dastkhan et al. [35] and Xiang et al. 

[36] put forward some intelligence algorithms; Deng et al. 

[37] presented strictly mathematical method to solve 

portfolio models.  

The rest of this paper is organized as follows. In Section 2, 

the credibility theory is introduced including three basic 

definitions and some common properties. In Section 3, the 

fuzzy M-V-Sk model within transaction costs is constructed. 

In Section 4, the concept and process of the tolerantly 

complete layering method are clearly stated and then adopted 

to solve our proposed model. By a numerical example, we 

present the effectiveness of our model and method in Section 

5. Finally, the conclusion of our work is given in Section 6. 

II. MEAN, VARIANCE, SKEWNESS OF FUZZY VARIABLES 

A. Credibility Theory 

Fuzzy set, put forward by Zadeh [38], is determined by the 

membership function. One of the common tools used for 

defuzzification is the possibility theory [39]. However, this 

theory not only deviates from the law of truth conservation, 

but also deviates from the laws of excluded middle and 

contradiction (see Liu [40]). This problem is caused by the 

non-self-duality of the possibilistic measure. In fact, 

self-duality is essential to a measure in mathematical models 

and financial markets. Thus, in theory and practical 

application, this property should be satisfied. As we know, 

the maximum possibility value 1 means that we cannot obtain 

any information from a fuzzy event. Since in some particular 

case, possibility being 1 means that any value on a domain is 

possible. At this time, the corresponding possibility measure 

is then said to be vacuous. The credibility theory put forward 

by Liu [40] is developed on the basis of possibility theory. 

This theory emphasizes on self-duality and defines that the 

fuzzy event with credibility value 1 is inevitable. For its 

effectiveness, we take credibility theory as the main tool for 

defuzzification. That is, the return of portfolio will be 

denoted as fuzzy variable and the credibility measure will be 

used to defuzzy the variable. 

Definition 1. [40] Let   be a membership function, R  

be the real number system. Then A R  , x R , the 

credibility of  fuzzy event A   is 

 
1

Cr A sup ( ) 1 sup ( )
2 Cx A x A

x x  
 

 
    

 
.
 (1)

 

Formula (1) is called the credibility inversion theorem 

because we can derive   from the credibility of    by the 

following way: 

  ( ) 2Cr 1,   x x x R      . (2) 

B. Expected Value 

Expected value can be regarded as the average credibility 

of a fuzzy variable, and it is usually used for the quantitative 

comparison of fuzzy variables. 

Definition 2. [40] The expected value of   is given by: 

   
0

0
[ ] Cr d Cr dE x x x x  




     . (3)

 

It should be noted that the above integrals are required to 

be finite. 

Obviously, any expected value belongs to R . If the result 

is finite, that is, the expected value exists, it means that 

effective expected value is achieved; otherwise, if the finite 

result does not exist, it means non-effective expected value is 

achieved. 

C. Variance 

Variance can describe the deviation between the 

distribution of a fuzzy variable and its expected value. A 

smaller variance will lead to a distribution closer to the 

expected value; conversely, it indicates that the distribution 

around the expected value is unsteady. 

Definition 3. Suppose the expected value e  of   is finite, 

then its variance is given by: 

 2 2

0
[ ] [( ) ] Cr ( ) dV E e e x x  



     . (4) 

Namely, 

 
0

[ ] Cr ( ) ( ) dV e x e x x  


      . (5) 

According to the definition above, it is not difficult to find 

that variance involves the part that “  is less than  e (the 

expected value) ” and the part that “  is greater than e ”. In 

most studies, it is common to take the expected value and 

variance as a kind of measure to quantify return and risk of 

portfolio. 

D. Skewness 

Definition 4. Suppose the expected value e  of   is finite, 

then its skewness is given by:  

     

3 3

03 3

0

[ ] E[( E[ ]) ] E[( ) ]

         Cr d Cr d .

Sk e

e r r e r r

   

 




   

      
 (6) 

It turns out that if  , the membership function of   , is 

symmetric, then its left tail will be symmetrical to the right 

tail and we have [ ] 0Sk   . A negative skewness implies the 

left tail is stronger than the right tail; similarly, a positive 

value denotes that the right tail is stronger. Skewness is 

crucial in practical financial markets, because the asset 

returns distribution is usually asymmetric, in other words, the 

skewness of assets is usually positive or negative but not 0. 

By understanding the skew state of the data, we can better 

estimate the efficiency of a portfolio. 

Example 1. By giving , ,a b c  that belongs to R , 

a b c  , the triangular fuzzy number   is defined with the 

membership function: 
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According to    Cr Cr 1x x     and (1), the 

credibility of   is 

 

0,               if ,

,    if ,
2( )

Cr
2

,  if ,
2( )

1,                 if ,

x a

x a
a x b

b a
x

x c b
b x c

c b

x c







  


  

   
 




 (8) 

 

1,                   if ,

2
,    if ,

2( )
Cr

,       if ,
2( )

0,                  if .

x a

b a x
a x b

b a
x

c x
b x c

c b

x c






 
  


  

  
 




 (9) 

Example 2. Suppose   is a fuzzy number with (7), it is 

trivial to obtain the following results:  

2
[ ]

4

a b c
E 

 
 . (10) 

3 2 2 333 21 11
[ ]

384
V

    




  
  (11) 

2( ) ( 2 )
[ ]

32

c a c a b
Sk 

  
 . (12) 

where    max , , min ,c b b a c b b a       .  

Theorem. If   and   are the independent fuzzy variables 

with finite expected values, let  ,   be two numbers 

belonging to R , according to  (3) –(6), we can get that 

[ ] [ ] [ ];E E E         (13) 

[ ] [ ] ;E E       (14) 

[ ] [ ];V V     (15) 

[ ] [ ].Sk Sk     (16) 

III. THE MEAN-VARIANCE-SKEWNESS PORTFOLIO MODELS 

WITHIN/WITHOUT TRANSACTION COSTS 

Markowitz presented the classical portfolio model in [1]–

[2] with the method to construct the optimal portfolio by 

maximizing the return under a fixed risk level or minimizing 

the  risk under a fixed return level in a presupposed stochastic 

environment. As mentioned above, he took the expected 

value and variance as a kind of measures to quantify return 

and risk. 

For convenience,  let ix  denote the investment ratios that 

will be assigned to the -thi  asset ( 1,2, , )i n ; 
0

ix  denote 

the investment ratio that have assigned to the -thi  asset; iu , 

il  respectively represent the upper and lower bounds of ix ; 

ik  be the ratio of transaction cost of the -thi  asset; 
i  be the 

return rate of the -thi  asset and denote by fuzzy variable. 

Now, we use a column vector 1 2( , , , )T

nx x xx  to 

represent the portfolio, then its return rate can be denoted by 

1

n

i ii
x

 . In this paper, prime ( T ) is used to denote the 

transposition of a matrix. In addition, the variables 
i  are all 

independent. 

Suppose that the investment strategy is self-financed, 

namely, any additional fund will not be invested in the 

adjusting process of portfolio. Then, for the -thi  asset, its 

transaction cost is expressed by 
0( ) | | .i i i i iC x k x x   (17) 

By (17), we can directly get that the total transaction cost 

of the investment strategy x
 
is  

0

1 1

( ) ( ) | |
n n

i i i i i

i i

C C x k x x
 

   x .
 (18) 

According to (3)–(5), we can construct a M-V-Sk portfolio 

model without transaction costs, as shown below: 

1

1 1 2 2

1 1 2 2

1

max  [ ] [ ]

min  [ ] [ ]

max  [ ] [ ]

s.t.    1,

         ,   1, 2, , ,

n

i ii

n n

n n

n

ii

i i i

E x E

V V x x x

Sk Sk x x x

x

l x u i n

 

   

   





 

    


   





  





 (19) 

In practical financial markets, it is necessary to consider 

the impact of transaction cost. Thus, we modify the model to 

introduce transaction costs, as shown below: 

1

1 1 2 2

1 1 2 2

1

max  [ ] ( ) [ ] ( )

min  [ ] [ ]

max  [ ] [ ]

s.t.    1,

         ,   1, 2, , .

n
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n
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i i i

E C x E C

V V x x x

Sk Sk x x x

x

l x u i n

 

   

   





   

    


   





  





x x

 (20) 

If
 i  is the triangular fuzzy number determined by the 

parameters , ,i i ia b c , then  1 1 1
, ,

n n n

i i i i i ii i i
x a x b x c

  
    . 

By (20), we can obtain the following specific M-V-Sk model 

within transaction costs: 

   

1 1 1

3 2 2 3

2

1 1

1

2

max  [ ] ( ) ( )
4

33 21 11
min  [ ]

384

2

max  [ ]
32
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         ,   1,2, , .
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Where 
1 1 1

,  ,  ,
n n n

i i i i i i

i i i

a x a b x b c x c
  

       max c 

  , ,  min ,b b a c b b a            . 
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IV. TOLERANTLY COMPLETE LAYERING METHOD 

A. The Basic Ideas of Tolerantly Complete Layering Method  

Suppose there is a multi-objective minimization model as 

follows: 

1min[ ( )] ,m

s s s
X

L P f x 



x

 (22) 

where m  represents the number of the objective functions 

and 2m  ; ( )s sP f x presents that the objective function 

( )sf x  is located on the s th  layer. Each objective function 

will be allocated a different priority, and they will be placed 

at different priority layers. It means that for each priority 

layer, there is only one objective function. According to the 

priority, the optimal solution of each layer will be gradually 

obtained, and that of the last layer will be taken as the optimal 

solution of (22). This stated idea is called complete layering 

method. 

We pay attention to the fact that if the optimal solution of 

an intermediate priority layer is unique, then it must be the 

optimal solution of the last layer. In this case, it is not 

necessary to enter the next priority layer. To better handle this 

case, the following improvement is considered for the 

complete layering method: after solving each priority layer, 

the appropriate tolerant mounts will be given to adjust the 

range of optimal solutions. It means that the feasible region of 

the next layer function will be properly relaxed. Such 

improved method for solving (22) is called tolerantly 

complete layering method. 

B. Computation Steps of Tolerantly Complete Layering 

Method  

Step 1: Define the initial feasible region. Take 1
X X  and 

: 1s  . 

Step 2: Minimize the layering question. Solve the minimi- 

zation question of the -ths  priority layer function min ( )
s s

X
f

x

x  

to obtain the optimal solution 
s

x , then the corresponding 

value ( )s

sf x  can be calculated. 

Step 3: Check the times of iterations. In other words, check 

the priority of the current layer. 

1) If s m , output 
mx x ; 

2) If s m , then go on Step 4. 

Step 4: Construct the feasible region for the next layer. 

Provide the tolerant amount s  of the -ths  priority layer 

with 0s  , and then the tolerant feasible region of the 

 1 -ths   priority layer will be 

 1 ( ) ( )s s s

s s sX X f f     x x x . (23) 

Make : 1s s  , turn to Step 2. 

V. NUMERICAL EXAMPLE 

In this section, a practical dataset will be used to present 

the effectiveness of our  M-V-Sk model and solving method. 

This dataset contains the return of 10 securities, which are 

characterized by triangular fuzzy numbers, as shown in Table 

I. 

TABLE I 

RETURNS OF 10 STOCKS AND THE CORRESPONDING EXPECTED VALUES 

asset i  ia  
ib  

ic  [ ]iE   

1 0.2  2.1 2.5 1.6250 

2 0.1  1.9 3.0 1.6750 

3 0.4  3.0 4.0 2.4000 

4 0.1  2.0 2.5 1.6000 

5 0.6  3.0 4.0 2.3500 

6 0.2  2.5 3.0 1.9500 

7 0.2  3.0 3.5 2.3250 

8 0.4  2.5 4.0 2.1500 

9 0.3  2.8 3.2 2.1250 

10 0.3  2.0 2.5 1.5500 

According to (21), we assume 
00.003, 0i ik x   and then 

obtain the M-V-Sk model with transaction costs (See (24)) 

with 
1 2 3 4 5 6 72.3 2.0 3.4 2.1 3.6 2.7 3.2x x x x x x x       

 

8 9 102.9 3.1 2.3x x x   , 
1 2 3 40.4 1.1 1.0 0.5x x x x     

5 6 7 8 9 101.0 0.5 0.5 1.5 0.4 0.5x x x x x x     .
 

A. Using Tolerantly Complete Layering Method  

Next, we will solve (24) by the tolerantly complete 

layering method proposed in this paper. 

Step 1: Define the initial feasible region. Take 

10

1 1
1,

0.05 0.8, 1,2, ,10.

ii

i

x
X X

x i



  
   

    


x  (25) 

and : 1s  . 

Step 2: Minimize the 1 th  layering question. After solving 

the minimization question of the 1 th  priority layer 

objective function: 





1 1 2 3 4 5

6 7 8 9 10

3 2 2 3

2

1 2 3

3

min  ( ) [ ] ( ) 1.622 1.672 2.397 1.597 2.347

                  1.947 2.322 2.147 2.122 1.547

33 21 11
min  ( ) [ ]

384

2.7 3.1 4.4 2.6 

min  ( ) [ ]

f E C x x x x x

x x x x x

f V

x x x x

f Sk



    






        

    

  
 

  

  

x x

x

x

2

4 5 1 2 3 4 5

6 7 8 9 10 6 7 8 9 10

10

1

4.6 1.9 0.9 2.4 1.6 2.6

3.2 3.7 4.4 3.5 2.8 2.2 2.7 1.4 2.7 1.8

32

s.t.   1,

       0.05 0.8, 1,2, ,10.

ii

i

x x x x x x

x x x x x x x x x x

x

x i











        
   

           






  



 (24)
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1 1 1 2 3 4

5 6 7 8

9 10

min ( ) (1.622 1.672 2.397 1.597

                   2.347 1.947 2.322 2.147

                   2.122 1.547 ),

X
f x x x x

x x x x

x x


    

   

 

x

x

 (26) 

the optimal solution 
1

x  and the optimal function value 
1

1( )f x  are obtained as follows: 

1 (0.05,0.05,0.55,0.05,0.05,0.05,0.05,0.05,0.05,0.05) ,Tx  

1

1( ) 2.1845f  x . 

Step 3: Check the times of iterations. Obviously, 1s    
3m  , thus, we go to Step 4. 

Step 4: Construct the feasible region for the next layer. In this 

step, the tolerant amount of the 1-th  priority layer is set to

1 0.10 0   , and then, the tolerant feasible region of the 

2-th  priority layer will be 

 2 1 1

1 1 1

10

1

1

( ) ( )

1,

     0.05 0.8, 1,2, ,10,

( ) 2.1845 0.10.

ii

i

X X f f

x

x i

f





   

 
 
 

    
   
  



x x x

x

x

 (27) 

Make : 1s s  , we turn to Step 2. 

Step 2: Minimize the 2 th  layering question. Go on to 

solve the minimization question of the 2 th  priority layer 

objective function 

2

3 2 2 3

2

33 21 11
min ( )

384X
f

    



  


x

x . (28) 

The optimal solution 
2

x  and the optimal function value 
2

2 ( )f x  are obtained as follows: 

2 (0.05,0.05,0.05,0.1362,0.05,0.05,0.4638,0.05,0.05,0.05)Tx

2

2 ( ) 0.8240f x . 

Step 3: Check the times of iterations. Go on to check the 

priority of the current layer. Since 2 3s m   , we still 

need to turn to Step 4 again. 

Step 4: Construct the feasible region of the next layer. In this 

step, the tolerant amount of the 2-th  priority layer is set to

2 0.06 0   , and the tolerant feasible region of the 3-th  

priority layer is 

 3 2 2

2 2 2

1 2 10

1

2

( ) ( )

1,

0.05 0.8, 1,2, ,10,
     

( ) 2.1845 0.10,

( ) 0.8240 0.06.

i

X X f f

x x x

x i

f

f

   

     
 

   
  

   
   

x x x

x
x

x

 (29) 

 

Make : 1s s  , we turn to Step 2. 

Step 2: Minimize the layering question. By solving the 

minimization question of the 3-th  priority layer objective 

function 







3 3 1 2 3 4 5

2

6 7 8 9 10

1 2 3 4 5

6 7 8

min  ( ) 2.7 3.1 4.4 2.6 4.6 

                     3.2 3.7 4.4 3.5 2.8

                    1.9  0.9  2.4 1.6  2.6

                     2.2 2.7 1.4 2.7

X
f x x x x x

x x x x x

x x x x x

x x x x


     

    

    

  

x

x

9 101.8 / 32x

 (30) 

the optimal solution 
3

x  and the optimal function value
3

3 ( )f x  are obtained as: 

3 (0.05,0.1462,0.05,0.05,0.05,0.05,0.4538,0.05,0.05,0.05)Tx  

3

3( ) 0.8575f x . 

Step 3: Check the times of iterations. Now, we have

3s m  , thus we should output the final result: 
3 (0.05,0.1462,0.05,0.05,0.05,0.05,0.4538,0.05,0.05,0.05) .T x x

1 2 3( ) 2.0845, ( ) 0.8242, ( ) 0.8575.f f f    x x x  

According to these results, we can see that the expected 

mean, variance and skewness are 2.0845, 0.8242 and -0.8575, 

respectively. 

For further analysis, we change the tolerant amounts of the 

1-th priority layer (because the 1-th priority layer will affect 

all the layers in the rear), and then obtain different optimal 

solutions of (24), as shown in Table II. Besides, the objective 

function values of each solution are calculated and then 

shown in Fig 1. 

Form Table II and Fig 1, we can conclude that: 

1) The expected mean increases while the variance 

increases. 

2) The skewness value is negative at all time, which points 

out that the returns of 10 securities described by 

triangular fuzzy numbers are not symmetrical, but 

skewed to the left. 

3) As the expected mean increases, the absolute value of 

skewness increases. It means that the corresponding 

skewness degree becomes larger along with the 

enlarging of the expected mean.  

4) Since the expected mean, skewness degree and variance 

have the same trend, investors can easily adjust the 

portfolio strategy to meet their risk preference by 

choosing a suitable value for 
1 . As we can see, if the 

value of 
1  increases, the expected mean, skewness 

degree and variance will decrease. Thus, if investors are 

risk averse, they can choose a smaller value for 
1 ; 

otherwise, a bigger value of 
1  will be more appropriate. 

TABLE II 

THE VALUES OF MEAN, VARIANCE AND SKEWNESS OF (24) AS TO DIFFERENT VALUES OF TOLERANT AMOUNT 

1  
2  

1x  2x  3x  4x  5x  6x  7x  8x  9x  10x  mean var sk 

0.07 0.06 0.05 0.1000 0.05 0.05 0.05 0.05 0.5000 0.05 0.05 0.05 2.1145 0.8484 -0.9041 

0.10 0.06 0.05 0.1462 0.05 0.05 0.05 0.05 0.4538 0.05 0.05 0.05 2.0845 0.8242 -0.8575 

0.13 0.06 0.05 0.1923 0.05 0.05 0.05 0.05 0.4077 0.05 0.05 0.05 2.0545 0.8005 -0.8121 
0.16 0.06 0.05 0.2385 0.05 0.05 0.05 0.05 0.3615 0.05 0.05 0.05 2.0245 0.7771 -0.7678 

0.21 0.06 0.05 0.3154 0.05 0.05 0.05 0.05 0.2846 0.05 0.05 0.05 1.9745 0.7391 -0.6964 

0.26 0.06 0.05 0.3923 0.05 0.05 0.05 0.05 0.2077 0.05 0.05 0.05 1.9245 0.7022 -0.6280 
0.31 0.06 0.05 0.4395 0.05 0.05 0.05 0.05 0.05 0.1605 0.05 0.05 1.8745 0.6847 -0.5615 

0.36 0.06 0.05 0.5447 0.05 0.05 0.05 0.05 0.05 0.0553 0.05 0.05 1.8245 0.6325 -0.4998 

 0.37 0.06 0.05 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 1.8220 0.6299 -0.4969 
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Fig. 1.  The expected mean, variance and skewness of (24) 

B. Comparison with Linearly Weighted Method  

To better describe the superiority of the proposed method, 

we also use the linearly weighted method presented by Chang 

[33] to solve (24). It is written as 

1

2
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1

min

min

min
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       0.05 0.8, 1,2, ,10.

ii
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f

f

f

x

x i
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Where 
1 2 3, ,f f f  are the same as (24).  

According to the linearly weighted method, we need to 

choose a pair of values ,   as the preferred parameters of 

1 2,f f . And then, (31) is written as: 

1 2 3

10

1

min (1 )
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       0.05 0.8, 1,2, ,10.

ii

i

f f f

x

x i

   



   





  

  (32) 

If we fix the values of  ,  , it is doubtless that the optimal 

solution of (32) will be unique. For instance, let 0.2  , 

0.4  , we have 

(0.05,0.55,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05) .Tx  

In this case, the values of each objective functions are 

1( ) 1.8220f  x , 2 ( ) 0.6299f  x , 
3( ) 0.4969f x . That 

is, the expected mean, variance and skewness are 1.8220, 

0.6299 and 0.4969 . Compared with the tolerantly complete 

layering method, for the same model as (24), it should be 

noted our method can provide multiple groups of solutions 

based on the investors’ tolerance amount, which really 

reflects the investors’ preference for each objective function. 

VI. CONCLUSION 

Considering that skewness and transaction cost are 

indispensable to the practical financial market, we present a 

M-V-Sk portfolio model within transaction costs and 

asymmetric triangular fuzzy return rates. Skewness can 

measure the degree of asymmetry and quantify the skewness 

degree to the center point. To solve our model, a novel 

algorithm called tolerantly complete layering method is 

proposed. For the same model, o our method can provide 

multiple optimal solutions which can reflect the investor’s 

subjective preferences for each objective, while the linearly 

weighted method of Chang [33] can only offer one solution. 

The tolerantly complete layer method considers investors’ 

subjective preference and allows them to choose the proper 

tolerant amounts to construct the tolerant feasible region, thus 

it is effective and useful in the practical financial market. 

In the future, we will develop another intelligent multi- 

objective algorithm that not only reflects investor’s 

preferences but also has an outstanding performance in 

accuracy and convergence speed.. 
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