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Abstract—The main goal of this paper is to study the one-
dimensional perturbation L = H+V , where H is the harmonic
oscillator and V is a decreasing scalar potential. It is well known
that the eigenvalues of L can be expressed as 2k + 1 + µk.
The main result of the paper is to describe an asymptotic
formula for the fluctuation {µk} when k tends to infinity.

Index Terms—Averaging method, Pseudo-differential opera-
tor, Perturbation theory, Spectrum, Eigenvalue asymptotics.

I. INTRODUCTION

WE consider in L2(R) the harmonic oscillator H
defined by:

H = − d2

dx2
+ x2. (1)

We recall that H is a differential operator self-adjoint with
compact resolvent [1]. Its spectrum is the sequence of
simple eigenvalues {λk = 2k + 1}k∈N.

Let V ∈ C∞(R,R) be a scalar potential that satisfies
the following estimate:

|V (n)(x)| ≤ Cn√
1 + x2

, x ∈ R, n ∈ N. (2)

The operator L = H + V is self-adjoint with compact
resolvent [2]. By using the Min-Max theorem [3], we
can confirm that the spectrum of L can be written in the
form {λk + µk}. Our main goal is to study the asymptotic
behavior of the fluctuation µk when k tends to infinity. Our
main result:

Theorem 1 [Main Theorem]:
µk admits the following asymptotic expansion:

µk =
1

π

∫ π
2

−π2

V (
√
λk sin t)dt+O(

log2λk

λ1−η
k

) (3)

where η is arbitrarily chosen in
]
0, 1

2

[
.

Many authors are interested in this kind of problem,
among them we can qote M.Klein [4] who studied the
perturbation:

D = − d2

dx2
+ x2 + q(x), (4)
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such that: q, q′ and x→
∫ x

0

q(s)ds are bounded.

He proved that µk admits the following asymptotic expan-
sion:

µk =
1

2π

∫ π

−π
q(
√
λksinθ) dθ +O(k

−1
3 ), k → +∞.

(5)
We recall that we studied in [5] the perturbation (6):

− d2m

dx2m
+ x2m + V (x), m ∈ N∗, (6)

where V is a decreasing scalar potential verifying the fol-
lowing estimate:

|V (n)(x)| ≤ Cn(1 + x2)
− s2 , x ∈ R, n ∈ N, s ∈ R∗+ − {1} .

(7)
We proved that µk admits the following asymptotic behavior:

µk =
1

T

∫ 1

−1

V (yλ
1

2m

k )

(1− y2m)1− 1
2m

dy + O(λ
−δ−1
2m

k ), ∀m ≥ 2,

(8)
where

T =

∫ 1

−1

(1− u2m)
1

2m
−1

du, (9)

and
δ =

{
s if 0 < s < 1,
1 if s > 1.

(10)

For ”m = 1” which is the harmonic oscillator case, we
proved that:

µk =
1

π

∫ π
2

−π2
V
(√

λk sin t
)
dt+O

(
λ−δ+ηk

)
, (11)

where
η ∈

]
0,
δ

2

[
. (12)

We established the asymptotic behavior of µk, but the case
”s = 1” which is very classic was a borderline case. In this
work we manage to give the best possible estimate for µk.
Our main tool is the averaging method of Weinstein ([6], [7]),
it consists of replacing V in L = H + V by the average:

V =
1

π

∫ π

0

e−itHV eitHdt.

Since V commutes with H , the spectrum of L = H + V is
the sequence of eigenvalues {λk + µk}, where µk is exactly
the kth eigenvalue of V .
The main advantage of this method is that the spectrum of
L = H + V and L are very close, to be precise L and
L are almost unitary equivalent and

[
H,V

]
= 0. We start

by studying the spectrum of L, then that of L. This paper
is organized as follows: The first section contains auxiliary
facts concerning some required proprieties of Weyl pseudo-
differential operators. In the second section we will compare
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the spectrum of L and L and we will prove that L and L
are almost unitary equivalent. The last section is devoted for
functional calculus of the operator H in order to give the
asymptotic expansion of µk.

II. SOME WELL-KNOWN PROPRIETIES OF
PSEUDO-DIFFERENTIAL OPERATORS (OPD) IN THE

WEYL’S SENCE

In this section, we recall some well-known proprieties
of pseudo-differential operators, and we will announce
Proposition 3 which is the main tool in this work.

We start by introducing the definition of the temperate
weight function.

Definition 1.
We call temperate weight on Rd, (d ∈ N∗), every continuous
function m : Rd → [0,+∞[ that checks: there exist positive
constants C0, N0 > 0 such that:

m(x) ≤ C0.m(x1).(1 + |x1 − x|)N0 ,

for every x, x1 ∈ Rd.

Let ρ ∈ [0, 1], p, q ∈ R. We denote by Γp,qρ the space
of symbols associated with the temperate weight function :

(x, ξ)→ (1 + x2 + ξ2)
p
2 logq(2+x2 +ξ2), (x, ξ) ∈ R×R.

(13)
Precisely the space of function a ∈ C∞(R2) satisfies:
∀α, β ∈ N,∃Cα,β > 0, such that:∣∣∣∂αx ∂βξ a(x, ξ)

∣∣∣ ≤ Cα,β(1 + x2 + ξ2)
p−ρ(α+β)

2 logq(2+x2+ξ2).

(14)
We will use the standard Weyl quantization of symbols. To
be precise, if a ∈ Γp,qρ , then for u ∈ S(R) the operator
associated is defined by :

opw(a)u(x) =
1

(2π)
2

∫
R×R

ei<x−y,ξ>a(x+y
2 , ξ)u(y)dydξ.

(15)
Let’s introduce the notion of asymptotic expansion.

Definition 2.
Let aj ∈ Γ

pj ,q
ρ (j ∈ N∗), we suppose that pj is a decreasing

sequence tending to −∞. We say that a ∈ C∞(R × R)

admits an asymptotic expansion: a ∼
∞∑
j=1

aj

if

a−
r−1∑
j=1

aj ∈ Γpr,qρ ∀r ≥ 2

We use the notation Σp,qρ for the set of operators opw(a) if
a ∈ Γp,qρ .

Remark 1.
If A is an operator whose Weyl symbol is polynomial of
degree m, then A ∈ Σm,01 , in particular the Weyl symbol of
the operator H is σH(x, ξ) = x2 + ξ2, thus H ∈ Σ2,0

1 .
In order to prove our main results, we shall recall some
well-known results.

Theorem 2 [Calderon-Vailloncourt Theorem [8]].
If a ∈ Γ0,0

0 , then the operator opw(a) is bounded on L2(R).

Proposition 1 [Compactness].
If a ∈ Γp,qρ , p < 0, and ρ ∈ [0, 1], then the operator opw(a)
is compact on L2(R).

We will need the following proposition for the composition
of pseudo-differential operators:

Proposition 2.
Let A ∈ Σp,qρ , B ∈ Σp1,q1ρ , ρ ∈ ]0, 1], p, p1, q and q1 ∈ R.
The operator AB ∈ Σp+p1,q+q1ρ . Its Weyl symbol admits the
following asymptotic behavior:

c ∼
∑
j≥0

cj .

In particular:

c(x, ξ)− a(x, ξ).b(x, ξ) ∈ Γp+p1−2ρ,q+q1
ρ , (16)

where

cj =
1

2j

∑
α+β=j

(−1)
β

α!β!
(∂αξ ∂

β
xa)(∂αx ∂

β
ξ b). (17)

a and b are respectively the Weyl symbol of A and B.
In the next proposition we will give an extention of the case
”ρ = 0”, we have the following result:

Proposition 3.
If A ∈ Σp,q1 and (Bi)i∈{1,...m} is the set of operators where
Bi ∈ Σpi,qi0 then:
(i) The operator AB1 ∈ Σp+p1,q+q10 , its Weyl symbol is
given in formula (17), where cj ∈ Γp+p1−j,q+q10 .

(ii) B1B2.....BmH
− p1+p2+....pm

2 log−(q1+q2+....qm)(2 + H)
is bounded.

Proof: The proof of Proposition 3 looks like that of
[proposition 1.1 (see[9])], for easy reading we will resume
the demonstration. Before proving the previous proposition,
we will need to use the following results concerning some
functional calculus for the operator H , we recall that the
functional calculus on (OPD) was studied in the case where
the functions are in the Hörmander class Sr1 (r ∈ R) see
([10],[11]). In our work we treat the case of the operator H
where the function f is defined by:

f(x) = xp logq(2 + x). (18)

A direct calculation shows that :∣∣fk(x)
∣∣ ≤ ck(1 + x)

p−k
logq(2 + x), x > e− 2. (19)

To prove the Proposition 3-ii/, we need the following lemma:

Lemma 1.
f(H) is an OPD included in

∑ 2p,q
1 and its Weyl symbol

admits the following development:

σf(H) ∼
∑
j≥0

σf(H),2j ,

σf(H),2j =

3j∑
k=2j

(−1)k
dj,k
k!

f (k)(σH) ∀j ≥ 1,
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where dj,k ∈ Γ2k−4j,0
1 , σf(H),2j ∈ Γ2p−4j,q

1 .
In particular:

σf(H),0 = f(σH).

Proof of Lemma 1: for studying f(H) we follow the
same strategy in [11] , we will use the Mellin transformation,
which consists of:
(1) Studying the operator (H − λ)

−1.
(2) Studying the operator H−s using its Cauchy’s integral
formula:

H−s =
1

2πi

∫
∆

λ−s(H − λ)
−1
dλ.

(3) Studying f(H) using the representation formula:

f(H) =
1

2πi

∫ ρ+i∞

ρ−i∞
M [f ](s)H−sds.

We only change the construction of the (H − λ)−1-
parametrix. We prove by induction that (H−λ)−1 is an OPD
and its Weyl symbol admits the development bλ ∼

∑
bj,λ

where:
b0,λ = (σH − λ)

−1
,

b2j+1,λ = 0,

b2j,λ =
3j∑
k=2j

(−1)
k
dj,k.b

k+1
0,λ , dj,k ∈ Γ2k−4j,0

1 .

This yields the conclusion.
Let’s go back to the proof of Proposition 3.

(i) We proceed as in (appendix [9]). We denote by a
the Weyl symbol of A, and b that of B1. The Weyl symbol
c of the operator AB1 is defined by:

c(x, ξ) =
1

π2

∫
e−2i(ρr−ωτ)a(x+ω, ρ+ξ)b(x+r, τ+ξ)dρdτdrdω,

(20)
for every (x, ξ) ∈ R× R.
We split the oscillator integral c into two parts c(1) and c(2),
then we use the cutoff functions:

ω1,ε(x, ξ, ω, τ, r, ρ) = χ
[
ω2+ρ2+r2+τ2

ε(1+x2+ξ2)

]
and

ω2,ε = 1− ω1,ε,

where:
χ ∈ C∞0 (R), χ ≡ 1 in [−1, 1], χ ≡ 0 in R\ ]−2, 2[, and
ε > 0.
Let’s consider:

dj(x, ξ, ω, τ, r, ρ) = ωj,ε(x, ξ, ω, τ, r, ρ)a(x+ω, ρ+ξ)b(x+r, ρ+ξ)
(21)

c(1) (resp c(2)) is the integral obtained in the equation
(20) by replacing the amplitude by d1 (resp d

2
).

Study of c(2) :
On the support of d2 we have:

ω2 + ρ2 + r2 + τ2 ≥ 2ε(1 + x2 + ξ2).

We integrate by part using the operator:

M = 1
2 (ω2 + ρ2 + r2 + τ2)

−1
(−ρ∂r − r∂ρ + τ∂ω + ω∂τ ).

We have for all k ∈ N:

c(2) =
1

π2

∫
e−2i(rρ−ωτ)(tM)

k
d2 dρ dω dτ dr.

Thus, we obtain for all k > 0:

c(2)(x, ξ) ∈ Γp+p1−k,q+q10 . (22)

Study of c(1) :
The function: (ω, τ, r, ρ) → d1(x, ξ, ω, τ, r, ρ) is with com-
pact support, we deduce from [proposition II 26 (see [10])]
that: for every N ∈ N, we have:

c(1)(x, ξ) =
N∑
j=0

cj(x, ξ) +RN+1(x, ξ), (23)

where

cj =
1

2j

∑
|α+β|=j

(−1)
|β|

α!β!
(∂αξ ∂

β
xa)(∂αx ∂

β
ξ b), (24)

and

|RN+1(x, ξ)| ≤ cN
∥∥∥(∂ω∂τ − ∂r∂ρ)N+1

d1

∥∥∥
H3(R4)

. (25)

Since a ∈ Γp,q1 and b ∈ Γp1,q10 , we have for every j ≤ N :

cj ∈ Γp+p1−j,q+q10 (26)

Let’s study the rest. From inequality (25) we have :

|RN+1(x, ξ)| ≤ CN
∑
|γ|≤3

γ∈N4

∥∥∥(∂ω∂τ − ∂r∂ρ)N+1∂γω,τ,r,ρd1

∥∥∥
L2(R4)

≤ CN
(
1 + x2 + ξ2

)2 ×
sup

[ω2+ρ2+r2+τ2≤2ε(1+x2+ξ2)]
|γ|≤3

∣∣∣(∂ω∂τ − ∂r∂ρ)N+1∂γω,τ,r,ρd1

∣∣∣ .
For |γ| ≤ 3, we have:

(∂ω∂τ − ∂r∂ρ)N+1
∂γω,τ,r,ρd1 =

(N + 1)!
∑

α+β=N+1

(−1)
β

α!β!
∂βω∂

β
τ ∂

α
r ∂

α
ρ ∂

γ
ω,τ,r,ρd1. (27)

Since a (resp b) is independent of (τ, r) (resp (ω, ρ)), thus
for γ = (γ1, γ2, γ3, γ4) we have:∣∣∂βω∂βτ ∂αr ∂αρ ∂γω,τ,r,ρd1

∣∣
≤ C

∑
∆

∣∣∂i1ω ∂r1ρ a∣∣ . ∣∣∂j1τ ∂k1r b∣∣. ∣∣∂i2ω ∂j2τ ∂k2r ∂r2ρ ω1,ε

∣∣ , (28)

where

∆ =



i1 + i2 = β + γ1,
ip ≤ β + γ1,
j1 + j2 = β + γ2,
jp ≤ β + γ2

k1 + k2 = α+ γ3,
kp ≤ α+ γ3

r1 + r2 = α+ γ4,
rp ≤ α+ γ4.

For ε small enough and on the support of ω1,ε, we have:∣∣∣∂i2ω ∂j2τ ∂k2r ∂r2ρ ω1,ε

∣∣∣ ≤ C(1 + x2 + ξ2)− 1
2

(i2+j2+k2+r2)
. (29)

There exist positive constants c, c′, C, C ′ such that:

c(1 + x2 + ξ2)
1
2 ≤ (1 + (x+ ω)2 + (ρ+ ξ)2)

1
2 ,

(1 + (x+ ω)2 + (ρ+ ξ)2)
1
2 ≤ C(1 + x2 + ξ2)

1
2 ,

c′(1 + x2 + ξ2)
1
2 ≤ (1 + (x+ r)2 + (τ + ξ)2)

1
2 ,

(1 + (x+ r)2 + (τ + ξ)2)
1
2 ≤ C′(1 + x2 + ξ2)

1
2 .
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and positive constants m,m′,M,M ′ such that:


m log(2 + x2 + ξ2) ≤ log(2 + (x+ ω)

2
+ (ρ+ ξ)

2
),

log(2 + (x+ ω)
2

+ (ρ+ ξ)
2
) ≤M log(2 + x2 + ξ2),

m′ log(2 + x2 + ξ2) ≤ log(2 + (x+ r)
2

+ (τ + ξ)
2
),

log(2 + (x+ r)
2

+ (τ + ξ)
2
) ≤M ′ log(2 + x2 + ξ2).

Due to the fact that a ∈ Γp,q1 and b ∈ Γp1,q10 , we obtain:∣∣∂βω∂βτ ∂αr ∂αρ ∂γω,τ,r,ρd1

∣∣ ≤ C(1 + x2 + ξ2
) p+p1

2 ×

logq+q1(2 + x2 + ξ2).
∑

(1 + x2 + ξ2)
−
i1+r1+i2+j2+r2+k2

2 .
(30)

Since:

i1 + r1 + i2 + j2 + r2 + k2 = N + 1 + γ1 + γ4 + j2 + k2.

It follows then:∣∣∂βω∂βτ ∂αr ∂αρ ∂γω,τ,r,ρd1

∣∣ ≤ C(1 + x2 + ξ2
) p+p1−(N+1)

2 ×

logq+q1(2 + x2 + ξ2). (31)

From equations (27) and (31), we get:∣∣∣(∂ω∂τ − ∂r∂ρ)N+1
∂γω,τ,r,ρd1

∣∣∣ ≤ C(1 + x2 + ξ2
) p+p1−(N+1)

2

×logq+q1(2 + x2 + ξ2). (32)

Finally and from what follows, we obtain the estimate of
RN+1:

|RN+1| ≤ CN
(
1 + x2 + ξ2

) p+p1−(N+1)+4
2 logq+q1(2+x2+ξ2).

(33)
The same estimates holds for ∂αx ∂

β
ξ RN+1.

The rest of the symbole c is given by:

δN+1(x, ξ) = RN+1(x, ξ) + c(2)(x, ξ). (34)

By combining the equations (22), (33) and (34), we get the
following estimate of δN+1:

δN+1(x, ξ) = cN+1 + cN+2 + ....+ cN+k + δN+1+k.

By choosing k ≥ 4, we have:

δN+1 ∈ Γ
p+p1−(N+1),q+q1
0 .

(ii) It is enough to do the demonstration for m = 2.

We notice that:

B1B2H
− p1+p2

2 log−(q1+q2)(2 +H) = T.S,

where
T = B1H

−p12 log−q1(2 +H), (35)

and

S = logq1(2 +H)H
p1
2 B2H

− p1+p2
2 log−(q1+q2)(2 +H). (36)

By applying Lemma 1, we obtain:

H−
p1
2 log−q1(2 +H) ∈

∑−p1,−q1
1 . (37)

Since B1 ∈ Σp1,q10 , by combining the equation (37) and
Proposition 3-i/, we get:

T = B1H
−p12 log−q1(2 +H) ∈

∑
0,0
0 . (38)

By using the Theorem 2, we conclude that the operator T is
bounded, we prove by the same way that S is also bounded.
Finally we deduce that:

B1B2H
−p1+p2

2 log−(q1+q2)(2 +H) = T.S,

is bounded.
This completes the proof of Proposition 3.

III. THE RELATION BETWEEN THE SPECTRUM OF L AND
L

In this section we will prove the relation between µk
and µ̄k, for this reason we will use the averaging method
of Weinstein. Let’s first recall that the Hamiltonian flow
associated to the symbol of the operator H:

σH(x, ξ) = x2 + ξ2, x, ξ ∈ R,

is a group with a parameter whose elements are square matrix
of size 2:

χt =

(
cos 2t − sin 2t
sin 2t cos 2t

)
(39)

Recall again that this flow is periodic of period π, to start
the averaging method we intoduce the following operators:

W (t) = e−itHV eitH ,

V =
1

π

∫ π

0

W (t)dt,

V =
1

2πi

∫ π

0

∫ t

0

[W (t),W (r)]drdt.

Since H commute with V , the spectrum of L is {λk + µk},
where µ̄k is the kth eigenvalue of V . To compare µk and
µ̄k we will need the following lemmas:

Lemma 2.[
H,V

]
= 0.

Proof: After we derive W (t), we obtain:

dW (t)

dt
=

1

i
[H,W (t)] . (40)

For now we have:[
H,V

]
=

i

π

∫ π

0

dW (t)

dt
dt =

i

π
(W (π)−W (0)). (41)

Since eπiH = −idL2(R), we get W (π) = W (0).

Finally, we deduce that
[
H,V

]
= 0.

Lemma 3.

i/V ∈ Σ−1,1
0 , ii/V ∈ Σ−2+2η,2

0 ,

where η ∈
]
0, 1

2

[
.

Proof: i/ The Weyl symbol of the operator W (t) is given
by:

σW (t) = V oχt, (42)

where χt is the flow given in (39).
This is due, on the one hand, to the fact that eitH belongs to
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the metaplectic group, and on the other hand, to the invari-
ance that Weyl quantification has for this group ([12],[13]).
The Weyl symbol of V is obtained by integrating the symbol
of W (t) uniformly with respect to t.

σV (x, ξ) =
1

π

∫ π

0

V (x cos 2t+ ξ sin 2t)dt. (43)

Applying the inequality (2), we get the following estimate,
for α, β ∈ N and x, ξ ∈ R:∣∣∣∂αx ∂βξ σV (x, ξ)

∣∣∣ ≤ Cα,β∫ π

0

[
1 + (x cos 2t+ ξ sin 2t)

2
]−1

2

dt.

(44)∣∣∣∂αx ∂βξ σV̄ (x, ξ)
∣∣∣ ≤ Cα,β∫ π

2

0

[
1 + (x2 + ξ2)sin2t

]−1
2

dt.

(45)
We put r =

√
x2 + ξ2, then we obtain:∣∣∣∂αx ∂βξ σV̄ ∣∣∣ ≤ Cα,β
(∫ π

4

0

dt√
1 + r2sin2t

+

∫ π
2

π
4

dt√
1 + r2sin2t

)
.

(46)
It is clair that:∫ π

2

π
4

dt√
1 + r2sin2t

=

∫ π
4

0

dt√
1 + r2cos2t

.

On
[
0, π4

]
, cos t ≥ sin t, so we have:∣∣∣∂αx ∂βξ σV̄ (x, ξ)

∣∣∣ ≤ C ∫ π
4

0

dt√
1 + r2sin2t

. (47)

Finally we apply the change of variable ”u = tg(t)”,

then ”v = u
√

1 + r2”, we get:∣∣∣∂αx ∂βξ σV̄ ∣∣∣ ≤ C log(2 + r2)√
1 + r2

≤ C(1 + x2 + ξ2)
−1
2 log(2+x2+ξ2).

(48)
We conclude that V ∈ Σ−1,1

0 .

ii/ According to the previous calculations, the operator

B(t) =

∫ t

0

W (r)dr belongs to Σ−1,1
0 , its Weyl symbol

σB(t) checks:∣∣∣∂αx ∂βξ σB(t)(x, ξ)
∣∣∣ ≤ Cα,β(1 + x2 + ξ2)

−1
2 log(2+x2 +ξ2),

(49)
uniformly with respect to t.

Let’s start by clarifying the class of the operator∫ π

0

W (t)B(t)dt. For now we are interested in the operator

W (t)B(t), its Weyl symbol ct is given in [10] as:

ct(x, ξ) =
1

π2

∫
e−2i(rρ−ωτ)σW (t)(x+ ω, ξ + ρ)

×σB(t)(x+ r, ξ + τ)dρdωdτdr. (50)

We split the oscillator integral ct into two parts c(1)
t c

(2)
t ,

then we use the cutoff functions:

ω1,ε(x, ξ, ω, τ, r, ρ) = χ

[
ω2+ρ2+r2+τ2

ε(1+x2+ξ2)
η
2

]
and

ω2,ε = 1− ω1,ε,

where: χ ∈ C∞0 (R), χ ≡ 1 in [−1, 1], χ ≡ 0 in R\ ]−2, 2[,
R = ω2 + ρ2 + r2 + τ2, ε > 0 and η ∈

]
0, 1

2

[
.

Let’s consider:
dj(x, ξ, ω, τ, r, ρ) = ωj,ε(x, ξ, ω, τ, r, ρ)σW (t)(x+ ω, ρ+ ξ)

×σB(t)(x+ r, ρ+ ξ) (51)

c
(1)
t (resp c(2)

t ) is the integral obtained in (50) by replacing
the amplitude by d1 (resp d2 ):

Study of c(2)
t :

On the support of d2 we have R ≥ ε(1 + x2 + ξ2)
η
2 .

We integrate by parts using the operator:

M = 1
2iR (−ρ∂r − r∂ρ + τ∂ω + ω∂τ ).

We have for all k ∈ N:

c
(2)
t =

1

π2

∫
e−2i(rρ−ωτ)(tM)

k
d2 dρ dω dτ dr.

Then we obtain for all k > 0:∣∣∣c(2)
t

∣∣∣ ≤ Ck(1 + x2 + ξ2)
−ηk
4 ,

uniformly with respect to t ∈ [0, π].

Study of c(1)
t :

On the support of d1 we have:

c
(1)
t =

1

π2

∫
R≤2ε(1+x2+ξ2)

η
2

e−2i(rρ−ωτ)σW (t)(x+ ω, ξ + ρ)

× σB(t)(x+ r, ξ + τ)ω1,εdρdωdτdr. (52)

Then:∫ π

0

∣∣∣c(1)
t

∣∣∣dt ≤ c ∫
R≤2ε(1+x2+ξ2)

η
2

dρdωdτdr

×
∫ π

0

∣∣σW (t)(x+ ω, ξ + ρ)
∣∣dt

×
∫ π

0

∣∣σB(t)(x+ r, ξ + τ)
∣∣dt. (53)

On the support of d1, for ε small enough and since η ∈]
0, 1

2

[
, there exist positive constants c, c′, C, C ′ such that:

c(1 + x2 + ξ2)
1
2 ≤ (1 + (x+ ω)2 + (ρ+ ξ)2)

1
2 ,

(1 + (x+ ω)2 + (ρ+ ξ)2)
1
2 ≤ C(1 + x2 + ξ2)

1
2 ,

c′(1 + x2 + ξ2)
1
2 ≤ (1 + (x+ r)2 + (τ + ξ)2)

1
2 ,

(1 + (x+ r)2 + (τ + ξ)2)
1
2 ≤ C′(1 + x2 + ξ2)

1
2 .

and positive constants m,m′,M,M ′ such that:
m log(2 + x2 + ξ2) ≤ log(2 + (x+ ω)

2
+ (ρ+ ξ)

2
),

log(2 + (x+ ω)
2

+ (ρ+ ξ)
2
) ≤M log(2 + x2 + ξ2),

m′ log(2 + x2 + ξ2) ≤ log(2 + (x+ r)
2

+ (τ + ξ)
2
),

log(2 + (x+ r)
2

+ (τ + ξ)
2
) ≤M ′ log(2 + x2 + ξ2).

Therefore:∫ π

0

c
(1)
t dt ≤ C(1 + x2 + ξ2)

−1
log2(2 + x2 + ξ2)

×
∫
R≤2ε(1+x2+ξ2)

η
2

dρdωdτdr. (54)

Finally, we obtain:∫ π

0

c
(1)
t dt ≤ c(1 + x2 + ξ2)

−1+η
log2(2 + x2 + ξ2). (55)
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At the end, and by denoting σ the Weyl symbol of

the operator
∫ π

0

W (t)B(t)dt, we have:

|σ| ≤
∫ π

0

∣∣∣c(1)
t

∣∣∣dt+

∫ π

0

∣∣∣c(2)
t

∣∣∣dt
≤ C(1 + x2 + ξ2)

−2+2η
2 log2(2 + x2 + ξ2).

We conclude that V ∈ Σ−2+2η,2
0 .

In order to compare the spectrum of L and L, we will
need the following proposition:

Proposition 4.
There exists a skew-symmetric operator Q ∈ Σ−1,1

0 such
that the operator (eQLe−Q − L)H1−ηlog−2(2 + H) is
bounded.

Proof: We follow the same strategy as in [proposition
5.1 [5]], we start by considering the following operator:

Q = Q1 +Q2, (56)

where
Q1 =

i

π

∫ π

0

(π − t)W (t)dt,

and

Q2 =
−1

2π

∫ π

0

(π − t)
∫ t

0

[W (t),W (r)]drdt.

By following the same calculations in Lemma 3, we obtain:
Q1 ∈ Σ−1,1

0 and Q2 ∈ Σ−2+2η,2
0 , thus Q ∈ Σ−1,1

0 .
Before starting the demonstration, we will need the
following lemma:

Lemma 4.
i/ [Q1, H] = V − V.
ii/ [Q2, H] = −V − 1

2 [Q1, V ] .

Proof: i/ By using the equation (40), we have:

[Q1, H] =
i

π

∫ π

0

(π − t)dW (t)

dt
dt

= V − V.
. (57)

ii/ Again, by using the equation (40), we obtain:

[Q2, H] =
−1

2π

∫ π

0

(π − t)
∫ t

0

[[W (t),W (r)] , H]drdt

=
i

2π

∫ π

0

(π − t)
∫ t

0

([
W (t),W

′
(r)
]

+
[
W
′
(t),W (r)

])
drdt.

We set:

F (t) =
1

π

∫ t

0

W (r)dr.

On the one hand:

i

2π

∫ π

0

(π − t)
∫ t

0

[
W (t),W

′
(r)
]
drdt

=
i

2π

∫ π

0

(π − t)
[
W (t),

∫ t

0

W
′
(r)dr

]
dt

=
−i
2π

∫ π

0

(π − t) [W (t), V ]dt

= −1
2 [Q1, V ] .

.

On the other hand:

i

2π

∫ π

0

(π − t)
∫ t

0

[
W
′
(t),W (r)

]
drdt

=
i

2

∫ π

0

(π − t)
[
W
′
(t), F (t)

]
dt

=
i

2

∫ π

0

(π − t) d
dt

([W (t), F (t)])dt

=
i

2
([(π − t) [W (t), F (t)]]

π
0 +

∫ π

0

[W (t), F (t)]dt)

= −V .

.

At the end, we get:

[Q2, H] = −V − 1

2
[Q1, V ] . (58)

Let’s go back to the proof of Proposition 4.
We set AdQ.L = [Q,L]. The differential equation:{

dX
dt = [Q,X]
X(0) = L,

(59)

admits a unique solution:

X(t) = etADQ.L = etQLe−tQ. (60)

According to Lemma 4, we deduce that:

eQLe−Q − L̄ =

{
−V +

1

2
[Q2, V ]

}
+

1

2

{[
Q,V

]
+

1

2
[Q, [Q1, V ]]

}
+

1

2

{
[Q, [Q2, V ]]−

[
Q,V

]}
+
∑
n≥2

(AdQ)n

(n+ 1)!
[Q,H] +

∑
n≥3

(AdQ)n

n!
V . (61)

In a view of the Proposition 3, and since H ∈ Σ2,0
1 ,

V ∈
∑ 0,0

0 , V ∈
∑−1,1

0 , Q1, Q ∈
∑−1,1

0 and
Q2, V ∈

∑−2+2η,2
0 ,

we obtain:∥∥∥∥(−V +
1

2
[Q2, V ])H1−ηlog−2(2 +H)

∥∥∥∥ ≤ c,∥∥([Q,V ]+ 1
2

[Q, [Q1, V ]]
)
Hlog−2(2 +H)

∥∥ ≤ c,∥∥∥([Q, [Q2, V ]]−
[
Q,V

])
H

3
2
−ηlog−3(2 +H)

∥∥∥ ≤ c,∥∥(ADQ)n [Q,H]Hlog−2(2 +H)
∥∥ ≤ c‖Q‖n−2 (n ≥ 2),∥∥(ADQ)nV Hlog−2(2 +H)

∥∥ ≤ c‖Q‖n−2 (n ≥ 3).
(62)

Combining the equations (61) and (62), we deduce that:

(eQLe−Q − L)H1−ηlog−2(2 +H) (63)

is bounded.

Now we can compare µk and µk, from what follows we
deduce that there exists a constant c > 0 such that:

−cH−1+ηlog2(2 +H) ≤ eQLe−Q − L̄ ≤ cH−1+ηlog2(2 +H)
(64)

Finally by applying the Min-Max theorem, we deduce the
relation between µk and µ̄k :

µk = µ̄k +O

(
log2λk

λ1−η
k

)
. (65)
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IV. THE ASYMPTOTIC BEHAVIOR OF µk

We recall that µk is exactly the kth eigenvalue of V , in
this section we start by determining the asymptotic behavior
of µk, then by using the equation (65) we deduce that of µk,
in polar coordinate the Weyl symbol of V is written as:

σV =
1

2π

∫ 2π

0

V (rsint)dt, (66)

where r =
√
x2 + ξ2.

We have :
σV = f(σH), (67)

where the function f is defined by :

f(x) =
1

π

∫ π
2

−π2
V (
√
x sin t)dt.

A direct calculation shows that:{
|f(x)| ≤ c(1 + |x|)

−1
2 log(2 + |x|),∣∣f (k)(x)

∣∣ ≤ Ck(1 + |x|)−
1
2−

k
2 , k ≥ 1.

(68)

In order to give the asymptotic behavior of µk we need
to use a functionnal calculus for the operator H . In this
case we treat the the operator H where the function f
satisfies the estimate (68). The operator f(H) is defined
by a functional calculus of self-adjoint operators, hence the
spectrum of f(H) is the sequence {f(λk)}k, we have the
following proposition:

Proposition 5.
f(H) is an OPD included in

∑−1,1
0 , its Weyl symbol admits

the following development:

σf(H) ∼
∑
j≥0

σf(H),2j

σf(H),2j =

3j∑
k=2j

dj,k
k!

f (k)(σH) ∀j ≥ 1,

where dj,k ∈ Γ2k−4j,0
1 and σf(H),2j ∈ Γ−1−j,0

0 .
In particular:

σf(H),0 = f(σH) = σV .

Proof: We prove the Proposition 5 by the same way
as in Lemma 1, the only change is the Hörmander class to
which f belongs.∣∣fk(x)

∣∣ ≤ ck(1 + |x|)−
1
2−

1
2k, k ≥ 1 (69)

Now we will prove Theorem 1.

Proof of Theorem 1: By applying the Proposition 5, we
have:

f(H) ∈
∑−1,1

0 , V − f(H) ∈
∑−2,0

0 . (70)

By combining the equation (70) and the Proposition 3-ii/,
we deduce that:

(
V − f(H)

)
H is bounded.

Therefore, there exists c > 0 such that :

−cH−1 ≤ V − f(H) ≤ cH−1.

Applying the Min-Max theorem, we deduce that :

µ̄k = f(λk) +O

(
1

λk

)
. (71)

By combining the equations (65) and (71) we deduce:

µk = f(λk) +O

(
log2λk

λ1−η
k

)
. (72)

Finally we have:

µk =
1

π

∫ π
2

−π2

V (
√
λk sin t)dt+O(

log2λk

λ1−η
k

), (73)

where η ∈
]
0, 1

2

[
.

This complete the proof of Theorem 1.

V. CONCLUSION

The perturbed harmonic oscillator is one of the famous
problems on the spectral theory, because it has many appli-
cations in physics, there are many tools to deal with this
kind of problem, however we choose to use the averaging
method here because the harmonic oscillator has a periodic
flow, we succeeded in giving the asymptotic behavior of it’s
spectrum, in next works we want to go further and deal with
anharmonic oscillators.
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Jean Leray, no. 1, pp. 1–313, 1978.

IAENG International Journal of Applied Mathematics, 51:1, IJAM_51_1_24

Volume 51, Issue 1: March 2021

 
______________________________________________________________________________________ 




