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Abstract—For each of the extended Shapley values due to
Derks and Peters [3] and Peters and Zank [16], we first
propose a corresponding definition of marginal contributions
of a potential, and further demonstrate that these solutions
can be generalized as the vector of corresponding marginal
contributions of a potential. We further propose several equiv-
alent relations and related axiomatizations to demonstrate that
these two solutions are almost coincident in axiomatic approach
except that the loss of amount is different in the axiom of equal
loss.

Index Terms—The Shapley value, potential, axiomatization.

I. INTRODUCTION

In a standard transferable-utility (TU) game, each agent
is either exhaustively concerned or not concerned at all in
occasions with some other agents. However, various actions
would be adopted by each agent under real-world situations
always. A multi-choice TU game is a reasonable extension of
a standard TU game in which each agent could be permitted
to operate at more than one activity actions. Solutions
for multi-choice TU games have been analyzed in various
fields such as environmental science, economics, industrial
engineering and even management science, such as Cheng et
al. [2], Hwang and Liao [9], and so on. Under multi-choice
TU games, we focus on the extended Shapley values due to
Derks and Peters [3], and Peters and Zank [16], which we
name the D&P Shapley value and the P&Z Shapley value.
For each of these two solutions, we extend several overcomes
of Calvo and Santos [1], Hart and Mas-Colell [4], Myerson
[12] and Ortmann [13], [14] to multi-choice TU games.
One interesting overcome among our characterizations is that
the D&P Shapley value “almost” coincides with the P&Z
Shapley value.

First, we demonstrate that each of these two solutions
could be generalized as the vector of marginal contributions
of a potential. The different types of marginal contributions
generalize a comprehension of the difference between these
two solutions.

Second, for each of these two solutions, we analyze the
class of all multi-choice solutions that admit a potential, and
demonstrate that any solution that admits a potential turns
out to be the solution of a specific game. For each of these
two solutions, we also demonstrate the equivalences among
the potentializability, the axioms of balanced contributions
and path independence under an axiom of equal loss.

Third, we offer characterizations of the two solutions by
three different notions: (1) balanced contributions (2) path
independence (3) consistency. We demonstrate that
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• the D&P Shapley value (the P&Z Shapley value) is
the only solution satisfying efficiency, upper balanced
contributions and D&P-equal loss (P&Z-equal loss).

• the D&P Shapley value (the P&Z Shapley value) is the
only solution satisfying efficiency, path independence
and D&P-equal loss (P&Z-equal loss).

• the D&P Shapley value (the P&Z Shapley value) is the
only solution satisfying weak efficiency, upper balanced
contributions, consistency and weak D&P-equal loss
(P&Z-equal loss).

These overcomes point out that the D&P Shapley value
and the P&Z Shapley value are almost coincident in ax-
iomatic approach. The axioms are the same, except that
the loss of amount is different in the axiom of equal loss.
Namely, the difference between these two solutions is only
that one satisfies D&P-equal loss and the other satisfies P&Z-
equal loss. Thus, the different definitions of equal loss also
generalize a comprehension of the difference between these
two solutions.

II. PRELIMINARIES

Let U be the universe of agents. Suppose that each agent
i ∈ U has bi ∈ N managing grades at which it can act. We
use Bi = {0, 1, · · · , bi} to be the managing grade space of
agent i, where 0 means not acting. For P ⊆ U , let BP =∏
i∈P Bi be the product set of the grade spaces for agents

of P . Denote the zero vector as 0P under RP .
A multi-choice game is denoted by (P, b,G), where

P 6= ∅ is a finite set of agents, b = (bi)i∈P is the vector
that represents the amount of managing grades for each
agent, and G : BP → R is a characteristic mapping which
appoints to each χ = (χi)i∈P ∈ BP the value that the agents
can get when each agent i participates at managing grade
χi ∈ Bi with G(0P ) = 0. (P, b,G) will be represented by
G if no confusion can cause. Denote the collection of all
multi-choice games by Ω. Let (P, b,G) ∈ Ω and x ∈ BP ,
one set (P, χ,G) to be the multi-choice subgame given by
restricting G to {ω ∈ BP | ωi ≤ χi ∀i ∈ P}.

Given (P, b,G) ∈ Ω, let KP = {(i, ki) | i ∈ P, ki ∈ B+
i },

where B+
i = Bi \ {0}. A solution on Ω is a mapping τ

appointing to each (P, b,G) ∈ Ω an element

τ(P, b,G) =
(
τi,ki(P, b,G)

)
(i,ki)∈KP ∈ RK

P

,

where τi,ki(P, b,G) is the value of the agent i if i adopts
grade ki to operate G. For convenience, we suppose that
τi,0(P, b,G) = 0 for all i ∈ P .

Given M ⊆ P and χ ∈ RP , we define ‖χ‖ =
∑
k∈P χk,

Q(χ) = {k ∈ P | χk 6= 0} and χM to be the restriction of
χ at M . Let |M | be the amount of elements in M and let
δM ∈ RP be the binary vector with δMi = 1 if i ∈ T and
δMi = 0 if i /∈M .
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Let χ, ω ∈ RP , one define ω ≤ χ if ωi ≤ χi for all i ∈
P . The multi-choice analogue of unanimity games, minimal
effort games (P, b, uχP ) with χ ∈ BP \ {0P }, are defined as
follows. For all ω ∈ BP ,

uχP (ω) =

{
1 if ω ≥ χ,
0 otherwise.

It is also demonstrated that v =
∑

χ∈BP \{0P }
aχ(G) uχP for

(P, b,G) ∈ Ω, where aχ(G) =
∑

M⊆Q(χ)

(−1)|M | G(χ− δM ).

Definition 1: The P&Z Shapley value Γ due to Peters and
Zank [16] is the solution on Ω which associates with each
game (P, b,G), each agent i ∈ P and each grade ki ∈ B+

i

the value 1

Γi,ki(P, b,G) =
∑

χ∈BP , χi=ki

aχ(G)

|Q(χ)|
.

Definition 2: The D&P Shapley value Θ due to Derks
and Peters [3] is the solution on Ω which associates with each
game (P, b,G), each agent i ∈ P and each grade ki ∈ B+

i

the value

Θi,ki(P, b,G) =
∑

χ∈BP , χi≥ki

aχ(G)

‖χ‖
.

Without loss of generality, one could assume that Q(b) =
P . Clearly, the dividend aχ(G) is divided equally among the
“necessary agents” under the solution Γ, and it is divided
equally among the “necessary grades” under the solution Θ.
Based on related overcomes of the solutions Γ and Θ, for
all (P, b,G) ∈ Ω,

∑
i∈P

bi∑
ki=1

Γi,ki(P, b,G) = G(b) =
∑
i∈P

bi∑
ki=1

Θi,ki(P, b,G).

III. POTENTIAL

Inspired by the potential approach due to Hart and Mas-
Colell [4] on standard TU games, this section presents that
for each of these two multi-choice Shapley values, there
exists an extended overcome of Hart and Mas-Colell [4].

Given i ∈ P and χ ∈ RP , we adopt χ−i to stand for
χP\{i} and let ω = (χ−i, ki) ∈ RP be considered by ω−i =
χ−i and ωi = ki. Further, let j ∈ P , χ−ij to stand for
χP\{i,j} and (χ−ij , ki, kj) to stand for

(
(χ−i, ki)−j , kj

)
.

A function H : Ω −→ R is said to be 0-normalized if
H(P, 0P , G) = 0 for each P ⊆ U . For each (i, ki) ∈ KP ,
we offer two different definitions of marginal contribution
as follows.
• The P&Z marginal contribution of (i, ki) in (P, b,G)

is defined to be

Di,ki
1 H(P, b,G)

= H
(
P, (b−i, ki), G

)
−H

(
P, (b−i, ki − 1), G

)
.

• The D&P marginal contribution of (i, ki) in (P, b,G)
is defined to be

Di,ki
2 H(P, b,G)

= H(P, b,G)−H
(
P, (b−i, ki − 1), G

)
.

1Peters and Zank [16] considered the P&Z Shapley value by imposing
linearity and fixing its values on minimal effort games. In this paper we
present the P&Z Shapley value by applying “dividends”.

Definition 3: Let τ be a solution on Ω.
• τ admits a P&Z potential if there exists a mapping H :

Ω → R such that for all (P, b,G) ∈ Ω and for all
(i, ki) ∈ KP , τi,ki(P, b,G) = Di,ki

1 H(P, b,G).
• τ admits a D&P potential if there exists a mapping H :

Ω → R such that for all (P, b,G) ∈ Ω and for all
(i, ki) ∈ KP , τi,ki(P, b,G) = Di,ki

2 H(P, b,G).
Solutions that admit a potential present an evaluation to

each game in such a way that a agent’s value coincides with
this evaluation. Next, we offer a corresponding definition
of efficiency for each of the two marginal contributions as
follows.
• H is P&Z-efficient (P&Z-EFF) if∑

i∈P

bi∑
ki=1

Di,ki
1 H(P, b,G) = G(b) ∀ (P, b,G) ∈ Ω. (1)

• H is D&P-efficient (D&P-EFF) if∑
i∈P

bi∑
ki=1

Di,ki
2 H(P, b,G) = G(b) ∀ (P, b,G) ∈ Ω. (2)

The following outcomes are generalized overcomes of
Hart and Mas-Colell [4]. It demonstrates that the preced-
ing two potential functions are corresponding to the P&Z
Shapley value and the D&P Shapley value respectively. The
different definitions of marginal contributions generalize a
comprehension of the difference between these two extended
Shapley value.

Theorem 1:
1) There exists a uniquely P&Z-EFF and 0-normalized

potential H such that the P&Z Shapley value Γ admits
the P&Z potential H . Furthermore, the P&Z potential
of a game (P, b,G) is uniquely determined by Equation
(1) applied only to the game and its subgames.

2) There exists a uniquely D&P-EFF and 0-normalized
potential H such that the D&P Shapley value Θ admits
the D&P potential H . Furthermore, the D&P potential
of a game (P, b,G) is uniquely determined by Equation
(2) applied only to the game and its subgames.

Proof: To demonstrate the overcome 1, Equation (1)
coincides with

H(P, b,G) =
1

|P |
·
[
G(b) +

∑
i∈P

H
(
P, (b−i, 0), G

)]
. (3)

Starting with H(P, 0P , G), it determines H(P, b,G) recur-
sively. This demonstrates the existence of the P&Z potential
H , and furthermore that H(P, b,G) is uniquely determined
by Equation (3) applied to (P, chi,G) for all chi ∈ BP . Let

H(P, b,G) =
∑

chi∈BP \{0P }

achi(G)

|Q(chi)|
. (4)

Clearly, Equation (1) is matched by P ; hence Equation
(4) defines the uniquely P&Z potential. The overcome 1 now
follows for each (i, ki) ∈ KP , since

Γi,ki(P, b,G) =
∑

chi∈BP , chii=ki

achi(G)

|Q(chi)|
.

Replacing Equation (3) by

H(P, b,G) =
1

‖b‖
·
[
G(b) +

∑
i∈P

bi∑
t=1

H
(
P, (b−i, t− 1), G

)]
,
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it is trivial to generalize that the overcome 2; we omit it.2

IV. EQUIVALENCE AND CHARACTERIZATION (I)

The purpose of this section is to demonstrate that for each
of the two multi-choice Shapley values, there exist equiva-
lence overcomes which are analogues of the overcomes due
to Calvo and Santos [1] and Ortmann [13], [14]. To state
the equivalence overcomes, some more definitions will be
needed. Let τ be a solution on Ω. Then τ matches
• efficiency (EFF) if for each (P, b,G) ∈ Ω,∑

i∈P

bi∑
ki=1

τi,ki(P, b,G) = G(b).

• upper balanced contributions (UBC) if for each
(P, b,G) ∈ Ω and for i, j ∈ P, i 6= j,

τi,bi
(
P, (b−j , bj), G

)
− τi,bi

(
P, (b−j , bj − 1), G

)
= τj,bj

(
P, (b−i, bi), G

)
− τj,bj

(
P, (b−i, bi − 1), G

)
.

• D&P equal loss (D&P-EL) if for each (P, b,G) ∈ Ω
and for each (i, ki) ∈ KP , ki 6= bi,

τi,ki(P, b,G)− τi,ki
(
P, (b−i, bi − 1), G

)
= τi,bi(P, b,G).

• P&Z equal loss (P&Z-EL) if for each (P, b,G) ∈ Ω
and for each (i, ki) ∈ KP , ki 6= bi,

τi,ki(P, b,G)− τi,ki
(
P, (b−i, bi − 1), G

)
= 0.

UBC and D&P-EL, originally introduced by Klijn et al.
[10], are multi-choice analogues of the balanced contribu-
tions notion due to Myerson [12]. UBC asserts that for
every (i, j) of different agents the variation in value for the
managing grade bi of agent i if agent j gets available a
higher managing grade coincides with the variation in value
for the managing grade bj of agent j if agent i gets available
a higher managing grade. D&P-EL asserts that whenever a
agent gets available a higher managing grade the value for all
initial grades varies with an amount coincide with “the value
for the highest grade under new situation”. “Zero” instead
of “the value for the highest grade under new situation” in
D&P-EL, we introduce P&Z-EL.
• A solution τ matches independence of individual

expansions (IIE)3 if for each (P, b,G) ∈ Ω and for
each (i, ki) ∈ KP , ki 6= bi,

τi,ki
(
P, (b−i, ki), G

)
= τi,ki

(
P, (b−i, ki + 1), G

)
= · · ·
= τi,ki(P, b,G).

IIE says that whenever a agent gets available higher man-
aging grade the value for all initial grades is not varied under
condition that other agents are fixed. Clearly, if a solution
matches IIE then it also matches P&Z-EL. Conversely, a
repeated application of P&Z-EL would yield IIE. Thus, IIE
and P&Z-EL are equivalent to each other.

Some weakenings of previous properties are as follows.
Weak efficiency (WEFF), weak D&P equal loss (D&P-
WEL), weak P&Z equal loss (P&Z-WEL) and weak

2Hwang and Liao [5] provided the proof of the overcome 2.
3This property was initially defined by Hwang and Liao [8]

independence of individual expansions (WIIE) assert that
for all (P, b,G) ∈ Ω, |P | = 1, τ matches EFF, D&P-EL,
P&Z-EL and IIE respectively.

Calvo and Santos [1] demonstrated that any solution would
be the Shapley value of an auxiliary game if it admits a
potential. One could consider a multi-choice extension of an
auxiliary game.

Definition 4: Given (P, b,G) ∈ Ω and a solution τ on Ω.
The auxiliary multi-choice game (P, b,Gτ ) is defined by

Gτ (chi) =
∑

i∈Q(chi)

chii∑
ki=1

τi,ki(P, chi,G) ∀ chi ∈ BP .

Clearly, G = Gτ if τ matches EFF.
Ortmann [13], [14] provided characterizations of the po-

tentializability by applying the path independence property
under standard TU situations. To define its analogue under
multi-choice situations, some more notations are needed.

An order for (P, b,G) ∈ Ω is a bijection ρ : KP →
{1, · · · , ‖b‖} matching 4 ρ(i, ki) < ρ(i, ki+ 1) for all i ∈ P
and for all ki ∈ {1, · · · , bi − 1}. Let ρ, ρ′ be two orders for
(P, b,G), one say that ρ′ is a transposition of ρ if there exist
(i, ki), (j, kj) ∈ KP with i 6= j and ρ(j, kj) = ρ(i, ki) +
1, such that ρ′(i, ki) = ρ(j, kj), ρ′(j, kj) = ρ(i, ki) and
ρ′(p, kp) = ρ(p, kp) for all (p, kp) ∈ KP \ {(i, ki), (j, kj)}.
Then it is not difficult to check that each order could be
transformed to another order by adopting transpositions.

Now let ρ be an order and let q ∈ {1, · · · , ‖b‖}. The
managing grade vector that is present after q steps according
to ρ, denoted by sρ,q , is defined as follows. For each i ∈ P ,

sρ,qi = max
(
{ki ∈ B+

i | ρ(i, ki) ≤ q} ∪ {0}
)
.

Definition 5: A solution τ matches path independence
(PI) if for all (P, b,G) ∈ Ω and for all orders ρ, ρ′,

∑
i∈P

bi∑
ki=1

τi,ki(P, s
ρ,(i,ki), G) =

∑
i∈P

bi∑
ki=1

τi,ki(P, s
ρ′,(i,ki), G).

Lemma 1: A solution τ matches PI if and only if τ
matches UBC.

Proof: See Lemma 1 in Hwang and Liao [5].
Next, we present the main overcomes of this section.
Theorem 2: Let τ be a solution on Ω. The following are

equivalent:
1) τ admits a P&Z potential.
2) τ matches UBC and P&Z-EL (or IIE).
3) τ matches PI and P&Z-EL (or IIE).
4) τ(P, b,G) = Γ(P, b,Gτ ) for each (P, b,G) ∈ Ω.

Proof: Let τ be a solution on Ω. Based on Lemma 1,
2 ⇔ 3. To demonstrate 1 ⇒ 2, assume that τ admits a
P&Z potential P . Let (P, b,G) ∈ Ω and (i, bi), (j, bj) ∈ KP ,
i 6= j,

τi,bi(P, b,G)− τi,bi
(
P, (b−j , bj − 1), G

)
= [H(P, b,G)−H

(
P, (b−i, bi − 1), G

)
]

−[H
(
P, (b−j , bj − 1), G

)
−H

(
P, (b−ij , bi − 1, bj − 1), G

)
]

= [H(P, b,G)−H
(
P, (b−j , bj − 1), G

)
]

−[H
(
P, (b−i, bi − 1), G

)
−H

(
P, (b−ij , bi − 1, bj − 1), G

)
]

= τj,bj (P, b,G)− τj,bj
(
P, (b−i, bi − 1), G

)
,

4For convenience, ρ(i, ki) instead of ρ
(
(i, ki)

)
.
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i.e., τ matches UBC. To see that τ matches WIIE, we
demonstrate that it matches IIE. Let (P, b,G) ∈ Ω and
(i, ki) ∈ KP , ki 6= bi. For ki ≤ l ≤ bi,

τi,ki
(
P, (b−i, l), G

)
= P

(
P, (b−i, ki), G

)
− P

(
P, (b−i, ki − 1), G

)
= τi,ki(P, b,G),

i.e., τ matches IIE.
To demonstrate 3 ⇒ 4, assume that τ matches IIE and

PI. Let (P, b,G) ∈ Ω. The proof proceeds by induction on
‖b‖. If ‖b‖ = 1, let P = {i} and bi = 1, then by efficiency
of Γ and the definition of Gτ ,

τi,1(P, b,G) = Gτ (b) = Γi,1(P, b,Gτ ).

Assume that τ(P, b,G) = Γ(P, b,Gτ ) for ‖b‖ ≤ k, where
k ≥ 1.

The condition ‖b‖ = k+1: For every (h, kh) ∈ KP , kh 6=
bh, by induction hypotheses and IIE,

τh,kh(P, b,G) = τh,kh
(
P, (b−h, kh), G

)
= Γh,kh

(
P, (b−h, kh), Gτ

)
= Γh,kh

(
P, b,Gτ

)
.

(5)

It remains to demonstrate that τh,bh(P, b,G) =
Γh,bh(P, b,Gτ ) for all h ∈ P . For h ∈ P , let ρh be an order
with ρh(h, bh) = ‖b‖ = k + 1. Since ‖sρh,ρh(i,ki)‖ ≤ k for
(i, ki) 6= (h, bh), by induction hypotheses,

τh,bh(P, b,G)− Γh,bh(P, b,Gτ )

=
∑
i∈P

bi∑
ki=1

τi,ki(P, s
ρh,ρh(i,ki), G)

−
∑
i∈P

bi∑
ki=1

Γi,ki(P, s
ρh,ρh(i,ki), G)

= Ch.
(
Constant depend on h

)
Similarly, for h′ ∈ P , let ρh′ be an order with ρh′(h′, bh′) =
‖b‖ = k + 1

τh′,bh′ (P, b,G)− Γh′,bh′ (P, b,Gτ )

=
∑
i∈P

bi∑
ki=1

τi,ki(P, s
ρh′ ,ρh′ (i,ki), G)

−
∑
i∈P

bi∑
ki=1

Γi,ki(P, s
ρh′ ,ρh′ (i,ki), G)

= Ch′ .
(
Constant depend on h′

)
Since Γ admits a P&Z potential, Γ matches PI. Then by PI
of τ and Γ, Ch = Ch′ . Hence Ch = d for all h ∈ P .

Let d = τh,bh(P, b,G)−Γh,bh(P, b,Gτ ) for all h ∈ P . By
definition of Gτ , EFF of Γ and Equation (5),

|P | · d =
∑
h∈P

bh∑
kh=1

τh,kh(P, b,G)

−
∑
h∈P

bh∑
kh=1

Γh,kh(P, b,Gτ )

= Gτ (b)−Gτ (b)
= 0.

So, d = τh,bh(P, b,G) − Γh,bh(P, b,Gτ ) = 0 for all h ∈
P . That is, τh,bh(P, b,G) = Γh,bh(P, b,Gτ ) for all h ∈ P .
Hence τ(P, b,G) = Γ(P, b,Gτ ).

To demonstrate 4 ⇒ 1, assume that τ(P, b,G) =
Γ(P, b,Gτ ) for all (P, b,G) ∈ Ω. Since the solution Γ admits
a unique P&Z potential HΓ, we consider a function of τ as

Hτ (P, b,G) = HΓ(P, b,Gτ ) for all (P, b,G) ∈ Ω. Then for
every (i, ki) ∈ KP ,

Hτ

(
P, (b−i, ki), G

)
−Hτ

(
P, (b−i, ki − 1), G

)
= HΓ

(
P, (b−i, ki), Gτ

)
−HΓ

(
P, (b−i, ki − 1), Gτ

)
= Γi,ki(P, b,Gτ )
= τi,ki(P, b,G).

By Definition 3, Hτ is a P&Z potential of τ .
Theorem 3: Let τ be a solution on Ω. The following are

equivalent:
1) τ admits a D&P potential.
2) τ matches UBC and D&P-EL.
3) τ matches PI and D&P-EL.
4) τ(P, b,G) = Θ(P, b,Gτ ) for each (P, b,G) ∈ Ω.

Proof: Please see Theorem 2 in Hwang and Liao [5].

Klijn et al. [10] characterized the D&P Shapley value by
using EFF, D&P-EL and UBC. Based on Lemma 1, Hwang
and Liao [5] characterized the D&P Shapley value by means
of EFF, D&P-EL and PI. P&Z-EL (or IIE) instead of D&P-
EL, we present two axiomatic outcomes of the P&Z Shapley
value. As we mentioned in Introduction, the two solutions
are almost the same in axiomatic approach. The difference
between them is only the different definitions of equal loss.

Theorem 4:
1) A solution τ matches EFF, D&P-EL and UBC if and

only if τ = Θ.
2) A solution τ matches EFF, D&P-EL and PI if and only

if τ = Θ.
Proof: The overcome 1 is Theorems 4.3 of Klijn et al.

[10]. The overcome 2 is Theorem 3 of Hwang and Liao [5].
Clearly, the overcomes 1 and 2 follows by our Theorems 1,
3.

Theorem 5:
1) A solution τ matches EFF, P&Z-EL (or IIE) and UBC

if and only if τ = Γ.
2) A solution τ matches EFF, P&Z-EL (or IIE) and PI if

and only if τ = Γ.
Proof: The overcomes follows by Theorems 1 and 2.

V. CONSISTENCY AND CHARACTERIZATION (II)

By applying potential approach, Hart and Mas-Colell [4]
demonstrated that the Shapley value matches consistency.
Recently, Hwang and Liao [5] offered a proof of consistency
of the D&P Shapley value based on the linearity of the D&P
Shapley value, hence, it suffices to demonstrate consistency
for a minimal effort game. Here we demonstrate that the
P&Z Shapley value also matches consistency by means of
“dividends”.

For T ⊆ P , we denote T c = P \ T . Given a solution
τ , a game (P, b,G) ∈ Ω, and T ⊆ P, T 6= ∅, the reduced
game (T, bT , G

τ
T,b) with respect to τ , T and b is defined as

follows. For each χ ∈ BT ,

GτT,b(χ) = G(χ, bT c)−
∑
i∈T c

bi∑
ki=1

τi,ki
(
P, (χ, bT c), G

)
. (6)

A solution τ is said to be consistent if it always generalizes
coincident payoffs as in the original game when it is applied
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to arbitrary reduction,. Formally, τ matches consistency
(CON) if for each (P, b,G) ∈ Ω, for each T ⊆ P, T 6= ∅,
for each (i, ki) ∈ KT ,

τi,ki(T, bT , G
τ
T,b) = τi,ki(P, b,G). (7)

The following outcome relates the relation of coefficients
of expressions among (P, b,G) and (T, bT , G

Γ
T,b).

Lemma 2: Let (P, b,G) ∈ Ω and T ⊆ P, T 6= ∅. If G =∑
χ∈BP \{0P }

aχ(G) · uχP , then GΓ
T,b can be expressed as

GΓ
T,b =

∑
ω∈BT \{0T }

aω(GΓ
T,b) · uωT ,

where for each ω ∈ BT \ {0T },

aω(GΓ
T,b) =

∑
t≤bTc

|Q(ω)|
|Q(ω)|+ |Q(t)|

· a(ω,t)(G).

Proof: Let (P, b,G) ∈ Ω and T ⊆ P, T 6= ∅. For each
ω ∈ BT \ {0T },

GΓ
T,b(ω)

= G(ω, bT c)−
∑
k∈T c

bk∑
l=1

Γk,l
(
P, (ω, bT c), G

)
=

∑
k∈Q(ω)

ωk∑
l=1

Γk,l
(
P, (ω, bT c), G

)
=

∑
k∈Q(ω)

ωk∑
l=1

∑
γ≤(ω,bTc )

γk=l

aγ(G)
|Q(γ)|

=
∑

k∈Q(ω)

[ ∑
γ≤(ω,bTc )

γk=1

aγ(G)
|Q(γ)| + · · ·+

∑
γ≤(ω,bTc )
γk=ωk

aγ(G)
|Q(γ)|

]
=

∑
k∈Q(ω)

[ ∑
p≤ω
pk=1

∑
t≤bTc

a(p,t)(G)
|Q(p)|+|Q(t)| + · · ·

+
∑
p≤ω
pk=ωk

∑
t≤bTc

a(p,t)(G)
|Q(p)|+|Q(t)|

]
=

∑
p≤ω

∑
t≤bTc

|Q(p)|
|Q(p)|+|Q(t)| · a

(p,t)(G) .

Set āω =
∑

t≤bTc

|Q(ω)|
|Q(ω)|+|Q(t)| · a

(ω,t)(G), we have that

GΓ
T,b =

∑
ω≤bT \{0T }

āω · uωT .

That is,

aω(GΓ
T,b) = āω =

∑
t≤bTc

|Q(ω)|
|Q(ω)|+ |Q(t)|

· a(ω,t)(G).

Theorem 6: The solutions Γ and Θ match CON simulta-
neously.

Proof: Hwang and Liao [5] demonstrated that the solu-
tion Θ matches CON. Let (P, b,G) ∈ Ω and T ⊆ P, T 6= ∅.
By Lemma 2, for each (i, ki) ∈ kT ,

Γi,ki(T, bT , G
Γ
T,b)

=
∑

ω≤bT , ωi=ki

aω(GΓ
T,b)

|Q(ω)|

=
∑

ω≤bT , ωi=ki

1
|Q(ω)| ·

∑
t≤bTc

|Q(ω)|
|Q(ω)|+|Q(t)| · a

(ω,t)(G)

=
∑

ω≤bT , ωi=ki

∑
t≤bTc

a(ω,t)(G)
|Q(ω)|+|Q(t)|

=
∑

χ∈BP , χi=ki

aχ(G)
|Q(χ)|

= Γi,ki(P, b,G).

Hence the solution Γ matches CON.
In the following, we offer the parallel of Lemma 2 with

respect to the D&P Shapley value without the proof.
Remark 1: Let (P, b,G) ∈ Ω and T ⊆ P, T 6= ∅. If G =∑

χ∈BP \{0P }
aχ(G) · uχP , then GΓ

T,b can be expressed as

GΓ
T,b =

∑
ω∈BT \{0T }

aω(GΓ
T,b) · uωT ,

where for each ω ∈ BT \ {0T },

aω(GΓ
T,b) =

∑
t≤bTc

‖ω‖
‖ω‖+ ‖t‖

· a(ω,t)(G).

Lemma 3: A solution τ matches EFF if it matches WEFF
and CON.

Proof: Let τ be a solution matching WEFF and CON,
and (P, b,G) ∈ Ω. It is trivial for |P | = 1 by WEFF. Suppose
that |P | ≥ 2. Consider the reduction

(
{j}, bj , Gτ{j},b

)
with

j ∈ P . By equation (6),

Gτ{j},b(bj) = G(b)−
∑

i∈P\{j}

bi∑
ki=1

τi,ki(P, b,G).

Since τ matches CON,

τj,kj (P, b,G) = τj,kj
(
{j}, bj , Gτ{j},b

)
for all kj ∈ B+

j . Then by WEFF,

bj∑
kj=1

τj,kj (P, b,G) = Gτ{j},b(bj).

So,
∑
i∈P

bi∑
ki=1

τi,ki(P, b,G) = G(b), i.e., τ matches EFF.

The following outcome relates the condition of removing
managing grades of a agent before passing to the reduction
to the condition of removing managing grades of a agent
after the passage. We demonstrate that the order does not
matter.

Lemma 4: Given a solution τ , (P, b,G) ∈ Ω, T ⊆ P , and
ω ∈ BT . Then(

T, ω,GτT,b
)

=
(
T, ω,GτT,(ω,bTc )

)
.

Proof: It is trivial to derive this overcome by the
definitions of a reduction and a subgame, we omit it.

Lemma 5:
1) A solution τ matches P&Z-EL (or IIE) if it matches

P&Z-WEL (or WIIE) and CON.
2) A solution τ matches D&P-EL if it matches D&P-

WEL and CON.
Proof: Hwang and Liao [5] demonstrated the overcome

2. We demonstrate the overcome 1. Assume that a solution
τ matches WIIE and CON. Let (P, b,G) ∈ Ω , i ∈ P
and ki ∈ B+

i , ki 6= bi. Let ωq = (b−i, ki + q) for all
q = 0, 1, 2, · · · , bi − ki. For all q, consider the reduc-
tion

(
{i}, ki + q,Gτ{i},ωq

)
of the subgame (P, ωq, G) of

(P, b,G) with respect to τ , {i} and ωq , and the reduction(
{i}, ki, Gτ{i},ω0

)
of the subgame (P, ω0, G) of (P, b,G)

with respect to τ ,{i} and ω0 respectively. By Lemma 4,(
{i}, ki, Gτ{i},ω0

)
is the subgame of

(
{i}, ki + q,Gτ{i},ωq

)
,
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i.e.,
(
{i}, ki, Gτ{i},ωq

)
=
(
{i}, ki, Gτ{i},ω0

)
. By WIIE and

CON,

τi,ki
(
P, (b−i, ki + q), G

)
= τi,ki(P, ω

q, G) (by ωq = (b−i, ki + q))
= τi,ki

(
{i}, ki + q,Gτ{i},ωq

) (
by CON

)
= τi,ki

(
{i}, ki, Gτ{i},ωq

) (
by WIIE

)
= τi,ki

(
{i}, ki, Gτ{i},ω0

) (
by Lemma 4

)
= τi,ki(P, ω

0, G)
(
by CON

)
= τi,ki

(
P, (b−i, ki), G

)
.

(
by ω0 = (b−i, ki)

)
So, τ matches IIE.

Theorem 7:
1) A solution τ matches WEFF, P&Z-WEL (or WIIE),

UBC and CON if and only if τ = Γ.
2) A solution τ matches WEFF, D&P-WEL, UBC and

CON if and only if τ = Θ.
Proof: Hwang and Liao [5] demonstrated the overcome

(2). The overcome (1) follows by Lemmas 3, 5, and Theo-
rems 5, 6.

The following examples demonstrate that each of the
properties adopted in the overcome (1) of Theorem 7 is
logically independent of the rest of properties.

Example 1: Consider a solution τ by τi,ki(P, b,G) = 0
for all (P, b,G) ∈ Ω and for all (i, ki) ∈ KP . Clearly, τ
matches P&Z-EL (or IIE), UBC and CON, but it doesn’t
match WEFF.

Example 2: By Theorems 4 and 6, the D&P Shapley value
Θ matches EFF, UBC and CON, but it doesn’t match P&Z-
WEL (or WIIE).

Example 3: Consider a solution τ by for all (P, b,G) ∈ Ω
and for all (i, ki) ∈ KP ,

τi,ki(P, b,G) =
G(b−i, ki)−G(b−i, ki − 1)

|Q(b−i, ki)|
.

Clearly, τ matches WEFF, P&Z-WEL (or WIIE) and CON,
but it doesn’t match UBC.

Example 4: Define a solution τ by for all (P, b,G) ∈ Ω
with |P | = 1 or bi = 1 and for all (i, ki) ∈ KP ,

τi,ki(P, b,G) = Γi,ki(P, b,G);

otherwise

τi,ki(P, b,G) =

{
Γi,ki(P, b,G) + ε if ki = bi
Γi,ki(P, b,G)− ε

bi−1 otherwise,

where ε ∈ R \ {0}. Clearly, τ matches EFF, P&Z-WEL (or
WIIE) and UBC, but it doesn’t match CON.

VI. AGENT-GRADE REDUCTION

In this section, a different reduction are considered to
characterize these two extended Shapley values.

Different from the reduction proposed in Section 5, we
consider the agent-grade reduced game by both reducing the
agents and its managing grades as follows.

Definition 6: Given (P, b,G) ∈ Ω, T ∈ 2P \ {∅},
ω ∈ BP\T+ and a solution τ . We consider the agent-grade
reduced game (T, bT , G

T,ω
τ ) related to T , ω and τ as

follows. For all χ ∈ BT ,

GT,ωτ (χ) = G(χ, ω)−
∑
i∈P\T

ωk∑
ki=1

τi,ki(P, (χ, ω), G).

The agent-grade reduction might be described as follows.
When renegotiating the value τ(P, b,G) within T , the grade
vector ω ∈ B

P\T
+ means that the agents in P \ T adopt

nonzero grades based on the grade vector ω to operate with
the coalition T lastingly.
• A solution τ matches agent-grade consistency (AG-

CON) if for all (P, b,G) ∈ Ω, for all T ∈ 2P \
{∅}, for all (i, ki) ∈ KT and for all ω ∈ B

P\T
+ ,

τi,ki(P, (bT , ω), G) = τi,ki(T, bT , G
T,ω
τ ).

Remark 2: Given (P, b,G) ∈ Ω, T ∈ 2P \{∅}, ω = bP\T

and a solution τ . Clearly, G
T,bP\T
τ (χ) = Gτ (χ) for all χ ∈

BT . Thus, a solution matches CON if it matches AGCON.
Lemma 6: The solutions Θ and Γ match AGCON on Ω.

Proof: Let (P, b,G) ∈ Ω, T ∈ 2P \{∅} and ω ∈ BP\T+ .
By Theorem 1, there exists an unique 0-normalized and
P&Z-EFF potential H such that for all (p, kp) ∈ KP ,
Γp,kp(P, b,G) = H(P, (b−p, kp), G) − H(P, (b−p, kp −
1), G). By definition of GΓ

T,ω and EFF of Γ, for all λ ∈ BT ,

GΓ
T,ω(λ)

= G(λ, ω)−
∑

p∈P\T

ωp∑
kp=1

Γp,kp(P, (λ, ω), G)

=
∑

p∈Q(λ)

λp∑
kp=1

Γp,kp
(
P, (λ, ω), G

)
=

∑
p∈Q(λ)

λp∑
kp=1

[
H
(
P, ((λ−p, kp), ω), G

)
−H

(
P, ((λ−p, kp − 1), ω), G

)]
.

(8)

By equation (3),

H(P, b,G) =
1

|P |
·
[
G(b) +

∑
i∈P

H(P, (b−i, 0), G)
]
. (9)

Equation (9) applied to (T, λ,GΓ
T,ω) and all its subgames

determines its potential uniquely, i.e,

H(T, λ,GΓ
T,ω)

= 1
|Q(λ)| ·

[
GΓ
T,ω(λ) +

∑
i∈T (λ)

H(T, (λ−i, 0), GΓ
T,ω)

]
.

(10)
Comparing this with the equations (8), (10), H

(
P, (λ, ω), G

)
and H(T, λ,GΓ

T,ω) may differ only by a constant c ∈ R, i.e,

H(T, λ,GΓ
T,ω) = H

(
P, (λ, ω), G

)
+ c. (11)

By equation (11), for all (i, ki) ∈ KT ,

Γi,ki(T, bT , G
Γ
T,ω)

= H(T, (b−i, ki)T , G
Γ
T,ω)−H(T, (b−i, ki − 1)T , G

Γ
T,ω)

= H
(
P,
(
(b−i, ki)T , ω

)
, G
)
−H

(
P,
(
(b−i, ki − 1)T , ω

)
, G
)

= Γi,ki(P, (bT , ω), G).

Thus, the solution Γ matches AGCON. Similarly, it is easy
to demonstrate that the solution Θ matches AGCON.

Theorem 8:
1) A solution τ matches P&Z-EL (or IIE) if it matches

P&Z-WEL (or WIIE) and AGCON.
2) A solution τ matches D&P-EL if it matches D&P-

WEL and AGCON.
3) A solution τ matches WEFF, P&Z-WEL (or WIIE),

UBC and AGCON if and only if τ = Γ.
4) A solution τ matches WEFF, D&P-WEL, UBC and

AGCON if and only if τ = Θ.
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Proof: These overcomes follow by Lemma 6, Remark
2 and Theorem 7.

In the following, we adopt different property to character-
ize these two extended Shapley values.

Definition 7: (P, b,G) ∈ Ω is α-inessential if there exists
α ∈ RKP

such that G(χ) =
∑
t∈Q(χ)

∑χt
kt=1 αt,kt for all

χ ∈ BP .
• Inessential games (IEG): τ(P, b,G) = α if (P, b,G) ∈

Ω is α-inessential. Weak inessential games (WIEG)
asserts that τ matches IEG for all (P, b,G) ∈ Ω with
|P | = 1.

Lemma 7:
1) A solution τ matches WEFF and P&Z-WEL (or WIIE)

if and only if τ matches WIEG and P&Z-WEL (or
WIIE).

2) A solution τ matches WEFF and D&P-WEL if and
only if τ matches WIEG and D&P-WEL.

Proof: Let (P, b,G) ∈ Ω with P = {i} and
ki ∈ Bi. If τ matches WEFF and P&Z-WEL (or WIIE),
then τi,ki(P, bi, G) = τi,ki(P, ki, G). Besides, G(ki) =
ki∑
t=1

(
G(ki)−G(ki − 1)

)
. Thus,

τ matches P&Z-WEL (or WIIE) and WEFF
⇔ τi,ki(P, bi, G) = τi,ki(P, ki, G) = G(ki)−G(ki − 1)

and G(ki) =
ki∑
t=1

(
G(ki)−G(ki − 1)

)
⇔ τ matches P&Z-WEL (or WIIE) and WIEG.

If τ matches D&P-WEL, then

τi,ki(P, b,G)− τi,ki
(
P, (b−i, bi − 1), G

)
= τi,bi(P, b,G).

On the other hand, G(ki) =
ki∑
t=1

1
t

(
G(t)−G(t− 1)

)
. Thus,

τ matches D&P-WEL and WEFF

⇔ τi,ki(P, bi, G) =
bi∑
t=ki

1
t

(
G(t)−G(t− 1)

)
and G(ki) =

ki∑
t=1

1
t

(
G(t)−G(t− 1)

)
⇔ τ matches D&P-WEL and WIEG.

The proof is completed.
Theorem 9:
1) A solution τ matches WIEG, P&Z-WEL (or WIIE),

UBC and CON (or AGCON) if and only if τ = Γ.
2) A solution τ matches WIEG, D&P-WEL, UBC and

CON (or AGCON) if and only if τ = Θ.
Proof: These overcomes follow by Lemma 7 and The-

orem 8.

VII. CONCLUSIONS

In this article, we concentrate on the extended Shapley
values due to Derks and Peters [3] and Peters and Zank [16].
For these two solutions, we apply several existing concepts
from standard games and reinterpret it under multi-choice
games, such as potential approaches, axiomatic approaches,
and so on. For the other extended Shapley values, Hwang and
Liao [6], [8], [7] and Liao [11] offered similar overcomes
respectively.

To sum up, each of these extended Shapley values can
be generalize to be the vector of marginal contributions of a
corresponding potential function. For these extended Shapley
values, there also exist equivalence overcomes which are
analogues of theorems due to Calvo and Santos [1] and
Ortmann [13], [14]. In particular, the extended Shapley value
due to Derks and Peters [3] is close to the extended Shapley
value due to Peters and Zank [16]. By Theorems 2, 3, 4, 5, 7,
8, 9, these two extended Shapley values are almost the same
in axiomatic approaches, except that the loss of amount is
different in the axiom of equal loss.
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