
 

  

Abstract— Water cycle algorithm (WCA) is a heuristic 

algorithm proposed in recent years. To overcome the 

insufficiency of standard WCA algorithm in solving the 

non-convex optimal power flow (OPF) problems, the 

multi-objective novel improved water cycle algorithm 

(MONIWCA) is proposed in this paper. The evaporation 

process is improved in WCA by introducing evaporation rate 

and the normal distribution optimization mechanism is used to 

mutate the individual position. The modified WCA also adopts 

a constraint-based strategy to ensure zero constraint violations. 

In order to obtain a high-quality Pareto optimal solution set 

(POS) and select the best compromise solution (BCs), a global 

ranking strategy is proposed. The global ranking strategy 

includes the novel constraint handling method, the rank index 

calculation and the BCs on fuzzy satisfaction theory to deal with 

the complex constraints of the optimization problem. The 

MONIWCA has been simulated under the constraints of zero 

violations on IEEE 30, IEEE 57 and IEEE 118 standard test 

systems, including six dual-objective cases and one tri- objective 

case. The simulation results are compared with the 

multi-objective particle swarm optimization (MOPSO). The 

results show that the improved method can effectively solve the 

MOOPF problem, not only to obtain a uniform continuous 

Pareto solution set but also to achieve a better compromise 

solution. In addition, the two performance indicators of the 

generational distance (GD) and the spacing (SP) also show that 

the MONIWCA algorithm has uniform distribution, high 

convergence and strong stability. 

 
Index Terms— multi-objective novel improved water cycle 

algorithm; optimal power flow; global ranking strategy. 
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I. INTRODUCTION 

lectricity is one of the most widely used sources in the 

world. With the continuous expansion of the power 

system and the rise of power market operations, it is 

necessary to simultaneously consider the optimization of 

multiple contradictory objectives and coordinate the 

competition among multi-objective optimization. 

The OPF is designed to make the system safer and more 

economical while ensuring that the constraints are not 

violated. Multi-objective optimal power flow (MOOPF) is 

the problem of simultaneously optimizing multiple 

contradictory objective functions. The MOOPF, which takes 

multiple competing goals into consideration concurrently, 

measures the state of the power system more synthetically [1, 

2]. Due to the non-convex and non-linear characteristics of 

MOOPF problems, heuristic algorithms are more suitable 

compared with traditional methods [3, 4]. The classic 

weighting method sets different weight coefficients for 

multiple targets according to the preference of the decision 

maker. The Pareto method to solve the MOOPF problem is to 

select the currently suitable compromise from the candidate 

solution set. So far, some appropriate algorithms like the 

multi-objective bees algorithm [5], the novel 

quasi-oppositional modified Jaya algorithm [6], the 

teaching-learning based optimization [7], the multi-objective 

electromagnetism-like algorithm [8], the multi-objective 

improved bat algorithm [9], and the multi-objective particle 

swarm optimization [5, 10, 11], are successful to solve the 

MOOPF problem. There have been many articles about the 

above algorithm to solve the MOOPF problem, but the WCA 

is the first application in the field of power system active 

optimization in this paper. 

The water cycle algorithm [12-16] is a heuristic algorithm 

designed according to the natural water cycle phenomenon, 

which simulates the process of streams and rivers flowing 

into the sea. So far, there are many applications in different 

fields of research utilized the efficiency of WCA for solving 

complex optimization problems [17], such as the optimal 

operation of reservoir system [18] and antenna array 

synthesis [19]. This paper introduces the water cycle 

algorithm to solve the multi-objective active optimization 

problem. Applying the WCA to solve the MOOPF problem, 

we modify a traditional constraint strategy and adopt a global 

sorting strategy to handle the complicated constraints of the 

optimization problem. Because the standard WCA tends to 

converge prematurely, the original WCA introduces a rainfall 

process. In order to conduct second deep search near the 

search area and increase the population diversity, the normal 

distribution optimization mechanism can be used to mutate 
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the individual's optimal position during the search process. 

The algorithm performs simulation experiments on the IEEE 

30, IEEE 57 and IEEE 118 standard test systems under the 

constraint of zero violations. In addition, the GD and SP 

indicators are used to measure stability and convergence. The 

results clearly show that when using the same constrained 

advantage strategy, MONIWCA has better exploration 

capabilities than ordinary MOPSO in finding the more 

competitive BCs.  

The following sections of this paper are organized as 

follows: Section II introduces the mathematical model 

description of the MOOPF problem. Section III introduces 

the basic water cycle algorithm and its improvement. In order 

to obtain high-quality POS and filter satisfactory BCs, three 

multi-objective strategies are adopted to propose 

MONIWCA to deal with MOOPF. Section IV shows the 

simulation results and performance analysis of the algorithm, 

showing that MONIWCA has advantages in obtaining the 

BCs and has strong stability. Section V provides the final 

conclusion. 

II. MATHEMATICAL MODEL 

The multi-objective optimization problem (MOP) can be 

defined as an optimization problem that minimizes two or 

more objective functions simultaneously, which satisfies the 

equality and inequality constraints.  

 1min    ( ( , ), , ( , ), , ( , ))i MF f x u f x u f x u=  (1) 

Subject to: 

 ( , ) 0,   1,2, ,kH x u k E= =  (2) 

 ( , ) 0,    1,2, ,j x u j IG  =  (3) 

where F represents the ith objective function. Hk is the kth 

equality constraint and E is the number of equality constraints, 

Gj is the jth inequality constraint and I is the number of 

inequality constraints. In the MOOPF problem, x is the vector 

of state variables and u is the vector of control variables. 

A.  Objective functions of MOOPF 

The MOOPF is optimized by adjusting the vector of 

control variables: generator active power output PG, load 

node voltage VL, tap rations of transformer T and reactive 

power injection QC. The objective functions involved in this 

paper consist of: active power loss Ploss, basic fuel cost 

Fcost, emission Em, fuel cost with value-point loadings 

Fcost-vp and voltage stability index L_index. 

1)  Ploss minimization 

 
2 2

(i, j)

1

1 min [ 2 cos( )]
LN

Ploss k i j i j i j

k

Obj F g V V VV  MW 
=

= + − −： (4) 

where NL is the total number of branches. gk(i,j) is the 

conductance of the kth branch which connects node i and 

node j. Vi and Vj are the voltage magnitude of node i and node 

j. δij represents the voltage angle between node i and node j.  

2)  Fcost minimization 

 
2

cost

1

2 min ( ) $ / h
GN

i i Gi i Gi

i

Obj F a b P c P  
=

= + +：  (5) 

where ai, bi, ci are the fuel cost coefficients of the ith 

generator. PGi is the active power of the ith generator. NG 

indicates the number of generators. 

3)  Em minimization 

 
2

1

3: min [ exp( )]
GN

i Gi i Gi i i i Gi

i

Obj Em P P P  ton/h    
=

= + + + (6) 

where αi, βi, γi, ηi and λi are the emission coefficients of the ith 

generator. 

4)  Fcost-vp minimization 

 

2

cost-vp

1

min

4 : min (

sin( ( )) ) $ / h

GN

i i Gi i Gi

i

i i Gi Gi

Obj F a b P c P

d e P P

=

= + +

+   −


 (7) 

where di and ei are the fuel cost coefficients of the ith 

generator. 

5)  L-index minimization 

 5: min min( - )=min[max( )]L index jObj F L index L− =  (8) 

 
1

1 , 1,2, N
PVN

i

j ji PQ

i j

V
L F j

V=

= − =  (9) 

where NPV and NPQ are the numbers of PV nodes and the 

number of PQ nodes. Fji can be estimated from the Y-bus 

matrix. Vi and Vj are the voltages of the ith PV node and the 

voltages of the jth PQ node. 

B.  Constraints of MOOPF 

With respect to the five objective functions mentioned 

above are minimized in the case of guaranteeing zero 

violation of various the equality constraints (ECs) and the 

inequality constraints (ICs). 

1)  ECs 

The equation constraint conditions are composed of the 

active and reactive power flow equations of the system, 

which can be expressed as: 

 G L

1

( cos sin ) 0 ( 1,2 )
iN

i i i j ij ij ij ij

j

P P V V G B i N 
=

− − + = =  (10) 

 G L PQ

1

( sin cos ) 0 ( 1,2 )
iN

i i i j ij ij ij ij

j

Q Q V V G B i N 
=

− − − = =  (11) 

where Ni is the number of nodes connected to node i 

(excluding node i). N is the number of system nodes except 

the slack node. PLi and QLi represent the active and reactive 

power of load node i. Gij and Bij are the mutual conductance 

and the mutual susceptance. 

2)  ICs 

The inequality constraint conditions define the operational 

limits of the power system equipment and can be divided into 

state variable inequality constraints and control variable 

inequality constraints. 

a) ICs on state variables 

⚫ voltage VLi at PQ node 

 ,min ,max ,Li Li Li PQV V V i N    (12) 

⚫ active power PGref at slack bus 

 
min max

ref ref refG G GP P P   (13) 

⚫ reactive power QGi at PQ node 

 ,min ,max ,Gi Gi Gi PVQ Q Q i N    (14) 

⚫ apparent power Sij 

 ,max ,ij ij LS S i N   (15) 

b) ICs on control variables 

⚫ active output PGi at generator node 
 

min max

i i ,G Gi G GP P P i N    (16) 

⚫ generator terminal voltage VGi 

 ,min ,max ,Gi Gi Gi PVV V V i N    (17) 

⚫ transformer tap-settings Ti 

 ,min ,max ,i i i TT T T i N    (18) 

⚫ reactive power injection QC 

 ,min ,max ,ci ci ci CQ Q Q i N    (19) 

where NT and NC indicate the number of transformers and 

compensators. 
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III. MONIWCA FOR MOOPF PROBLEM 

This chapter introduces the improvement method of the 

WCA and the optimization steps of the improved algorithm 

in the MOOPF problem. In order to overcome the 

shortcomings of the standard water cycle algorithm in 

solving the non-convex MOOPF problem, MONIWCA is 

proposed. The improved algorithm introduces the normal 

distribution optimization mechanism to modify original 

update method and adopts three multi-objective strategies 

including constraint handling method, rank index calculation 

and fuzzy satisfaction theory. 

A.  Overview of the basic WCA 

The water cycle algorithm [12] was inspired by the natural 

water cycle phenomenon in 2012 by Hadi Eskandar. The 

basic idea of the algorithm: the water cycle algorithm 

generates the initial population Npop through the process of 

rainfall, and divides three levels according to the fitness value. 

The optimal individual is defined as the sea, some suboptimal 

individuals are defined as rivers, and the rest are defined as 

streams that will flow into sea or river. Through the iterative 

process, individual is continuously updated and re-divided, 

and when the number of iterations reaches the maximum 

number of iterations, global optimal value is found. The main 

steps are presented as below. 

1)  Initialization 

The initial population can be represented as a matrix of 

Npop*D. Where D is the dimension of the control variable. 

The initial population is defined as: 

 

1

2

1 1 1 1

3 1 2 3

2 2 2 2

1 2 3

1

2 1 2 3

3

pop pop pop pop

D

D
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N N N N
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River

River x x x x

x x x x
Total pop

Stream

Stream x x x x

Stream
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+

+

+

 
 
 
 
 
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  
  = =
  
  
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 
 
 
 
 

(20) 

where Npop is the total population. NSr is the sum of rivers and 

sea. 

The number of streams attracted by sea and rivers is 

defined as the flow density. The designated streams for each 

river and sea are calculated using the following equation: 

 

1

, 1,2, ,n

n Stream srNsr

nn

C
NS round N n N

C
=

 
 

=  = 
  

 (21) 

where NSn represents the number of streams which flow to 

the specific rivers and sea [11]. Cn indicates fitness value. 

2)  Update process 

The update formula is given as follows: 

a) Streams flow into the river 

 
1 ( )i i i i

Stream Stream River StreamX X rand C X X+ = +   −  (22) 

b) Streams flow into the sea 

 
1 ( )i i i i

Stream Stream Sea StreamX X rand C X X+ = +   −  (23) 

c) Rivers flow into the sea 

 
1 ( )i i i i

River River Sea StreamX X rand C X X+ = +   −  (24) 

where rand is a random number between 0 and 1. C is a 

position update coefficient of between 1 and 2, which is 

usually taken as 2. 

3)  Rainfall process 

In order to avoid the algorithm falling into the local 

optimal solution, the diversity of the population is increased. 

When the rainfall conditions are satisfied, the rain process 

will produce new individuals. There are two ways to generate 

a new individual. 

a) Evaporation used between sea and streams. Perform the 

rainfall process near the sea and search for optimal values. 

 

max- 1,2,3, ,

(1, )

i i

Sea Streams sr

new

Stream sea

if X X d i N

X X randn N

end if



 =

= +   (25) 

b) Evaporation used between sea and rivers. The random 

generation of new individuals in the problem space increases 

the diversity of the population. 

 

ea max- 1,2,3, ,

( )

i i

S River sr

new

Stream

if X X d i N

X LB rand UB LB

end if

 =

= +  −  (26) 

where rand is a random number uniformly distributed 

between 0 and 1. UB and LB are the upper and lower bounds 

of the search space. μ is the sea area search range. The smaller 

the value of μ, the smaller the search range.  

 
1 max

max max
max

i

i i d
d d

iteration

+ = −  (27) 

where the number of dmax close to 0 is usually taken as 

eps=2.2204e-16, which controls the search intensity near the 

sea position and adaptive reduction with the number of 

iterations. 

B.  Multi-objective solution strategy 

When dealing with MOPs, there is a conflict among the 

objective functions, and it is difficult to obtain an absolute 

optimal solution. For the multi-objective water cycle 

algorithm (MOWCA) optimization problem, it is impossible 

to judge the pros and cons of the comparison function value 

directly. In order to handle MOPs, a global ranking 

multi-objective water cycle algorithm with optimal retention 

strategy is proposed in this paper. 

1)  Constraint handling method 

When the power flow calculation reaches the maximum 

number of iterations, each solution must satisfy the equality 

constraints, otherwise, the solution obtained is meaningless.  

For the individual i, the ECs are able to ensure zero 

violation of the constraint in OPF. As for ICs, the control 

variables constraints ui can be adjusted as (28). 

 

max max

min max

min min

,

,

,

i i i

i i i i i

i i i

u u u

u u u u u

u u u

 


=  
 

 (28) 

In order to make the solution satisfy the constraints of the 

state variable inequality, a constraint dominant strategy is 

proposed. The total amount of constraint violations can be 

used as a criterion for classifying the stream level. The 

calculation formula is (29). 

 
1

( ) max ( ( , ),0)
P

v k

j

S u h x u
=

=   (29) 

where p is the number of ICs. 

Furthermore, the individuals u1 and u2 in the solution set 

are selected, and the priority is judged by the dominant 

method according to formula (29). The quality of the flow 
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can be judged by the constraint dominant strategy. The 

specific dominant strategy is shown in TABLE I. 
TABLE I  

THE CONSTRAINT DOMINANT STRATEGY 

If Sv(u1)> Sv(u2)       u1 dominates u2; 

If Sv(u1)< Sv(u2)       u2 dominates u1; 

If Sv(u1)= Sv(u2)   : 

If ∀ i∈{1,2,…,M}≤ fi (x,u2) or ∃ j∈{1,2,…,M} fj (x,u1)<fi(x,u2) 

u1 dominates u2; 

      else  

u2 dominates u1; 

 

where Sv(u) indicates the total violations. The fi(x,u) 

represents the ith fitness value. 

According to the constraint dominant strategy, all the 

streams can be divided into n levels: F1, F2, F3, …, Fn. The 

hierarchical value of the flow is rank (i). A smaller rank value 

means a higher priority, and the same total constraints means 

that the stream rank values are equal. 

2)  Rank Index Calculation 

All streams are able to be hierarchically divided by the 

constraint dominant strategy. According to the 

non-dominated sorting method proposed by Deb[20]. For 

water flowing with the same rank (i), their priority needs to 

be calculated by the distance (i) of the crowding distance. 

The crowding distance can estimate the density of other 

solutions around the solution. At the same rank value, the 

greater crowded distance means the higher priority. For any 

stream i and stream j, the global rank relationship can be 

described as TABLE II. 
TABLE II  

THE GLOBAL RANK METHODS 

If rank(i) < rank(j)      stream i is better than stream j; 

If rank(i) > rank(j)      stream j is better than stream i; 

If rank(i) = rank(j) 

If distance(i) > distance(j)  

stream i is better than stream j; 

    else 

stream j is better than stream i; 

 

3)  BCs on Fuzzy Satisfaction Theory 

In the previous description, the best solution of the 

standard water cycle algorithm is that the objective function 

fitness value of this solution is better than other candidate 

solutions. For a multi-objective problem, a set of non-inferior 

solutions is usually obtained by taking the above non-inferior 

ranking strategies. The best compromise solution can be 

determined by applying fuzzy satisfaction theory based on 

the Pareto solution set. The satisfaction of the ith for the 

individual μ can be expressed as formula (30). 

 

min

max
min max

max min

max

1

, 1,2,

0

i i

i i
i i i i

i i

i i

f f

f f
f f f i M

f f

f f



 


−
=   =

−
 

 (30) 

where fimax and fimin are the maximum and minimum values of 

the objective function i. Normalize the solutions in the POS 

can be defined as (31). 

 
1

1 1

1,2,
p

M

ii

i pN M

ik i

Nos k N




=

= =

= =


 
，  (31) 

where μ indicates that the satisfaction range of the solution is 

(0,1). μ = 0 means dissatisfaction with the function value, and 

μ = 1 indicates complete satisfaction. 

C.  MONIWCA algorithm 

1)  Add an evaporation process 
The concept of rainfall in the standard water cycle 

algorithm can effectively enhance the algorithm's 

convergence ability. In nature, although the destination is the 

sea, not all streams can flow into the sea. Some rivers have a 

limited number of streams that flow slowly and have large 

amounts of evaporation. Hence, in the novel algorithm, three 

types of evaporation are introduced: evaporation used 

between sea and streams; evaporation used between sea and 

rivers; evaporation among rivers having a few streams. Based 

on the number of streams assigned to the river, the 

evaporation rate can be expressed as: 

 
( )

= 2, ,
1

n

sr

sr

Sum NS
EP rand n N

N
 =

−
 (32) 

Eq. (32) shows the evaporation process only used for 

streams and rivers. The value of EP can be changed (slightly) 

at each iteration which also gives stochastic nature to the EP. 

About the evaporation process, the EP is not the only 

evaporation condition to be satisfied. The low quality of 

solutions has also to be given more chances to move and flow 

to the other high quality of solutions or to find better regions 

in terms of better objective function value which is given as 

follows. 

 

2 : -1

(exp (- / max_ ) ) & ( )

( - )

sr

i

new

Stream

for i N

if k it rand NS ER

X LB rand UB LB

end

end

=

 

= +   (33) 

where k is the iteration index. In the novel algorithm, at early 

iterations, the probability of evaporation is high for low- 

quality solutions. It is decreased as the number of iterations 

increases. 

2)  Normal distribution optimization mechanism 

In the heuristic algorithm, there is a recognized 

shortcoming that it is easy to prematurely converge. The 

WCA is not an exception and suffers from premature 

convergence in dealing with more complex problems. A deep 

exploitation of the vicinity of the exploitation areas is the key 

objective of the second stage [21]. The normal distribution 

optimization mechanism is used to mutate the optimal 

position of the individual, which means that the search range 

of the individual becomes large. It is beneficial to increase the 

diversity of the population and jump out of possible local 

extremes. Based on the normal distribution optimization 

mechanism, the update strategy of streams and rivers can be 

expressed as formula (34) and formula (35). 

a) Stream renewal strategy 

 

0.5 [ ( ) ( )], ( ) ( ) ),

0.3

0.5 [ ( ) ( )], ( ) ( ) ,

0.3 0.5
( 1)
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0.5 0.7

i i i i

River Stream River Stream

i i i i

Sea Stream Sea Stream

i
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i i i i

Sea River Sea River

S
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N X t X t X t X t

if p
X t

N X t X t X t X t
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X

 + −



 + −

 
+ =

 + −

 

（

（ ）

（ ）

( ),

0.7

i i i

tream Sea Streamrand C X X

if p







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





+   −

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(34) 
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where p is a random number between 0 and 1. N represents a 

normal distribution. 

b) River renewal strategy 

 

0.5 [ ( ) ( )], ( ) ( ) ),
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
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
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(35) 

D.  Application of the MONIWCA to the MOOPF problem 

In order to verify the superiority of the algorithm, the 

proposed improved algorithm was applied to the MOOPF 

problem, and 30 independent experiments were simulated on 

IEEE 30, IEEE 57 and IEEE 118 systems. Compared with the 

MOPSO algorithm, bi-objective cases are studied. Detailed 

experimental results are shown in Section IV. The flow chart 

of the main steps of the improved multi-objective water cycle 

algorithm to solve the MOOPF problem is shown in Fig. 1. 

TABLE III shows the specific combinations of objective 

functions involved in this article, including 7 cases involving 

5 objective functions. 

Start

Input：(1) The algorithm parameters include Nsr，dmax，Npop and kmax; (2) The tested system data include node data, 

branch data, the fuel cost coefficients, the limits of control variables and state variables, and the emission parameters

Randomly generate populations according to formulas (20) to form initial streams, rivers, and Sea

Calculate the fitness value of an individual under the multi-objective problem include power losses, emission, basic fuel 

cost, and fuel cost with value-point loadings by Newton-Raphson

Sort non-inferior sorting and crowded distance calculations to sort individuals, 

and then divide into sea, rivers, and streams

Calculate the flow intensity according to formula (21), 

and determine the number of streams flowing into specific rivers and sea

The update process. According to formulas (22), (23) and (24), 

streams flow into rivers, streams flow into sea, and rivers flow into sea

Exchange positions of rivers/sea with a stream which gives the best solution by Pareto-dominant relationship

Check the evaporation conditions

Perform the rainfall process

Change adaptive dmax according to formula (27)

Elite solution retention strategy

Output：the obtained POS and BC soltion

Check stopping condition

End

Updated individual fitness values are better

Yes

No

No

Yes

Yes

No

P<0.7
No

Yes

Normal distribution optimization mechanism

 
Fig. 1. The flow chart of MONIWCA to solve the MOOPF problem  

 
TABLE III   

THE SPECIFIC COMBINATION OF OBJECTIVE FUNCTIONS 

The combination of objective functions Fcost Ploss Fcost-vp Em L-index Test system 

CASE 1 ✔ ✔    IEEE 30 

CASE 2  ✔ ✔   IEEE 30 

CASE 3  ✔   ✔ IEEE 30 

CASE 4 ✔ ✔  ✔  IEEE 30 

CASE 5 ✔   ✔  IEEE 57 

CASE 6 ✔ ✔    IEEE 57 

CASE 7 ✔ ✔     IEEE 118 
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IV. SIMULATION AND RESULT 

The effectiveness of presenting the novel MOWCA 

algorithm can be validated by 7 optimal cases that are carried 

out on the MATLAB 2014a software and run on a PC with 

Intel(R) Core (TM) i5-4590 CPU @ 3.3GHZ with 8GB RAM, 

including 6 bi-objective and 1 tri-objectives. The cases have 

been examined and tested in IEEE 30, IEEE 57 and IEEE 118 

system for solving MOOPF. Five objective functions are 

considered: Ploss, Fcost, Em, Fcost-vp and L-index.  

A.  Preparatory parameters 

1)  System parameters 

The structure of the IEEE 30 system is shown in Fig. 2, 

including 6 generators, 4 transformers and 9 reactive power 

compensation devices. The system has a 24-dimensional 

vector. The transformer tap is within the range of 0.9-1.1 p.u 

and the voltage of generator buses and load buses are limited 

within the range of 0.95-1.1p.u. The generator coefficients of 

Fcost and Em in IEEE 30 system are shown in [22]. 
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Fig. 2. The structure of the IEEE 30 system 

 

The single line diagram of the IEEE 57 system is shown in 

Fig. 3, including 7 generators. Its detailed data are taken from 

[22]. The system has a 33-dimensional vector. The 

transformer taps are bounded in 0.9-1.1 p.u and the range of 

voltage magnitude for PQ and PV bus are restricted between 

0.9 and 1.1 p.u. The shunt capacitor is limited within the 

range of 0-0.3 p.u.  
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Fig. 3. The structure of the IEEE 57 system 

The structure of the IEEE 118 system is shown in Fig. 4. 

The system has a 128-dimensional vector. The lower and 

upper limits of voltage magnitude for PV bus are 0.9-1.1 p.u. 

The limits of the transformer tap and limits of the shunt 

capacitor are consistent with the IEEE 57 system. 
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Fig. 4. The structure of the IEEE 118 system 

 

2)  Algorithm parameters 

As shown in Fig. 5, Fcost-vp and Ploss are examples to 

conduct 100 to 500 dual-target simulation experiments. The 

Pareto curves obtained with different iteration times are also 

different. The Pareto front (PF) obtained in the 500 

generation are closer to the real PFs. For the purpose of 

saving resources, the 400 generation and the 500 generation 

are infinitely close, and no more iterative experiments are 

needed. After repeated experiments, it was determined that 

the maximum number of iterations of the algorithm was the 

best for 500 generations. The parameter settings of the 

improved MONIWCA and MOPSO are shown in TABLE 

IV. 
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Fig. 5. The structure of the IEEE 118 system 

 
TABLE IV  

THE PARAMETER SETTINGS OF THE IMPROVED MOWCA AND MOPSO 

Parameters MONIWCA Parameters MOPSO 

Population size: Npop 100 Population size: Npop 100 

Max iterations: kmax 500 Max iterations: kmax 500 

Rivers and sea: NSr 20 Learning factor: C1 2 

Update factor: C 2 Learning factor: C2 2 

Search range: μ 0.1 Weight coefficient: w 0.9 

B. Trials on IEEE 30 

1)  CASE 1: Optimizing Fcost and Ploss 
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The Pareto[23] optimal solution (POS) obtained by the 

MOPSO and MONIWCA algorithms is shown in Fig. 6. POS 

is obtained based on the multi-objective strategy described in 

the previous section. As can be seen in Fig. 6, both the 

MOPSO and MONIWCA algorithms have obtained the PF, 

but MONIWCA has a more uniform and continuous Pareto 

solution set than MOPSO. Fig. 7 shows the minimum Ploss, 

the minimum Fcost, and the optimal POS obtained by the 

improved algorithm. 

TABLE V indicates the control variable vectors. In this 

table, the BCs by the improved water cycle algorithm include 

833.7570 $/h of Fcost and 5.0331 MW of Ploss. The optimal 

compromise solution obtained by MOPSO include 835.7867 

$/h of Fcost and 5.2074 MW of Ploss. In order to make a 

more comprehensive comparison of the algorithms proposed 

in this paper, TABLE VI shows the BCs obtained by 

optimizing CASE 1 under the same conditions by consulting 

typical intelligent algorithms in recent years.  
TABLE V  

CONTROL VARIABLES OF BCS FOR CASE 1 

control variables MOPSO MONIWCA 

PG2(MW) 60.9018 55.1847 

PG5(MW) 33.9575 33.2180 

PG8(MW) 33.549 34.4562 

PG11(MW) 23.7659 26.0294 

PG13(MW) 20.6372 22.2379 

VG1(p.u.) 1.0938 1.0992 

VG2(p.u.) 1.0850 1.0911 

VG5(p.u.) 1.0553 1.0677 

VG8(p.u.) 1.0724 1.0759 

VG11(p.u.) 1.0803 1.0808 

VG13(p.u.) 1.0889 1.0808 

T11(p.u.) 0.9759 1.0291 

T12(p.u.) 1.0141 0.9590 

T15(p.u.) 0.9751 1.0092 

T36(p.u.) 0.9910 0.9896 

QC10(p.u.) 0.0360 0.0212 

QC12(p.u.) 0.0261 0.0285 

QC15(p.u.) 0.0494 0.0338 

QC17(p.u.) 0.0458 0.0457 

QC20(p.u.) 0.0000 0.0499 

QC21(p.u.) 0.0186 0.0479 

QC23(p.u.) 0.0368 0.0405 

QC24(p.u.) 0.0490 0.0352 

QC29(p.u.) 0.0044 0.0434 

Obj1 ($/h) 835.7867 833.7570 

Obj2 (MW) 5.2074 5.0331 
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Fig. 6.  Simulation PFs obtained for CASE 1 
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Fig. 7.  Simulation PFs of MONIWCA obtained for CASE 1 

 

TABLE VI  
Comparison result of BCS for CASE 1 

Algorithm Fuel cost ($/h) Ploss (MW) 

NSGA-II [24] 837.4160 5.0397 

MOTLBO [25] 830.7813 5.2742 

MODFA [26] 833.9365 4.9561 

MODE [27] 828.5900 5.6900 

2)  CASE 2: Optimizing Fcost-vp and Ploss 

In practical application, the generator has the value-point 

effect and the fuel cost curve has non-differentiable points, 

therefore the optimization becomes a non-convex problem. 

Considering the valve point effect, in CASE 2, Fcost-vp and 

Ploss are minimized simultaneously. 

We can observe that the proposed algorithms can obtain 

the Pareto front. The optimal compromise obtained by the 

two algorithms is shown in Fig. 8. It can be seen that the 

MONIWCA algorithm can better handle this dual-objective 

problem. Fig. 9 shows the minimum Ploss, the minimum 

Fcost-vp, and the optimal POS obtained by MONIWCA. 

TABLE VII indicates the control variable vectors. In this 

table, the BCs by the improved water cycle algorithm 

includes 863.8368 $/h of Fcost-vp and 5.7637 MW of Ploss. 

The optimal compromise solution obtained by MOPSO 

includes 865.7202 $/h of Fcost-vp and 5.8294 MW of Ploss. 

The compromise solution obtained through MONIWCA 

algorithm is more advantageous than MOPSO algorithm. In 

order to make a more total comparison of the algorithms 

proposed in this paper, TABLE VIII shows the BCs obtained 

by optimizing CASE 2 under the same conditions by 

consulting typical intelligent algorithms in recent years. 
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Fig. 8.  Simulation PFs obtained for CASE 2 
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Fig. 9.  Simulation PFs of MONIWCA obtained for CASE 2 

 

TABLE VII  
CONTROL VARIABLES OF BCS FOR CASE 2 

control variables MOPSO MONIWCA 

PG2(MW) 43.0567 49.3536 

PG5(MW) 30.9781 30.0213 

PG8(MW) 35.0000 34.3831 

PG11(MW) 27.2070 28.4294 

PG13(MW) 16.7078 12.8268 

VG1(p.u.) 1.0981 1.0996 

VG2(p.u.) 1.0889 1.0879 

VG5(p.u.) 1.0572 1.0632 

VG8(p.u.) 1.0798 1.0756 

VG11(p.u.) 1.1000 1.0985 

VG13(p.u.) 1.0821 1.0927 

T11(p.u.) 1.0193 0.9608 

T12(p.u.) 0.9562 1.0997 

T15(p.u.) 0.9880 1.0529 

T36(p.u.) 1.0285 0.9973 

QC10(p.u.) 0.0205 0.0238 

QC12(p.u.) 0.0421 0.0382 

QC15(p.u.) 0.0116 0.0482 

QC17(p.u.) 0.0394 0.0248 

QC20(p.u.) 0.0000 0.0455 

QC21(p.u.) 0.0144 0.0499 

QC23(p.u.) 0.0148 0.0480 

QC24(p.u.) 0.0350 0.0471 

QC29(p.u.) 0.0435 0.0489 

Obj1 ($/h) 865.7202 863.8368 

Obj2 (MW) 5.8294 5.7637 

 

TABLE VIII  
Comparison result of BCS for CASE 2 

Algorithm Fuel cost ($/h) Ploss (MW) 

NSGA-II [26] 871.5658 5.9469 

NSGA-III [22] 865.9864 5.6847 

MODFA [26] 857.7387 5.9252 

NHBA [26] 868.9526 5.6761 

DE [26] 865.9950 5.7665 

 

3) CASE 3: Optimizing L-index and Ploss 

The L-index and Ploss are optimized in CASE 3. We can 

observe that the proposed algorithms can obtain the Pareto 

front. Fig. 10 shows the optimal Pareto front distribution of 

MONIWCA and MOPSO in the IEEE 30 test system. As 

shown in Fig. 10, The uniformity and diversity of the PF of 

the MONIWCA algorithm is significantly better than the 

MOPSO algorithm. Fig. 11 shows the minimum Ploss, the 

minimum L-index, and the optimal POS obtained using the 

fuzzy satisfaction method obtained by the improved 

algorithm. TABLE IX indicates a comparison of optimal BCs. 
It  shows that the MONIWCA methods can find better BCs. 
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Fig. 10.  Simulation PFs obtained for CASE 3 
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Fig. 11.  Simulation PFs of MONIWCA obtained for CASE 3 
 

TABLE IX  
CONTROL VARIABLES OF BCS FOR CASE 3 

control variables MOPSO MONIWCA 

PG2(MW) 80.0000 80.0000 

PG5(MW) 50.0000 50.0000 

PG8(MW) 35.0000 34.9988 

PG11(MW) 30.0000 30.0000 

PG13(MW) 40.0000 40.0000 

VG1(p.u.) 1.1000 1.1000 

VG2(p.u.) 1.1000 1.1000 

VG5(p.u.) 1.0866 1.0825 

VG8(p.u.) 1.1000 1.0910 

VG11(p.u.) 1.1000 1.0992 

VG13(p.u.) 1.1000 1.0998 

T11(p.u.) 1.0779 1.0455 

T12(p.u.) 0.9000 0.9000 

T15(p.u.) 0.9902 0.9893 

T36(p.u.) 0.9772 0.9704 

QC10(p.u.) 0.0500 0.0382 

QC12(p.u.) 0.0500 0.0484 

QC15(p.u.) 0.0000 0.0241 

QC17(p.u.) 0.0500 0.0000 

QC20(p.u.) 0.0457 0.0500 

QC21(p.u.) 0.0500 0.0500 

QC23(p.u.) 0.0383 0.0500 

QC24(p.u.) 0.0500 0.0500 

QC29(p.u.) 0.0212 0.0214 

Obj1(p.u) 0.1247 0.1247 

Obj2(MW) 2.9038 2.8609 
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4) CASE 4: Optimizing Fcost, Ploss and Em 

The Fcost, Ploss and Em are optimized in CASE 4. Fig. 12 

shows the optimal Pareto front distribution of MONIWCA  

and MOPSO in the IEEE 30 test system. As shown in Fig. 12, 

The uniformity and diversity of the PF of the MONIWCA 

algorithm are significantly better than the MOPSO algorithm. 

Fig. 13 shows the minimum Ploss, the minimum Fcost and 

the optimal POS obtained by the improved algorithm. 

TABLE X indicates a comparison of optimal BCs. It 

intuitively states that the BCs obtained by MONIWCA 

algorithm include 879.9493 $/h of Fcost, 4.1744 MW of 

Ploss and 0.2171 ton/h of Em. The BCs obtained by MOPSO 

algorithm include 906.1371 $/h of Fcost, 4.5434 MW of 

Ploss and 0.2318 ton/h of Em. MONIWCA algorithm also 

has a huge advantage in dealing with trible objective 

problems. 

 
TABLE X  

CONTROL VARIABLES OF BCS FOR CASE 4 

control variables MOPSO MONIWCA 

PG2(MW) 80.0000 60.2716 

PG5(MW) 50.0000 40.1422 

PG8(MW) 32.7228 35.0000 

PG11(MW) 20.1767 30.0000 

PG13(MW) 15.7144 33.0304 

VG1(p.u.) 1.1000 1.0986 

VG2(p.u.) 1.1000 1.0895 

VG5(p.u.) 1.1000 1.0634 

VG8(p.u.) 1.0811 1.0769 

VG11(p.u.) 1.0414 1.0978 

VG13(p.u.) 1.0218 1.1000 

T11(p.u.) 1.0281 1.0951 

T12(p.u.) 1.1000 0.9004 

T15(p.u.) 1.0026 1.0155 

T36(p.u.) 1.1000 0.9827 

QC10(p.u.) 0.0500 0.0287 

QC12(p.u.) 0.0500 0.0208 

QC15(p.u.) 0.0107 0.0280 

QC17(p.u.) 0.0489 0.0345 

QC20(p.u.) 0.0500 0.0498 

QC21(p.u.) 0.0500 0.0194 

QC23(p.u.) 0.0400 0.0460 

QC24(p.u.) 0.0000 0.0453 

QC29(p.u.) 0.0500 0.0194 

Obj1 ($/h) 0.2318 0.2171 

Obj2 (ton/h) 906.1371 879.9493 

Obj3 (MW) 4.5434 3.8609 
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Fig. 12. Simulation PFs obtained for CASE 4 
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Fig. 13. Simulation PFs of MONIWCA obtained for CASE 4 

C. Trials on IEEE 57 

1)  CASE 5: Optimizing Em and Fcost 
In CASE 5, MONIWCA and MOPSO are tested for 

simultaneous minimization of Em and Fcost on IEEE 57. The 

results of simulation are presented in Fig. 14. Compared with 

the MOPSO algorithm, the PF obtained by the MONIWCA 

algorithm is clear and accurate. Fig. 15 shows the minimum 

Fcost, the minimum Em, and the optimal POS obtained by 

MONIWCA. TABLE XI indicates a comparison of optimal 

BCs. MONIWCA algorithm still exists competitiveness. 
TABLE XI  

CONTROL VARIABLES OF BCS FOR CASE 5 

control variables MOPSO MONIWCA 

PG2(MW) 100.0000 99.8298 

PG3(MW) 92.5782 84.8746 

PG6(MW) 100.0000 99.9291 

PG8(MW) 341.1589 354.9838 

PG9(MW) 99.6328 99.9149 

PG12(MW) 343.1600 318.5327 

VG1(p.u.) 1.1000 1.0897 

VG2(p.u.) 1.1000 1.0822 

VG3(p.u.) 1.1000 1.0813 

VG6(p.u.) 1.1000 1.0968 

VG8(p.u.) 1.1000 1.0994 

VG9(p.u.) 1.1000 1.0940 

VG12(p.u.) 1.1000 1.0808 

T19(p.u.) 0.9584 1.0396 

T20(p.u.) 0.9920 1.0477 

T31(p.u.) 0.9712 1.0982 

T35(p.u.) 0.9959 1.0485 

T36(p.u.) 0.9769 1.0960 

T37(p.u.) 0.9754 1.0549 

T41(p.u.) 0.9493 1.0734 

T46(p.u.) 0.9546 1.0673 

T54(p.u.) 0.9000 0.9006 

T58(p.u.) 0.9560 0.9896 

T59(p.u.) 0.9797 0.9585 

T65(p.u.) 1.0000 1.0036 

T66(p.u.) 0.9992 0.9461 

T71(p.u.) 1.0000 1.0796 

T73(p.u.) 1.0000 1.0932 

T76(p.u.) 0.9344 1.0718 

T80(p.u.) 0.9625 1.0417 

QC18(p.u.) 0.1141 0.1374 

QC25(p.u.) 0.2739 0.2462 

QC53(p.u.) 0.1446 0.2198 

Obj1 ($/h) 42888.3500 42808.7299 

Obj2 (ton/h) 1.3311 
 

1.3167 
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Fig. 14. Simulation PFs obtained for CASE 5 
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Fig. 15. Simulation PFs of MONIWCA obtained for CASE 5 

2)  CASE 6: Optimizing Fcost and Ploss 
The achieved PF of the proposed MONIWCA algorithm, 

MOPSO algorithm is shown in Fig. 16. The Fcost and Ploss 

are optimized in CASE 6 on IEEE 57. It can be seen that the 

MONIWCA algorithm has great potential in achieving 

uniform distribution of PF. Fig. 17 shows the minimum Ploss, 

the minimum Fcost, and the optimal POS obtained using the 

fuzzy satisfaction method obtained by MONIWCA.   

TABLE XII indicates a comparison of BCs. In this table, 

the BCs by MONIWCA include 42094.4600 $/h of Fcost and 

10.3153 MW of Ploss. The BCs obtained by MOPSO include 

42088.3800 $/h of Fcost and 11.7191 MW of Ploss. The 

MOPSO algorithm is slightly better than the MONIWCA 

algorithm in terms of saving fuel costs, but the MONIWCA 

algorithm can greatly reduce Ploss. 
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Fig. 16.  Simulation PFs obtained for CASE 6 
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Fig. 17. Simulation PFs of MONIWCA obtained for CASE 6 

 

TABLE XII  
CONTROL VARIABLES OF BCS FOR CASE 6 

control variables MOPSO MONIWCA 

PG2(MW) 100.0000 72.7378 

PG3(MW) 55.4432 60.5458 

PG6(MW) 100.0000 98.4866 

PG8(MW) 358.3027 359.0951 

PG9(MW) 100.0000 99.6130 

PG12(MW) 410.0000 409.8796 

VG1(p.u.) 1.1000 1.0894 

VG2(p.u.) 1.1000 1.0869 

VG3(p.u.) 1.1000 1.0846 

VG6(p.u.) 1.1000 1.0933 

VG8(p.u.) 1.1000 1.0965 

VG9(p.u.) 1.1000 1.0826 

VG12(p.u.) 1.1000 1.0718 

T19(p.u.) 0.9938 0.9648 

T20(p.u.) 1.1000 1.0955 

T31(p.u.) 0.9855 1.0179 

T35(p.u.) 1.1000 0.9334 

T36(p.u.) 1.1000 1.0789 

T37(p.u.) 1.0453 0.9928 

T41(p.u.) 1.1000 0.9925 

T46(p.u.) 0.9857 0.9399 

T54(p.u.) 0.9000 0.9001 

T58(p.u.) 1.1000 0.9662 

T59(p.u.) 1.0413 0.9796 

T65(p.u.) 1.1000 0.9603 

T66(p.u.) 1.0032 0.9462 

T71(p.u.) 1.0194 0.9691 

T73(p.u.) 0.9000 1.024 

T76(p.u.) 0.9614 0.9734 

T80(p.u.) 1.1000 0.9991 

QC18(p.u.) 0.0526 0.1643 

QC25(p.u.) 0.2801 0.1280 

QC53(p.u.) 0.1709 0.1362 

Obj1 ($/h) 42088.3800 42094.4600 

Obj2(ton/h) 11.7191 10.3153 

 

D. Trials on IEEE 118 

1)  CASE 7: Optimizing Fcost and Ploss 

In CASE 7, the proposed algorithm and the MOPSO are 

tested for the simultaneous minimization of Fcost and Ploss 

on IEEE 118. However, The MOPSO algorithm did not find a 

uniform Pareto [28] solution set within 500 generations and 

could not draw an effective curve. Fig. 18 shows only the PF 

of MONIWCA. This also shows that MONIWCA has a 
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strong ability to optimize the super large power system, while 

the MOPSO algorithm is a bit different. Additionally, 

TABLE XIII shows the control variables and BCs. As is 

shown in TABLE XIII, by comparing the references in [22], 

we find the BCs and control variables of the NSGA-III in the 

same system. By comparing the published articles, it has 

more comparative value. 

In detail, the BCs obtained by MONIWCA algorithm 

include 58258 $/h of Fcost and 49.7308 MW of Ploss. The 

BCs obtained by NSGA-III include 59474.4030 $/h of Fcost 

and 58.4603 MW of Ploss. By comparing the optimal 

compromise solutions of the two algorithms, the two 

objective function values of the optimal compromise solution 

obtained by MONIWCA are both less than NSGA-III. On 

large-scale systems, MONIWCA also shows a good ability to 

find the optimal solution. 
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Fig. 18. Simulation PFs of MONIWCA obtained for CASE 7 

 

E.  Evaluation Index 

Performance indicators are used to evaluate whether the 

algorithm achieves the desired goals[29]. The above 

simulation only reflect the optimal compromise solution 

among the 30 times obtained by the two algorithms. In order 

to more comprehensively evaluate the effectiveness of the 

improved algorithm, two indicators in multi-objective 

problem, the GD[30] and the SP [31] are used for statistical 

analysis of 30 results. The computation complexity is 

introduced to quantitatively assess the efficiency of the 

algorithm. 

1)  GD 

The GD index is often used to measure the convergence of 

algorithms in multi-objective problems. The definition of GD 

index is shown in formula (36). It calculates the distance 

between the PF solution set and the real PF obtained by the 

intelligent algorithm, which can be used to measure the 

convergence of the PF solution set. Generally, the smaller the 

GD index value means the better the consistency and 

convergence between the obtained PF frontier and the 

reference PF. The GD index boxplots for simulation CASE 1 

to CASE 6 are shown in Fig. 19. 
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2)  SP 

The SP indicator measures the standard deviation of the 

minimum distance of each solution to other solutions. The 

definition of SP index is shown in formula (37). The SP 

indicator is usually used to measure the uniformity of the 

POS solution set. Generally, the smaller the SP index value of  

the solution set, the more uniform the distribution of the 

solution set, and the greater the competitive advantage of the 

solution obtained. Fig. 20 shows the SP index box diagrams 

used to simulate CASE 1 to CASE 6. 
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where represents the minimum distance from the di solution 

to other solutions in P, and da represents the mean of all di. 

3)  Analysis of evaluation index results 

Boxplot can visually display data distribution 

characteristics. The advantages and disadvantages of the two 

algorithms can be distinguished by comparing the median, 

outliers and distribution interval of the boxplot.  
Fig. 19 shows the GD indicators of CASE 1 to CASE 6. 

Since the experiment CASE 7 MOPSO algorithm does not 

obtain valid results, it does not give boxplot. It can be seen 

from Fig. 19 that the MONIWCA algorithm is very evenly 

distributed and has few outliers. The mean is less than the 

MOPSO algorithm. The results show that the PF obtained by 

MONIWCA is closer to the actual situation and has strong 

convergence. Fig. 20 shows the SP indicators of the two 

algorithms. As shown in Fig. 20, The MONIWCA algorithm 

is generally well distributed and has a strong competitive 

advantage, but it is slightly inferior to MOPSO in CASE 4, 

CASE 5. 

TABLE XIV calculates the average and deviation of the 

two indicators, GD and SP. Observation from the specific 

calculation value also verifies the conclusions drawn in Fig. 

19 and Fig.20. The MONIWCA algorithm can obtain better 

BCs, and its convergence, extensiveness and stability also 

surpass the MOPSO algorithm. 

F. Computation complexity 

The computation complexity is one of the common 

evaluation indexes, which can be represented by running time, 

to measure the performance of modified algorithms[32]. An 

efficient algorithm should shorten the search time as much as 

possible without affecting the optimization quality. TABLE 

XV states the average running time of the two algorithms 

running 7 simulation cases respectively. Under the same 

number of iterations, the running time of MONIWCA in 

experiment CAES1 is 299.0500 seconds, and the running 

time of MOPSO is 367.8034 seconds. In experiment CASE2, 

the running time of MONIWCA is 287.3517 seconds, and the 

running time of MOPSO is 372.2897 seconds. In 

Experimental CASE 3, the running time of MONIWCA is 

264.6665 seconds, while the running time of MOPSO is 

380.272 seconds. In case the experiment 4, MONIWCA 

running time of 387.1648 seconds, while the running time 

MOPSO is 404.3803 seconds. In the test CASE 5, the 

runtime MONIWCA is 413.4143 seconds, while the running 

time MOPSO is 472.1514 seconds. In CASE 6, the running 

time of MONIWCA is 607.717 seconds, and the running time 

of MOPSO is 472.1514 seconds. The running time efficiency 

of MONIWCA algorithm is much higher than MOPSO. In 

the experiment CASE7, because MOPSO did not run a valid 

experiment result, the running time was not recorded. It can 

be seen from the TABLE XV that MONIWCA algorithm 

iterates 500 times in a shorter time than MOPSO algorithm, 

and it is more efficient to find the optimal solution, which has 

great advantages.  

IAENG International Journal of Applied Mathematics, 51:1, IJAM_51_1_28

Volume 51, Issue 1: March 2021

 
______________________________________________________________________________________ 



 

TABLE XIII  
CONTROL VARIABLES OF BCS FOR CASE 7 

control 

variables 
MONIWCA NSGA-III[22] 

control 

variables 
MONIWCA NSGA-III[22] 

control 

variables 
MONIWCA NSGA-III[22] 

PG4(MW) 5.1407 5.0000 PG100(MW) 109.4305 100.1413 VG74(p.u.) 0.9794 1.0164 
PG6(MW) 5.0861 22.7851 PG103(MW) 8.4821 8.2474 VG76(p.u.) 0.9962 1.0271 

PG8(MW) 5.7205 7.2779 PG104(MW) 26.6807 38.9282 VG77(p.u.) 1.0161 1.0354 
PG10(MW) 182.6153 186.5229 PG105(MW) 35.8219 41.3443 VG80(p.u.) 1.0000 0.9943 

PG12(MW) 208.9950 234.1053 PG107(MW) 11.4164 8.6289 VG85(p.u.) 1.0053 0.9887 

PG15(MW) 11.2950 12.5793 PG110(MW) 25.0019 26.5478 VG87(p.u.) 0.9345 0.9780 
PG18(MW) 73.5972 46.8689 PG111(MW) 26.7671 25.3709 VG89(p.u.) 1.0245 1.0065 

PG19(MW) 5.5902 21.1907 PG112(MW) 26.3646 33.4090 VG90(p.u.) 0.9990 1.005 
PG24(MW) 5.0160 8.6509 PG113(MW) 43.3264 27.5689 VG91(p.u.) 1.0177 0.9979 

PG25(MW) 112.4425 127.7909 PG116(MW) 26.3556 25.1972 VG92(p.u.) 1.0237 1.0104 

PG26(MW) 223.2441 218.8630 VG1(p.u.) 1.0108 1.0083 VG99(p.u.) 1.0387 0.9772 
PG27(MW) 9.2709 12.9486 VG4(p.u.) 1.0046 1.0027 VG100(p.u.) 1.0370 1.0034 

PG31(MW) 19.4343 21.4135 VG6(p.u.) 1.0079 0.9955 VG103(p.u.) 1.0153 1.0035 
PG32(MW) 76.2148 50.5916 VG8(p.u.) 0.9882 1.0364 VG104(p.u.) 1.0066 0.9992 

PG34(MW) 8.1083 8.4393 VG10(p.u.) 1.0079 0.9974 VG105(p.u.) 1.0040 0.9919 

PG36(MW) 91.2198 69.4697 VG12(p.u.) 1.0155 1.0062 VG107(p.u.) 1.0059 1.0006 
PG40(MW) 8.6951 9.0326 VG15(p.u.) 1.0154 1.0219 VG110(p.u.) 0.9785 0.9753 

PG42(MW) 8.2109 21.9630 VG18(p.u.) 1.0137 1.0169 VG111(p.u.) 1.0096 0.9486 
PG46(MW) 33.0844 53.5697 VG19(p.u.) 1.0033 1.0115 VG112(p.u.) 0.9689 0.9800 

PG49(MW) 249.9981 164.9918 VG24(p.u.) 1.0193 1.0285 VG113(p.u.) 1.0350 0.9911 

PG54(MW) 246.0307 216.8517 VG25(p.u.) 1.0422 1.0501 VG116(p.u.) 0.9929 1.0136 
PG55(MW) 28.0063 56.3268 VG26(p.u.) 1.0040 0.9895 T8(p.u.) 0.9856 0.9698 

PG56(MW) 28.7037 81.5120 VG27(p.u.) 1.0096 0.9609 T32(p.u.) 1.0219 0.9407 
PG59(MW) 197.7345 121.4729 VG31(p.u.) 1.01288 0.9647 T36(p.u.) 1.0242 1.0444 

PG61(MW) 99.8390 199.0160 VG32(p.u.) 1.0115 1.0110 T51(p.u.) 1.0102 0.9569 

PG62(MW) 56.1174 26.7623 VG34(p.u.) 1.0128 1.0121 T93(p.u.) 1.0015 0.9420 
PG65(MW) 275.2493 258.6241 VG36(p.u.) 1.0056 1.0005 T95(p.u.) 1.1000 0.9289 

PG66(MW) 239.4934 201.4848 VG40(p.u.) 1.0163 1.0029 T102(p.u.) 0.9875 1.0886 

PG69(MW) 41.6746 57.7153 VG42(p.u.) 1.0317 1.0358 T107(p.u.) 0.9996 0.9398 
PG70(MW) 10.0090 10.8531 VG46(p.u.) 1.0254 1.0185 T127(p.u.) 1.0054 1.0012 

PG72(MW) 5.4660 13.8617 VG49(p.u.) 1.0092 1.0061 QC34(p.u.) 0.0014 0.1113 
PG73(MW) 5.0494 6.2214 VG54(p.u.) 1.0045 1.0029 QC44(p.u.) 0.0662 0.0250 

PG74(MW) 58.0688 30.6756 VG55(p.u.) 1.0062 1.0008 QC45(p.u.) 0.0171 0.1463 

PG76(MW) 67.3902 65.7396 VG56(p.u.) 1.0044 1.0195 QC46(p.u.) 0.0199 0.2550 

PG77(MW) 150.1652 160.2489 VG59(p.u.) 1.0008 1.0258 QC48(p.u.) 0.1714 0.0055 

PG80(MW) 53.8895 27.6238 VG61(p.u.) 0.9975 1.0104 QC74(p.u.) 0.0000 0.2235 
PG85(MW) 10.2452 15.1266 VG62(p.u.) 1.0025 1.0289 QC79(p.u.) 0.1492 0.2282 

PG87(MW) 129.7834 157.8482 VG65(p.u.) 1.0297 1.0118 QC82(p.u.) 0.1379 0.0616 

PG89(MW) 51.0747 67.3263 VG66(p.u.) 1.0133 1.0595 QC83(p.u.) 0.1610 0.1659 
PG90(MW) 8.0033 9.5007 VG69(p.u.) 1.0170 1.0453 QC105(p.u.) 0.1365 0.2435 

PG91(MW) 28.6133 28.7783 VG70(p.u.) 0.9895 0.9785 QC107(p.u.) 0.2798 0.2120 
PG92(MW) 121.3511 102.4969 VG72(p.u.) 0.9909 1.0294 QC110(p.u.) 0.1167 0.1663 

PG99(MW) 100.3416 101.0885 VG73(p.u.) 1.0010 1.0504 Obj1 ($/h) 58258.0000 59474.4030 

      Obj2(MW) 49.7308 58.4603 
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Fig. 19. Boxplots of GD from CASE 1 to CASE 6. 
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Fig. 20. Boxplots of SP from CASE 1 to CASE 6. 
 

TABLE XIV  
THE EVALUATION INDEX RESULTS OF THE TWO ALGORITHMS 

index    GD          SP 

algorithm 
MONIWCA MOPSO MONIWCA MOPSO 

average deviation average deviation average deviation average deviation 

CASE 1 0.0687 0.0138 0.5525 0.2381 0.8664 0.0617 1.2091 2.2533 

CASE 2 0.0819 0.0177 0.7441 0.2943 0.9968 0.1003 0.9899 2.0399 

CASE 3 0.0207 0.0080 0.0184 0.0176 0.0022 0.0063 0.0013 0.0010 

CASE 4 0.0699 0.0134 0.0980 0.0383 1.1528 0.0801 0.7728 0.6550 

CASE 5 1.0898 0.4427 2.6889 2.4395 24.1805 9.0487 10.3708 12.3802 

CASE 6 0.4574 0.0906 0.6261 0.1366 41.1462 5.6392 100.8049 61.4656 

CASE 7 0.6688 0.2874 - - 19.3839 12.4494 - - 

 
TABLE XV  

AVERAGE RUNNING TIME  

Algorithm CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7 

MONIWCA 299.0500 287.3517 264.6665 387.1648 413.4143 607.7177 1674.2870 

MOPSO 367.8034 372.2797 380.272 404.3803 472.1514 609.1775 - 

 

 

V. CONCLUSION 

In this paper, multi-objectives, such as the fuel cost, the 

fuel cost with value-point loadings, the emission, the voltage 

stability index and the power losses are considered to 

constitute different OPF problems with complex constraints. 

In view of the standard water cycle algorithm is difficult to 

solve the multi-objective optimization problem, this paper 

proposes a new multi-objective water cycle algorithm 

including the introduction of an evaporation process and 

normal distribution optimization mechanism to solve the 

MOOPF problem. MONIWCA is successfully applied to 

IEEE 30, IEEE 57 and IEEE 118 standard test systems 

including 7 test cases. The modified MOWCA also employs 

a constraint dominant strategy to guarantee zero constraint 

violations.  

The obtained results confirm that MONIWCA can provide 

a more uniform and continuous Pareto solution and an 

advantageous compromise solution than MOPSO. Statistical 

analysis of SP and GD indicators proves that MONIWCA has 

a competitive advantage in the combined case and the 

algorithm has high convergence and strong stability. 

Therefore, it can be reasonably explained that the 

MONIWCA algorithm has a certain reference value for 

solving multi-objective optimization problems. 
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