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Abstract—Bin-packing Problem (BPP) is to put a certain

number of items into a fixed size container and strive to achieve
a certain optimal goal under certain constraints. Aimed at
simulating common plate cutting problems based on rectangles
and circles, the mathematical model of a two-dimensional
bin-packing problem was established by considering the
non-superposition of items and the constraint of the box in the
form of coordinates. Then a method based on Genetic
Algorithm (GA) was proposed to solve this two-dimensional
BPP with rectangular and circular areas. The GA parameters
are optimized from the single change of mutation probability
and the unified change of mutation probability. Simulation
results verify the effectiveness of the proposed algorithm for
solving two-dimensional bin-packing problems with
rectangular and circular regions.
Index Terms—Bin-packing Problem；Genetic algorithm；

Performance comparison

I. INTRODUCTION
in-packing problem is a classical combination
optimization problem. The so-called combination

optimization problem refers to the process of finding the
optimal solution from a finite set of feasible solutions [1].
When solving this kind of optimization problems, the time
complexity and space complexity of the algorithm are the
main constraints. According to the solving difficulty, the
problems are divided into P (Polynomial), NP
(Non-deterministic Polynomial) and NPC (Non-deterministic
Polynomial Complete). The bin-packing problem is
characterized by discontinuity, constraint, non-differential
and non-linearity in the process of solving the problem,
which is attributed as NP- hard problem in academic circles.
Generally, BPP can be divided into one-dimensional

bin-packing problem, two-dimensional bin-packing problem
and three-dimensional bin-packing problem according to the
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space where the object belongs. The one-dimensional BPP is
restricted by a specific factor. The two-dimensional BPP is
limited to two factors. In two-dimensional space, it is mainly
the form of restricting length and width. The
three-dimensional BPP is mainly limited to length, width and
height. Daily life is reflected in cargo loading such as
containers, aircraft cabins, etc. [2-4]. The optimization goal
of the BPP is to ensure that the contents of the box do not
exceed its own capacity, and strive to use the least amount of
boxes to load all the goods, which is reflected in the loading
of containers, aircraft cabins, etc. In fact, in the face of the
combination and arrangement of graphics in a limited area,
container loading in logistics industry, human resource
allocation in management industry, plate cutting in industrial
production and so on, can be modeled and solved by
bin-packing problem. In practical applications, such as plate
cutting problem in industrial field, circuit board design
problem, multiprocessing task scheduling, resource
allocation, file allocation, memory management and other
underlying operations in the field of computer science are
practical applications of bin-packing problem [5-9].
Bin-packing problem belongs to NP-HARD class problem,

and it is difficult to solve it accurately. At present, a variety of
approximate algorithms have been proposed to solve the
one-dimensional packing problem, such as NFA, FFA, BFA,
etc. [10-14]. The online and offline algorithms of general
heuristic algorithms and the intelligent optimization
algorithms was proposed to solve two-dimensional bin
packing problem, such as genetic algorithm (GA), simulated
algorithm (SA) and Tabu search (TS) [15-17]. This paper
mainly studies the two-dimensional bin-packing problem
with rectangular and circular areas based on GA, and verifies
the effectiveness of the proposed method through simulation
experiments.

II. MATHEMATICAL MODEL OF TWO-DIMENSIONAL
BIN-PACKING PROBLEM AND ITS SOLUTION METHOD

A. Mathematical Model of Two-dimensional Bin-packing
Problem
The two-dimensional bin-packing problem focuses on two

dimensions, so the two-dimensional bin-packing problem is
usually divided into 2DBP (2-Dimensional Bin-packing
Problem) and 2DSP (2-Dimensional Strip-packing Problem).
2DBP refers to that when the width and height of the box are
determined, the rectangular objects with uncertain length and
width are put into the box, and the target is to minimize the
number of boxes，which is widely used in the cargo loading
and containers. 2DSP means that the rectangle with indefinite
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length can be planned out on the strip board with fixed width
and infinite length, and the objective is to minimize the length
of strip plates. This modeling is widely used in the field of
plate cutting and so on [14].
In the process of mathematical modeling of BPP, the

non-superposition between the items and the further
constraint of the box in the form of coordinates are added to
make it closer to the actual problem. The two-dimensional
BPP can be described as follows. P = (��,��,⋯,��) , 0 <
�� ≤ �，and Q(��) is the area of the �-th item, � ≤ � ≤ �;
The area of the box is set to 2; How to try to put ��,��,⋯,��
into as many boxes as possible is the solved problem. In the
simulation experiments, the lower left corner of the box is
taken as the coordinate origin，the transverse direction is x
axis and the longitudinal direction is Y axis. Let（xi�,yi�）be
the coordinates of the lower left corner of the box， and
（xi�,yi� ） be the upper right coordinate of the box. The
mathematical model of the bin-packing problem is defined as
follows:

���ᝐ � =
�=�

�

��� (1)

�籨ኦ �=�
� � ��� �� < �� ,� � � = �,�,⋯,� (2)

��� � ���，��� � ��� � � � (3)

�=�

�

�� = � � � �� (4)

�=�

�

��� = �� � � (5)

where, �� = 0 or � iϵN , �� = 0 or � i � N ; �� = �means
that box � is put into the item, otherwise it means that box � is
empty 籨 �� = � means that the item itself does not appear to
be superimposed, otherwise it means there is superposition
effect; �� = � indicates that item � is put into the box,
otherwise, it means that item � is not put into the box.

B. Solution Methods of Bin-packing Problems
The bin-packing problem widely exists in the fields of

cutting of industrial plates, loading of containers and other
goods in logistics transportation, and typesetting of circuit
board devices. But there is no accurate algorithm to solve this
kind of NP problem in effective time. According to the
characteristics of the algorithm for solving the bin-packing
problem, it can be divided into deterministic algorithm,
general heuristic algorithm and modern heuristic algorithm.
The deterministic algorithm for bin-packing problem is to
find the optimal solution or get the optimal packing method
through finite iterations or layout attempts. It mainly forms
enumeration algorithm, branch and bound algorithm and
branch pricing algorithm. However, the ability of
deterministic algorithms to solve the bin-packing problem
increases rapidly with the increase of the control parameters
or scale of the problem. Therefore, in order to maximize the

efficiency of the solution, many heuristic algorithms were
proposed to solve it. The general heuristic algorithms based
on hierarchical strategy mainly include Next-Fit Decreasing
Height strategy (NFDH), First-Fit Decreasing Height
strategy (FFDH) and Best-Fit Decreasing Height
strategy(BFDH). These three common hierarchical
algorithms are shown in Fig. 1. Coffman et al. proved that if
the height of a rectangular object is standardized, that is to
say that the maximum height is 1, the time complexity
satisfies:

�籨ኦ⺒ � ≤ � כ ��� � � � (6)

FFDH � ≤
��
�0

כ ��� � � � (7)

The time complexity of both algorithms is O ( �݋�݈� ).
From the actual effect, although three algorithms of NFDH,
FFDH and BFDH have been optimized to different degrees,
there are still many shortcomings from the actual renderings
and there is still a lot of remaining area. Based on the above
characteristics, the non-hierarchical algorithms were
proposed. The most classic algorithms are BL (Bottom and
Left) algorithm and FF (Fall Free) algorithm. The packing
process is shown in Fig. 2 (the number in this figure means
the packing sequence). Modern heuristic algorithms are a
further development of general heuristic algorithms. They are
mainly based on Genetic Algorithm (GA), Simulated
Algorithm (SA), Tabu Search (TS) and other intelligent
optimization algorithms for solving these kinds of
combination optimization problems (NP hard problems).
This paper mainly studies the two-dimensional bin-packing
problem with rectangular and circular areas based on Genetic
Algorithm [18-19].

(a) NFDH (b) FFDH

(c) BFDH

Fig. 1 Schematic diagram of three common hierarchical algorithms.
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(a) BL algorithm (b) FF algorithm

Fig. 2 Comparison of BLA and FFA operation process.

III. SOLVING TWO-DIMENSIONAL BIN-PACKING
PROBLEMS WITH RECTANGULAR AND CIRCULAR REGIONS

BASED ON GENETIC ALGORITHMS

A. Overview of Genetic Algorithms
Genetic Algorithm (GA) is a swarm intelligence

optimization algorithm proposed by Professor J. Holland in
1975 based on the genetic and mutation process in Darwin's
theory of biological evolution. In genetics, organisms
continuously propagate and evolve based on genes in
chromosomes. When reproducing a new generation,
chromosomes are used as carriers to proceed the select,
crossover, and mutate operators to form new chromosomes,
and then new individuals are generated. New individuals are
screened by the principle of "survival of the fittest" in nature,
and individuals suitable for the environment are retained,
propagated and evolved again and again. GA has two
significant features which are mainly global search features
and implicit parallelism. The genetic operators are defined to
act on the population G t . In order to obtain a new
generation of population G t � � , the following genetic
operations will be carried out. The flowchart of GA is shown
in Fig. 3.

1) Selection operator. Through the specific "survival of
the fittest", the corresponding fitness rate of each individual
is calculated, and the population with the highest "survival
rate" is selected. At this time, some of the selected ኦ -th
generation population G ኦ are close to the optimal solution,
that is to say that the excellent individuals are inherited to
the ኦ � � generation population G ኦ � � 籨
2) Crossover operator. In the t-th generation

population G ኦ , two parents are selected to set up gene
exchange operation (according to certain crossover
probability) to form new individuals. Operate according to a
certain probability, that is, set the crossover probability.
3) Mutation operator. For the t-th generation

population G ኦ , the process of a gene of each individual is
changed by mutation probability to form a new individual.

B. Solving Two-dimensional Bin-packing Problems with
Rectangular and Circular Regions Based on Genetic
Algorithm
1) Coding Strategy

Based on the characteristics of the two-dimensional
bin-packing problem, the area of the figure is initially set, and
the side length aa and bb of the rectangle are set in turn to
form the basic figure with the area of aa * bb. The diameter of
the circle is set to cc, so that its constituent area is cc*cc*pi/4.
��
= ሾ0籨� 0籨ኦ 0籨ኦ 0籨� 0籨� 0籨� 0籨ኦ 0籨ኦ 0籨ኦ 0籨ኦ 0籨�ኦ 0籨�ኦ 0籨ኦ 0籨�
0籨� 0籨ኦኦ 0籨�ኦ 0籨ኦ 0籨� 0籨� 0籨� 0籨ኦ 0籨� 0籨ኦ 0籨�ኦ 0籨�ኦ 0籨ኦ 0籨�
0籨ኦ 0籨�͹�
��
= ሾ0籨� 0籨� 0籨� 0籨� 0籨� 0籨� 0籨� 0籨� 0籨� 0籨ኦ 0籨�ኦ 0籨ኦ 0籨�ኦ 0籨ኦ
0籨�ኦ 0籨ኦ 0籨�ኦ 0籨ኦ 0籨� 0籨ኦ 0籨ኦ 0籨ኦኦ 0籨ኦ 0籨ኦ 0籨ኦ 0籨�ኦ 0籨� 0籨�
0籨ኦ 0籨ኦ͹�
��
= ሾ0籨� 0籨ኦ 0籨�ኦ 0籨� 0籨� 0籨ኦ 0籨ኦ 0籨ኦ 0籨�ኦ 0籨ኦ 0籨�ኦ 0籨� 0籨� 0籨�
0籨ኦ 0籨�ኦ 0籨� 0籨� 0籨� 0籨� 0籨� 0籨ኦ 0籨�ኦ 0籨ኦ 0籨� 0籨ኦ 0籨ኦ 0籨ኦኦ 0籨ኦ
0籨ኦ͹�

Fig. 3 Flowchart of genetic algorithms.
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In this paper, the combination of binary and decimal
coding form is adopted in the coding strategy, and each
individual exists in the form of column, and the whole row is
defined separately. It is mainly considered from the following
two aspects. On the one hand, it can improve the application
efficiency; on the other hand, it can define enough
individuals. In this paper, binary algorithm is used in the first
and second lines of coding. When the first line is 1, it means
that it can be displayed, and if it is 0, it cannot be displayed.
Eq. (8) is used to randomly generate 0 and 1 matrices
satisfying normal distribution. In the second line, when it is 1,
it means to rotate 90° and if it is 0, it means to keep
unchanged for packing. Eq. (9) is a matrix satisfying the
normal distribution between 0 and 1 (rotation is not involved
in the program with circle as the model). The third and fourth
lines represent the（�,�）coordinates of the graph. When to
form the initial coordinates（�,�） , they are generated by
adding and subtracting calculations based on m2 (the lowest
value of side length), which are shown in Eq. (10) and (11).

�� �,֢ = �݈�݋�� ���� �,�� < 0籨� (8)

�� �,֢ = �݈�݋�� ���� �,�� < 0籨ኦ (9)

�� ኦ,֢ = �� � �  �� כ ���� �,�� (10)

�� ኦ,֢ = �� � �  �� כ ���� �,�� (11)

where, a and b refer to the side length of the box.

2) Fitness Function and Penalty Function

In the process of practical optimization, there are cases that
graphics are superimposed and beyond the box. For this
reason, the actual comparisons are made based on
coordinates. In the process of generating the rectangle, based
on the initial coordinates, add and subtract 1 / 2 of the side
length to form the lower left coordinate（��,��）and the upper
right coordinate（��,��）. Here ��,�� are compared with 0 so
as to select the larger value, and ��,�� are to select the
minimum value by comparing with the length and width of
the box. In order to ensure that the actual coordinate points
are in the box, �� and �� are always kept at the minimum
during this process. If they are violated, they cannot be
displayed in the box.
In addition, ���ܽ� <= � � �� � � ≤ � 

���
�

�� ���ܽ� <= � � �� � � <= �  ���ܽ� is
calculated for comparison. If it is true, it must be completely
in the box, otherwise the penalty accumulation will be carried
out through the penalty function show in Eq. (14). In order to
ensure that there is no superposition effect between two items,
the distance between the basic coordinates between the two
items is calculated and compared with half of the side length
of the two items. If it is less than, the superposition effect will
be generated, and the penalty functions shown in Eq. (15)-(16)
will be carried out.

����݈ኦ� = 0籨� כ � כ � (12)

��� = 0籨8 (13)

��ኦ���� = �  ��� כ �0 �  penalty (14)

��ኦ���� = ��ኦ����  � כ ��� כ �� (15)

��ኦ���� = ��ኦ����  penalty (16)

fb, bi = max ��ኦ������ (17)

Eq. (12) and (13) is adopted to set the initial values of the
penalty function. Eq. (12) to (16) is used to carry out the
penalty functions under different situations, and finally select
the maximum individual fitness through Eq. (17). Here
��ኦ������means individual fitness, ���means negative area
coefficient, ����݈ኦ� means penalty constant, A means figure
area, A0 means actual area of each figure, AC means
superimposed area, and fb, bi is the index position of the
individual with largest area.

3) Selection Operator and Crossover Operator

Before the crossover operation is performed, the
proportion operator is clarified. In this paper, the Roulette
Wheel selection method is used to select and generate the
parent chromosome so that it can be used in the crossover and
mutation operators. In the crossover operation, the two
successive parents were crossed, and the visual individual,
the rotation of the individual and the setting of individual
position gene were performed respectively. Here the ����
function is used to generate random numbers for crossover
probability. In the process of algorithm implementation,
when the generated random number is less than 0.5, there is
no rotation and visual crossover operation. When the random
number is greater than 0.5, whether the rotation and
visualization of the offspring are exchanged, and the
operation of the offspring is the opposite. When the position
gene is operated, the function �ኦ = � � ���݈(� כ ����) is set
to generate 1, 2 and 3 for random operation. When the
generated value by switch function is 1, the offspring (�,�) is
1 / 2 of the sum of the parents' genes. When the generation
value is 2, the offspring do not perform crossover operation.
When the generation value is 3, the offspring genes are
exchanged.

5) Mutation Operator

There are four main types of operations in the mutation
operator, and mutation operations are performed on the
encoding. The mutation operations are visual mutation
operation, rotation mutation operation, large Gaussian
mutation operation, and small Gaussian mutation operation.
The random numbers generated by ���� function is used to
judge whether the mutation operation is carried out. At the
beginning, a fixed mutation probability value is initialized.
When the random number is less than the mutation
probability, the mutation operation is carried out. This article
mainly carried out four mutation operations on the gene
positions. The visual mutation operation is similar to the
rotation mutation operation. The following function is used
for the mutation operation.

�� = ���݈ �� כ ���� ��� �,�� = �݈�݋�� ���� < 0籨ኦ �

Respectively, a certain position of the position sequence is
exchanged through two randomly generated position nodes.
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By using the ����� function in MATLAB, the random
number satisfying the normal distribution is randomly
generated and multiplied by a constant coefficient and added
to a certain position of the position sequence. It may be
mainly divided into two ways: by multiplying the larger
interval between ሾ0籨0�,0籨�) and the smaller interval between
ሾ0籨00�,0籨0�) to adjust accordingly. By mutating whether the
sequence is rotated; by mutating whether it is visible. Here
we use the following equations to make a position variation
(for example, a large Gaussian jump is performed on a certain
position, and a small Gaussian jump can change the
coefficient from 0.05 to 0.005).

�� = ���݈(�� כ ����)�
�� ኦ֢ኦ,�� � 0籨0ኦ כ � כ �����；0籨0ኦ כ � כ ����� ；

The entire genetic algorithm optimization process is
designed through ��� loop programming, where ��� loop is
used to optimize each individual.

IV. SIMULATION EXPERIMENTS AND RESULT ANALYSIS

The number of items in the two-dimensional bin-packing
problem solved in this paper is 30. The length and width of
the rectangular box or the radius of the round box are
determined. The area is 1*2. The population size in the
genetic algorithm is 500 and the number of iterations is 6000.
In this paper, the simulation experiments and result analysis
are carried out by changing position mutation probability and
comprehensively changing mutation probability.

A．Solving Two-dimensional Bin-packing Problems with
Rectangular Area Based on Genetic Algorithm

1) Single Change Position Mutation Probability
From the perspective of biological heredity, the probability

of mutation occurring in the process of biological evolution
and development is also very small. Therefore, the
probability of large and small Gaussian jumps is set here to
be 0.01 and 0.02 respectively. The probability of random
rotation and random visibility (that is, put into the box) is
0.05. The simulation results are shown in Fig. 4-6. It can be
seen form Fig. 4 that when the probability of position
mutation operator is 0.01, the number of iterations continues
to 6000 times. Combined with Fig. 4(c)-(d), it is known that
the utilization area is continuously increased by iterative
optimization. When the number of control graphics changes,
the first number of loaded objects is 3. Afterwards, through
continuous optimization, when the number of items is 5,
through continuous optimization, optimization is carried out
to reduce the number of items and increase the utilization
area. In this simulation, with the increase of the number of
iterations, the space utilization rate has been significantly
improved. In the simulation results, the optimization changes
are mainly concentrated in the number of iterations within
1000. According to Fig. 4(a), when the final iteration number
is 6000, a total of 15 items are loaded, and the area utilization
rate is 56.25%. It can be seen from Fig. 5 that when the
probability of position mutation operator is 0.05, the number
of iterations continues to 6000 times. Combined with Fig.
5(c)-(d), it is known that through iterative optimization, the
utilization area is continuously increased, and the number of
loaded items is 7. After optimization, when the number of

loaded items is 3, the space utilization rate has been
significantly improved, which clearly reflects the results to
minimize the number of loaded times and maximize the area
utilization. According to Fig. 5(a), when the number of
iterations is 6000, a total of 9 times are loaded, and the area
utilization rate is 69.88%. It can be seen from Fig. 6 that
when the probability of the position mutation operator is 0.1,
the number of iterations lasts until 6000 times. According to
Fig. 6(c)-(d), the optimization process is mainly concentrated
in the number of iterations within 3000, and the main
optimization process is concentrated in the number of boxes
with 7 and 8 items. After multiple optimization calculation,
the space utilization rate has been greatly improved.
According to Fig. 6(a), when the final iteration number is
6000, a total of 8 items are loaded, and the area utilization
rate is 64.13%.

(a) Simulation diagram

(b) Gene diagram
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(d) Coordinate diagram of cumulative figure area and number of boxes
Fig. 4 Simulation results when the control position variation probability is
0.01.
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(a) Simulation diagram

(b) Gene diagram
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(d) Coordinate diagram of cumulative figure area and number of boxes

Fig. 5 Simulation results when the probability of control position variation is
0.05.
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(d) Coordinate diagram of cumulative figure area and number of boxes

Fig. 6 Simulation results when the probability of control position variation is
0.1.

2) Uniform Change Mutation Operator
The simulation results after uniformly changing the

probability of mutation operators are shown in Fig. 7-8. It can
be seen from Fig. 7 that when the probability of uniform
mutation operator is 0.01, the number of iterations continues
to 6000. According to Fig. 7(c)-(d), the main optimization
stage mainly occurs in the number of iterations less than 1000.
For nodes with 6 loaded items, it is obvious that the
optimization process has changed. When the lower area is the
same, the scheme with less loaded items is preferred.
According to Fig. 7(a), when the number of iterations reaches
6000, a total of 9 times are loaded, and the area utilization
rate is 48.63%. It can be seen from Fig. 8 that when the
probability of uniform mutation operator is 0.05, the number
of iterations continues to 6000. It can be seen from Fig.
8(c)-(d) that the main optimization stage mainly occurs in the
number of iterations less than 1000. In this simulation
process, the number starting point of loading items is 6. In the
process of continuous optimization, the optimization effect of
the number of loaded items is not very obvious. According to
Fig. 8(a), when the number of iterations reaches 6000, a total
of 11 items are loaded, and the area utilization rate is 56.5%.
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(d) Coordinate diagram of cumulative figure area and number of boxes

Fig.7 Simulation results with uniform mutation operator of 0.01.
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(d) Coordinate diagram of cumulative figure area and number of boxes

Fig. 8 Simulation results with uniform mutation operator of 0.05.

TABLE 1 OPTIMIZATION PARAMETERS AND PERFORMANCE COMPARISON

Mutation
operator

Position
mutation
operator

Visual
mutation
operator

Rotational
mutation
operator

Large
Gaussian
mutation
operator

Small
Gaussian
mutation
operator

Number of
boxes Utilization rate Number of

iterations

Single control

0.01 0.05 0.05 0.01 0.02 15 56.25% 5990

0.05 0.05 0.05 0.01 0.02 9 69.88% 6000

0.1 0.05 0.05 0.01 0.02 8 64.13% 6000

Unified
control

0.01 0.01 0.01 0.01 0.01 9 48.63% 6000

0.05 0.05 0.05 0.05 0.05 11 56.5% 6000
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The performance comparison between single change
location mutation probability and unified change mutation
probability is shown in Table 1. Through the simulation, it is
found that when the probability of mutation operator is
changed alone to 0.05, the area utilization ratio is relatively
small peak. Traditional optimization mainly focuses on the
number of iterations within 1000. With the superposition of
the number of iterations, the number of relative optimization
is less.
When the probability of mutation operators is changed

uniformly, compared with the single change mutation
operator probability, the occurrence of mutation is limited in
some way, and the mutation probability is greatly reduced
compared with the decentralized control mutation. From a
comprehensive perspective of the two sets of controls
strategy, when the number of iterations exceeds 1000, the
decentralized control variation optimization effect is more
obvious.

B．Solving Two-dimensional Bin-packing Problems with
Circular Area Based on Genetic Algorithm

1) Single Change Position Mutation Probability

From the perspective of biological genetics, the probability
of mutation in the process of biological evolution and
development is also very small. Therefore, the large and
small Gaussian jump probability are set as 0.01 and 0.02
respectively, and the probability of random rotation and
random visibility (that is, put in the box) is 0.05. The
simulation results are shown in Fig. 9-11.
It can be seen from Fig. 9 that when the probability of

position mutation operator is 0.01, the number of iterations
lasts until 6000 times. According to Fig. 9(c)-(d), it is found
that when the number of items is 3 and 4, the number of
loaded items is optimized several times between 3 and 4. In
the process of continuous optimization, the area utilization
rate is gradually improved. According to Fig. 9(a), when the
final number of iterations is 4870, a total of 9 items are
loaded, and the area utilization rate is 45.06%.
It can be seen from Fig. 10, when the probability of

position mutation operator is 0.05, the number of iterations
continues to 6000 times. According to Fig. 10(c)-(d), it is
known that the utilization area is continuously increased
through iterative optimization, and the main optimization
process is concentrated on loading nodes with 4 and 5 items.
In the last optimization process, although the number of
loaded items is not changed, the utilization rate of area is
obviously improved. According to Fig. 10(a), when the
number of iterations is 4990, a total of 9 items are loaded, and
the area utilization rate is 55.96%.
It can be seen from Fig. 11 that when the probability of

position mutation operator is 0.1, the number of iterations
lasts until 6000 times. According to Fig. 11(c)-(d), 5 items are
loaded four times. After optimization, it is reduced to two
items. However, according to Fig. 11(a), when the final
iteration number is 5930, a total of 9 items are loaded, and the
area utilization rate is 53.21%.

(a) Simulation diagram

(b) Gene diagram
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(d) Coordinate diagram of cumulative figure area and number of boxes
Fig. 9 Simulation results when the control position variation probability is
0.01.
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(b) Gene diagram
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(d) Coordinate diagram of cumulative figure area and number of boxes
Fig. 10 Simulation results when the probability of control position variation
is 0.05.
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(b) Gene diagram
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(d) Coordinate diagram of cumulative figure area and number of boxes

Fig. 11 Simulation results when the probability of control position variation
is 0.1.

2) Uniform Change Mutation Operator
The simulation results after uniformly changing the

mutation operator probability are shown in Fig. 12-13. It can
be seen from Fig. 12 that when the uniform mutation operator
probability is 0.01, the number of iterations continues to 6000.
According to Fig. 12(c)-(d), the optimization effect of this
simulation is obvious on the node with 3 loaded items, and
the number of changes in the actual loaded times is relatively
small. According to Fig. 12(a), when the number of iterations
is 5120, a total of 8 items are loaded, and the area utilization
rate is 50.76%.
It can be seen from Fig. 13 that when the uniformly

position mutation operator probability is 0.05, the number of
iterations continues to 6000 times. According to Fig.
13(c)-(d), in the actual simulation process, the optimization is
mainly concentrated on the nodes with 8, 9 and 10 loaded
items, and the number of optimization iterations is mainly
concentrated within 1000 times. According to Fig. 13(a),
when the number of iterations is 5810, a total of 9 items are
loaded, and the area utilization rate is 52.04%.

(a) Simulation diagram
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(b) Gene diagram
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(d) Coordinate diagram of cumulative figure area and number of boxes
Fig. 12 Simulation results with uniform mutation operator of 0.01.
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(d) Coordinate diagram of cumulative figure area and number of boxes

Fig. 13 Simulation results with uniform mutation operator of 0.05.

The performance comparison between single change
location mutation probability and unified change mutation
probability is shown in Table 2. Through the simulation, it is
found that when the mutation operator probability is changed
only to 0.05, the area utilization ratio is relatively small peak.
However, it can be seen from the actual number of iterations
that the number of iterations to generate a circle is more likely
to be premature. When the mutation operator is uniformly
changed, compared with the single change mutation operator
probability, the occurrence of mutation is restricted in a
certain way, and the space utilization rate is relatively
reduced.
Two-dimensional bin-packing problem in rectangular and

circular regions is solved based on genetic algorithm. It can
be seen from the simulation results that when the mutation
operator probability changes, the utilization rate of the box
will also change randomly. Through 10 groups of simulation,
it can be seen that the optimization process is mainly
concentrated in the number of iterations within 1000 times.
When the mutation operator increases, the utilization rate of
area will also increase, but the optimal effect is that the
mutation operator probability about 0.05 is the best. By
comparing the results of circular packing and rectangular
packing, it can be found that the utilization rate of circular
packing case is lower than that of rectangular packing case
under the same conditions. In the actual simulation process,
the number of simulation iterations loaded with circles is
easier to reach the convergence value, resulting in premature
phenomenon.
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TABLE 2 OPTIMIZATION PARAMETERS AND PERFORMANCE COMPARISON

Mutation
operator

Position
mutation
operator

Visual
mutation
operator

Large
Gaussian
mutation
operator

Small
Gaussian
mutation
operator

Number of
boxes Utilization rate

Actual
number of
iterations

Total number
of iterations

Single
control

0.01 0.05 0.01 0.02 9 45.06% 4870 6000

0.05 0.05 0.01 0.02 9 55.96% 4990 6000

0.1 0.05 0.01 0.02 9 53.21% 5930 6000

Unified
control

0.01 0.01 0.01 0.01 8 50.76% 5120 6000

0.05 0.05 0.05 0.05 9 52.04% 5810 6000

V. CONCLUSIONS
The bin-packing problem is one of the classic combination

optimization problem. The use of genetic algorithm to solve
the two-dimensional bin-packing problem with rectangular
and circular areas mainly relies on optimization by changing
the genetic operators, etc. The simulation experiments are
carried out by adopting 30 individuals, and the research is
carried out by changing the mutation probability of the
mutation operators on the basis of determining the fitness
function. The main purpose of changing the mutation
operator is to prevent the occurrence of premature
phenomena. It can be seen from the simulation experiment
results that the actual simulation effect is relatively good
when the mutation operator is 0.05. The optimization of
simulation process mainly focuses on the number of
iterations within 1000 times.
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