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Abstract—An optimal control design for active suspension
system of ground vehicle is presented. Objective of the active
suspension system is to improve the vehicle performance in
particularly on the ride comfort. The optimal control design
is done by applying linear quadratic regulator (LQR), where
the vehicle suspension is approached by a half-car model. The
LQR formulates the control design problem into a optimizing
problem for minimizing a quadratic cost function. Solving
the optimizing problem results in an optimal states feedback
control that is being applied in the active suspension system.
Performance of the active suspension system is demonstrated
through numerical simulations together with a passive sus-
pension system. Evaluation of the simulation results shows an
advantage of active suspension system by improving the ride
comfort up to 94.81% of the passive suspension system.

Index Terms—Active suspension, system modeling, control
design, optimal control.

I. INTRODUCTION

A suspension system applied in vehicle to overcome a
degradation of vehicle performance due to road disturbances.
The road disturbances are resulted by an interaction of the
vehicle moving wheels and the road roughness. These dis-
turbances results in vehicle body motions, such as heaving,
pitching, and rolling. These motions may decrease the vehicle
performance, e.g., ride comfort, ride safety, and handling.
Therefore, the suspension system is applied to isolate the
vehicle body from the motions due to road disturbances.
There are different kind of suspension systems that can be
classified into three types: passive, active, and semi-active
[1]–[3].

The passive suspension system has two main components:
spring and damper [4]–[6]. The use of spring and damper
converts the road disturbances into damped oscillations on
the vehicle body. The passive suspension system works well
in stabilizing the vehicle vibration and has been applied
in commercial vehicle for many years. Performance of the
passive suspension system is determined by the values of
spring constant and damping constant. Both constant values
are calculated based on a value of the vehicle mass. However,
the vehicle mass is varying in practice, for example due to
variation of the vehicle loads, including passenger and cargo.
This becomes a difficultly to maintain performance of the
suspension system.
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Control system communities introduce a concept of vi-
bration control by using a state feedback control system
that is known as the active vibration control system [7]–
[9]. Applying the concept on suspension system results in
an active suspension system. An active element is utilized in
the active suspension system to generate force for stabilizing
the vibration. This active active element is also known as the
actuator. A servo-hydraulic is an example of actuator applied
in the active suspension system [10].

Studies on the active suspension system has been presented
since 1960s [5]–[7]. The studies results show significant
improvements on ride comfort, handling, and stability of
the vehicle compared to the passive suspension system. The
active suspension systems in those study were developed
through: 1) system modelling, 2) control design, and 3)
performance evaluation. The system modeling is done to
obtain dynamics of the vehicle suspension. There are three
common models applied in the vehicle suspension studies:
quarter-car, half-car, and full-car models. The quarter-car
model is used to represent one degree of freedom (DOF)
suspension dynamics, while the half-car and full-car models
are applied to represent two and three DOF suspension
dynamics. Selection of the applied model depends on the
study scope and interest, for examples: the quarter-car model
in [11]–[14], the half-car model in [15], and the full-car
model in [16].

Optimal control is one of the most popular control
design method in active suspension system studies [11],
[13], [17]. Other control methods are also applicable in
active suspension system design, for examples: fuzzy control
[18], proportional integral and derivative (PID) control [19],
model predictive control (MPC) [20], [21], and adaptive
backstepping control [22]. An advanced optimal control
method in active suspension system has also been presented
by including preview information [16], [23]–[25]. Those
presented studies shows the superiority of active suspension
system in improving vehicle performance compared to the
passive suspension system. However, the active suspension
system is not widely applied in commercial vehicles. Most
of the commercial vehicles still uses passive suspension
system. Feasibility and practical implementation of the active
suspension system are still an open research problem.

A comprehensive study on an optimal control design for
vehicle active suspension system is presented in this study.
It is presented a detail derivation of suspension system
dynamics that results into a state space equation. The vehicle
suspension system is approached by a half-car model and the
Newton’s second law is applied to derive dynamic equations
of the model. An optimal states feedback control is designed
using the LQR method and applied in the active suspension
system. Performance of the active suspension system is eval-
uated through a comparison to a passive suspension system.
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Fig. 1. The half-car suspension model.

Performances of both suspension system are numerically
demonstrated through numerical simulated in a computer.
Presentation of the paper is organized as follows. Section
I describes an introduction and motivation of the research
work. Section II describes the modeling of the suspension
system. Section III discusses the optimal control design
for the active suspension system. Section IV presents the
simulation scenarios and simulation results in evaluating
the suspension performance. Finally, Section V provides
conclusion of this study .

II. VEHICLE SUSPENSION SYSTEM DYNAMICS

A half car model of vehicle suspension system is presented
in Figure 1. Mass of the vehicle is grouped into three masses:
the vehicle body mass mb, the front wheel mass m1, and the
rear wheel mass m2. The vehicle body is supported by two
suspensions connected to the wheels. Each suspensions is
represented by a spring with stiffness k, an active element for
generating force u, and a damper with damping coefficient
c. Therefore both suspensions are active suspension. While
the active element is not available, the suspension is a
passive suspension. Mass of the suspension is relatively small
compared to the vehicle body mass and the wheel mass and
therefore is ignored. Tire of the wheel is simply modelled by
air spring with stiffness coefficient kw. The vehicle velocity
is indicated by a vector v. The subscript 1 in the model
notation indicates the vehicle front part, while the subscript
2 represents the rear part.

The Newton’s second law is applied to derive the sus-
pension system dynamics based on the free body diagram
shown in Figure 2. Applying the law on the vehicle body
mass results in the following equations:

mbz̈b = f1 + f2 (1)
Iθ̈ = −d1f1 + d2f2, (2)

where zb is the vertical displacement of vehicle body mass,
I is the vehicle body inertia, θ is the pitching angle, f1 is the
vertical force at the front point, f2 is the vertical force at the
rear vehicle point, d1 is the distance of the front wheel to the
vehicle’s center of mass, and d2 is the distance of the rear
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Fig. 2. Free body diagram of the half-car suspension model.

wheel to the vehicle’s center of mass. Both vertical forces
are defined as follows:

f1 = u1 − k1(zb − z1 − d1θ) − c1(żb − ż1 − d1θ̇) (3)

f2 = u2 − k2(zb − z2 + d2θ) − c2(żb − ż2 + d2θ̇). (4)

The z1 and z2 are the vertical displacement of the front and
rear wheels, respectively. Dynamics of both wheels are given
as follows:

m1z̈1 = −f1 + kw1(z01 − z1) (5)
m2z̈2 = −f2 + kw2(z02 − z2) (6)

where z01 and z02 are the road disturbances at the front and
rear wheels, respectively.

Dynamics of the half car model are expressed by the
equations (1), (2), (5), and (6). Define state variables of the
suspension system as follows:

x1 = z1, x2 = ż1,
x3 = z2, x4 = ż2,
x5 = zb, x6 = żb,

x7 = θ, x8 = θ̇.

(7)

Substituting those state variables (7) into (3) and (4) results
in:

f1 = u1 − k1(x5 − x1 − d1x7) − c1(x6 − x2 − d1x8) (8)

f2 = u2 − k2(x5 − x3 − d2x7) − c2(x6 − x4 + d2x8). (9)

Differentiating the state variables (7) with respect to time
results in the following equations:
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ẋ1 = x2 (10)

ẋ2 = − 1

m1
u1 +

k1
m1

(x5 − x1 − d1x7)

+
c1
m1

(x6 − x2 − d1x8) +
kw1

m1
(−x1 + z01) (11)

ẋ3 = x4 (12)

ẋ4 = − 1

m2
u2 +

k2
m2

(x5 − x3 + d2x7)

+
c2
m2

(x6 − x4 + d2x8) +
kw2

m2
(−x3 + z02) (13)

ẋ5 = x6 (14)

ẋ6 =
1

mb
(u1 + u2) − k1

mb
(x5 − x1 − d1x7)

− c1
mb

(x6 − x2 − d1x8) − k2
mb

(x5 − x3 + d2x7)

− c2
mb

(x6 − x4 + d2x8) (15)

ẋ7 = x8 (16)

ẋ8 = −d1
I
u1 +

k1d1
I

(x5 − x1 − d1x7) +
d2
I
u2

+
d1c1
I

(x6 − x2 − d1x8) − d2k2
I

(x5 − x3 + d2x7)

−d2c2
I

(x6 − x4 + d2x8). (17)

The equations (10) to (17) can be compactly expressed in a
state space form as follows:

ẋ = Ax+Bu+Dw. (18)

where x is the system states vector, A is the system matrix, B
is the input matrix, u is the input vector, D is the disturbance
matrix, and w is the disturbance vector. The system matrix
A is given as follows:

A =



0 1 0 0 0 0 0 0

a21
−c1
m1

0 0 k1

m1

c1
m1

−d1k1

m1

−d1c1
m1

0 0 0 1 0 0 0 0

0 0 a43
−c2
m2

k2

m2

c2
m2

d2k2

m2

d2c2
m2

0 0 0 0 0 1 0 0
k1

mb

c1
mb

k2

mb

c2
mb

a65 a66 a67 a68
0 0 0 0 0 0 0 1
a81 a82 a83 a84 a85 a86 a87 a88


where aij in the matrix denotes the matrix element at row i
and column j that are defined as follows:

a21 =
−(k1+kw1 )

m1
, a43 =

−(k2+kw2 )

m2
,

a65 = −(k1+k2)
mb

, a66 = −(c1+c2)
mb

,

a67 = d1k1−d2k2

mb
, a68 = d1c1−d2c2

mb
,

a81 = −d1k1

I , a82 = −d1c1
I ,

a83 = d2k2

I a84 = d2c2
I ,

a85 = (d1k1−d2k2)
I , a86 = d1c1−d2c2

I

a87 =
−d2

1k1−d2
2k2

I , a88 =
−d2

1c1−d
2
2c2

I .

Those vectors and matrices are defined as follows:

x =



x1
x2
x3
x4
x5
x6
x7
x8


, B =



0 0
−1
m1

0

0 0
0 −1

m2

0 0
1
mb

1
mb

0 0
−d1

I
d2

I


, u =

[
u1
u2

]
,

D =



0 0
kw1

m1
0

0 0

0
kw2

m2

0 0
0 0
0 0
0 0


, and w =

[
z01
z02

]
.

III. OPTIMAL CONTROL DESIGN

A states feedback control is applied in the active suspen-
sion system to stabilize vibrations on the vehicle body due
to road disturbance. Optimal control is applied to design the
state feedback control in this study and presented as follows.

Define the state feedback control law for the vehicle
suspension system (18) as follows:

u = −Kx, (19)

where u is the input vector that expresses the control com-
mand, K is the control gain matrix and x is the system states.
Substituting (19) into (18) results in:

ẋ = (A−BK)x+Dw. (20)

By defining a new matrix:

Ac = A−BK, (21)

the (20) can be expressed by:

ẋ = Acx+Dw. (22)

The (22) is the closed loop system of (18), where Ac is
the closed loop system matrix. Stability of the closed loop
system is determined by the eigenvalues of Ac. The closed
loop system is asymptotically stable if all eigenvalues of Ac

have negative real part. Such kind of the matrix is known as
a Hurwitz matrix.

The (21) shows that the matrix Ac are dependent to
the matrices A, B, and K. Since the matrices A and B
are representing the vehicle parameters values, tuning the
both matrices requires a physical adjustment on the vehicle
components, which is not practical. On the other hand, the
matrix K is adjustable by tuning the control parameters
value. The matrix K is therefore designed to make the matrix
Ac to be Hurwitz. The control gain matrix K is obtained
through a control design process. It can be done by using
one of the available control design methods and this study
applies the linear quadratic regulator (LQR). The LQR is an
optimal control method that calculates the control gain matrix
K by minimizing a quadratic cost function [26]–[28].
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Main objective of the active suspension system in this
study is to improve ride comfort of the vehicle. The active
suspension system is desired to minimize the heaving and
pitching motions of the vehicle. The heaving motion is
represented by the vertical position zb, while the pitching
motion is represented by the pitching angle θ. It is realized
that the suspension moving space is limited. Therefore, it is
also desired to minimize the suspension displacement. The
suspension displacement is related to the vehicle ride safety
such reducing the displacement implicates an improvement
on the vehicle ride safety [29]. For accommodating the main
objective and the requirement, define an output vector y
to represents displacement of both suspensions, the vehicle
heaving motion, and the vehicle pitching motion. The front
suspension displacement is defined by:

y1 = zb − z1 − d1θ (23)

while the rear suspension displacement is expressed by:

y2 = zb − z2 + d1θ. (24)

Therefore, the output vector y can be defined as follows:

y =


y1
y2
y3
y4

 =


zb − z1 − d1
zb − z2 + d1

zb
θ

 . (25)

Stating y as a function of the system state variables, x, results
in the following equation:

y =


x5 − x1 − d1x7
x5 − x3 + d2x7

x5
x7

 . (26)

The output vector y in (26) is a linear combination of the
system states vector x. Therefore, it can be expressed as
follows:

y = Cx, (27)

where C is known as the system output matrix and defined
as follows:

C =


−1 0 0 0 1 0 −d1 0
0 0 −1 0 1 0 d2 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

 . (28)

Minimizing the output vector y needs to be done by using
a minimum effort. The effort is the forces generated by
the active elements that are represented by the input vector
u. The minimization is done based on the following cost
function:

J =
1

2

∫ ∞
0

(
yT Q̄y + uTRu

)
dt, (29)

where Q̄ and R are the weighting matrices. The matrix Q̄ is
a symmetric positive semi definite matrix, while the matrix
R is a positive definite matrix. Substituting (27) into (29)
results in:

J =
1

2

∫ ∞
0

(
xTCT Q̄Cx+ uTRu

)
dt. (30)

For simplifying the expression, define a new matrix

Q = CT Q̄C (31)

and substituting it into (30) such that results in:

J =
1

2

∫ ∞
0

(
xTQx+ uTRu

)
dt. (32)

The optimal control problem is defined as a problem of
finding the control input u that minimizes the cost function
J . Mathematics derivation to solve to the optimal control
problem can be found in many optimal control literature. The
following derivation of the optimal control solution refers to
[26] and is explained as follows.

The cost function J in (32) is minimized through mini-
mizing the following Hamiltonian function:

H =
1

2

(
xTQx+ uTRu

)
+ λT (Ax+Bu) (33)

where H is the Hamiltionian function and λ is the costate.
The Hamiltonian function is minimized by the following two
conditions:

∂H

∂x
= −λ̇ (34)

∂H

∂u
= 0. (35)

The first condition is achieved by:

λ̇ = −∂H
∂x

= −Qx−ATλ (36)

and the second condition is achieved by:

u = −R−1BTλ. (37)

Substituting (37) into (18) and ignoring the disturbance
results in:

ẋ = Ax−BR−1BTλ. (38)

Define the costate λ as follows:

λ = Px, (39)

where P is a symmetric matrix. Substituting the costate into
(36) results in:

Ṗ x+ Pẋ = −Qx−ATPx, (40)

while substituting the costate into (38) results in:

ẋ = Ax−BR−1BTPx. (41)

Substituting (41) into (40) yields in:

(Ṗ + PA+ATP − PBR−1BTP +Q)x = 0. (42)

Non-trivial solution of (42) is obtained by solving the time-
differential equation:

Ṗ = −(PA+ATP − PBR−1BTP +Q). (43)

which is known as the Riccati equation. Steady state of the
Riccati equation is given by:

0 = PA+ATP − PBR−1BTP +Q (44)

that is known as the algebraic Riccati equation (ARE). The
matrix P is obtained by solving the ARE. While the matrix P
is found, solution of the optimal control problem is obtained
by substituting P into (39) and then substituting (39) into
(37) such that results in:

u = −Kx, (45)
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where K is the control gain matrix given by:

K = R−1BTP. (46)

The (45) is the optimal control solution for minimizing the
cost function (29). The (46) and (44) show that the control
gain matrix K is a function of the weighting matrices Q and
R. Therefore, the control gain matrix K can be tuned by
adjusting the elements of matrices Q and R.

IV. SIMULATION

The optimal states feedback control derived in the previous
section is applied in an active suspension system of ground
vehicle. Dynamics of the vehicle are approached by the half-
car model given in (18). The active suspension system has a
main objective on improving the vehicle ride comfort, while
the vehicle ride safety is maintained or even more improved.
The vehicle ride comfort and ride safety are expressed by the
output vector y given in (25) that consists of four elements:
y1, y2, y3, and y4. The y1 and y2 denotes displacements
of the front and the rear suspensions, respectively, that
related to the ride safety. The y3 and y4 denotes the vehicle
heaving motion and the the vehicle pitching motion that
correspondences to the ride comfort.

Cost of each output variable of the system is defined as
follows:

Jyi
=

1

2

∫ ∞
0

σiy
2
i dt (47)

and the system output cost is defined by:

Jy =
4∑

i=1

Jyi
=

4∑
i=1

(
1

2

∫ ∞
0

σiy
2
i dt

)
(48)

where yi is the ith output variable, σi is a positive constant
representing weighting factor of the output variable yi, Jyi

is the cost function of the output variable yi, and Jy is the
system output cost.

The active suspension system has two inputs, u1 and u2.
The u1 is the force generated by actuator of the front active-
suspension, while the u2 is the force generated by actuator
of the rear active-suspension. Cost of the system input is
defined by the following equations:

Ju =
2∑

k=1

(
1

2

∫ ∞
0

ρku
2
kdt

)
. (49)

where uk is the kth input variable, ρi is a positive constant
representing the weighting factor of input variable ui, and
Ju is the cost of system input.

Total cost of the suspension system is defined as follows:

J = Jy + Ju (50)

where J is the total performance index of the suspension
system. Substituting (48) and (49) into (50) results in:

J =
4∑

i=1

(
1

2

∫ ∞
0

σiy
2
i dt

)
+

2∑
k=1

(
1

2

∫ ∞
0

ρku
2
kdt

)
(51)

that can be expressed into the following equation:

J =
1

2

∫ ∞
0

(
yTW1y + uTW2u

)
dt, (52)
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where W1 is a diagonal matrix with the matrix element
W1(i, i) = σi, W2 is a diagonal matrix with the matrix
element W2(k, k) = σk, y is the output vector, and u is
the input vector. The (52) and (29) are similar and both are
equal if Q̄ = W1 and R = W2. Therefore, the matrices Q̄
and R are designed to be diagonal matrices in this study.
The matrix Q̄ is defined as follows:

Q̄ =


q̄1 0 0 0
0 q̄2 0 0
0 0 q̄3 0
0 0 0 q̄4

 , (53)

where q̄i are the weighting factor of the system output yi
defined in (25) for i = 1, 2, 3, 4. While for the matrix R, it
is defined as follows:

R =

[
r1 0
0 r2

]
, (54)

where r1 is the weighting factor for system input u1 and r2
is the weighting factor for system input u2.

A computer program is built to demonstrate performance
of the vehicle suspension systems. The computer program
simulates the vehicle move at a constant speed 20 m/s and
pass a bump with amplitude of 30 cm. For the simulation,
the bump is approached by the following function:

zr =

 0, for 0 < xr < 5
ar sin(xr − 5), for 5 ≤ xr ≤ 5 + π
0, for xr > 5 + π

(55)

where ar is the bump amplitude, xr is the horizontal road
position, and zr is the road elevation. The bump road profile
is shown in Figure 3. While passing the bump, the vehicle
is excited by a road disturbance through the front wheels
and followed by the rear wheels. The road disturbances on
both wheels are shown in the Figure 4. Parameters of both
passive and active suspension systems, and the vehicle for
the simulation are listed in Table I.
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TABLE I
VEHICLE PARAMETERS

Parameter Symbol Value Unit
Vehicle
front wheel mass m1 40 kg
rear wheel mass m2 40 kg
body mass mb 1400 kg
body inertia Ib 2000 Nm
front tyre stiffness kw1 2 × 105 N/s
rear tyre stiffness kw2 2 × 105 N/s
Active suspension
spring stiffness k1, k2 2 × 104 N/s
damping coefficient c1, c2 2600 Ns/m
Passive Suspension
spring stiffness k1, k2 2 × 104 N/s
damping coefficient c1, c2 2600 Ns/m

Since the states feedback control of active suspension
system is designed using the optimal control, the active sus-
pension performance is determined by the weighting matrices
of the cost function (29). Varying the weighting matrices
will result in different performance. It is demonstrated in
this study by presenting eight sets of different weighting
matrices as listed in Table II. Each weighting matrices sets
is used to calculate a control gain matrix of the optimal state
feedback controller. The resulted controller is applied in the
active suspension system and simulated together with the
passive suspension system. Therefore, eight simulations are
performed and sequentially named as the Sim 1 to Sim 8.
Performance of the suspension systems are calculated based
on the system cost (32), where u is a zero vector for the
passive suspension. The better performance is indicated by
the lower cost.

The eight simulations are carried out and the resulted costs
are presented in the Table III and Table IV. The results of
each simulations are discussed as follows:

a) The Sim 1 is done by selecting both weighting matrices
Q̄ and R equal to the identity matrices. The simulation
result shows that costs of both active and passive
suspension systems are equal. This indicates that the
actuator of active suspension system did not generate a
significant control force. The active suspension system
is dominated by the works of spring and damper. This
is confirmed by a small value of the system input cost
Ju. Adjustment of the weighting matrices is required to
improve the performance of active suspension system.

b) Increasing weighting matrix for system output Q̄ of Sim
1 is done for the matrix elements q̄1 and q̄2 in the Sim
2. Both are increased 103 times of the values in the
Sim 1. The q̄1 and q̄2 are the weighting factors for the
front and rear suspension displacements, respectively.
Increasing values of both weighting factors indicates
a more emphasizing for reducing the suspension dis-
placements. The simulation results in the same cost of
both active and passive suspension systems. Cost of the
system input is still very small and incomparable to the
system output cost.

c) Increasing the weighting matrix Q̄ of Sim 1 by more
emphasizing on the heaving and pitching motions is

TABLE II
WEIGHTING MATRICES OF ACTIVE SUSPENSION SYSTEM

Simulation Weighting Matrices
Name

Sim 1 Q̄ =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , R =

[
1 0
0 1

]
.

Sim 2 Q̄ =

 103 0 0 0
0 103 0 0
0 0 1 0
0 0 0 1

 , R =

[
1 0
0 1

]
.

Sim 3 Q̄ =

 1 0 0 0
0 1 0 0
0 0 103 0
0 0 0 103

 , R =

[
1 0
0 1

]
.

Sim 4 Q̄ =

 103 0 0 0
0 103 0 0
0 0 103 0
0 0 0 103

 , R =

[
1 0
0 1

]
.

Sim 5 Q̄ =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , R =

[
10−9 0

0 10−9

]
.

Sim 6 Q̄ =

 103 0 0 0
0 103 0 0
0 0 1 0
0 0 0 1

 , R =

[
10−9 0

0 10−9

]
.

Sim 7 Q̄ =

 1 0 0 0
0 1 0 0
0 0 103 0
0 0 0 103

 , R =

[
10−9 0

0 10−9

]
.

Sim 8 Q̄ =

 103 0 0 0
0 103 0 0
0 0 103 0
0 0 0 103

 , R =

[
10−9 0

0 10−9

]
.

done in the Sim 3. The matrix elements q̄3 and q̄4 are
increased 103 times. However, the simulation results of
Sim 3 shows that this increment does not show any
different on the system-output cost between the active
and passive suspension systems. The system-input cost
of active suspension system is still very small and
insignificantly influences to the total cost.

d) The Sim 4 increases the weighting matrix Q by mul-
tiplying the elements of Q̄ of the Sim 1 by 103. The
simulation results of Sim 4 show the same values of
system-output cost of both active and passive suspension
system. Cost of the system input is still very small and
imbalance to be compared to the system output cost.

e) The simulation results of the active suspension system
in the Sim 1 to Sim 4 show that the values of Ju and Jy
are very imbalance, where the ratio of Ju and Jy in the
order of 10−9. This is a hint for tuning the matrix R.
Control force generated by the actuator is determined
by a control law given in (45). The control law shows
that the generated control force is proportional to the
control gain K and the system states x. Since all of
the system states are counted to determine cost of the
system output, the simulation results of the Sim 1 to
Sim 4 indicate that the very small control force u was
due to the small control gain K. Therefore, the control
gain has to be increased. According to (46), increasing
the control gain can be done by reducing the matrix
R. In this Sim 5, the weighting input matrix R is
adjusted by decreasing the diagonal elements of R with
scaling factor 10−9 of the R in Sim 1. The simulation
results of Sim 5 shows that the active suspension system
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TABLE III
SIMULATION RESULTS: COST OF ACTIVE AND PASSIVE SUSPENSION SYSTEMS

Simulation Suspension Cost
Name Type Jy1 Jy2 Jy3 Jy4 Jy Ju J

Sim 1 active 0.71 0.62 0.41 0.10 1.85 1.53×10−9 1.85
Sim 1 passive 0.71 0.62 0.41 0.10 1.85 0 1.85
Sim 2 active 714.65 622.24 0.41 0.10 1337.40 6.19×10−4 1337.40
Sim 2 passive 714.65 622.24 0.41 0.10 1337.40 0 1337.40
Sim 3 active 0.71 0.62 412.97 98.53 512.85 2.19×10−4 512.85
Sim 3 passive 0.71 0.62 412.98 98.53 512.85 0 512.85
Sim 4 active 714.65 622.24 412.98 98.53 1848.39 1.56×10−3 1848.39
Sim 4 passive 714.65 622.24 412.98 98.53 1848.40 0 1848.40
Sim 5 active 0.52 0.42 0.17 0.09 1.19 0.11 1.31
Sim 5 passive 0.71 0.62 0.41 0.10 1.85 0 1.85
Sim 6 active 57.32 23.76 0.46 0.19 81.73 43.50 125.23
Sim 6 passive 714.65 622.24 0.41 0.10 1337.40 0 1337.40
Sim 7 active 0.73 0.53 9.43 17.13 27.83 2.70 30.52
Sim 7 passive 0.72 0.62 412.98 98.53 512.85 0 512.85
Sim 8 active 210.98 70.27 199.45 136.15 616.85 19.25 636.10
Sim 8 passive 714.65 622.24 412.98 98.53 1848.40 0 1848.40

TABLE IV
COST RATIO AND PERFORMANCE IMPROVEMENT OF THE ACTIVE SUSPENSION SYSTEM TO THE PASSIVE SUSPENSION SYSTEM

Simulation Cost ratio (%) Improvement (%)
Name Ride Ride Total Ride Ride Total

Safety Comfort Cost Safety Comfort Performance
Sim 1 100 100 100 0 0 0
Sim 2 100 100 100 0 0 0
Sim 3 100 100 100 0 0 0
Sim 4 100 100 100 0 0 0
Sim 5 70.68 50.98 70.81 29.32 49.02 29.19
Sim 6 6.06 127.45 9.36 93.94 -27.45 90.64
Sim 7 94.04 5.19 5.95 5.97 94.81 94.05
Sim 8 21.04 65.61 34.41 78.96 34.39 65.59

results in less system-output cost and less total cost.
Costs of the system-input and the system-output are
close to balance with the ratio of Ju and Jy about 0.1.
The active suspension system of Sim 5 improves the
ride safety 29.32%, the ride comfort 49.02%, and the
total performance 29.19% compared to the passive sus-
pension system. Although the active suspension results
in better performance, more improvement of the total
performance is still desired.

f) A re-adjustment of the weighting matrices of Sim 5
is presented in Sim 6. The Sim 6 adjusts the matrix Q̄
while the matrix R remains to be the same as in the Sim
5. Sim 6 emphasizes on the front and rear suspension
deflection by increasing the weighting factor q̄1 and
q̄2 of Sim 5 to be 103 times. The active suspension
system results in much lower costs on both suspension
deflections but slightly higher costs on the heaving and
pitching motions. The Sim 6 achieves improvements
of 93.94% on the ride safety, −27.45% on the ride
comfort, and 90.64%. The active suspension system of
Sim 6 makes a very good improvement on the ride
safety but decreases the ride comfort.

g) Re-tuning on the weighting matrices of Sim 5 is also

presented Sim 7 by emphasizing on the vehicle ride
comfort performance. The Sim 7 modifies the values
of q̄3 and q̄4 of matrix Q̄ while the other weighting
matrices elements are the same as in the Sim 5. The
simulation results of Sim 7 show improvements on
the ride safety 5.97%, ride comfort 94.81%, and total
performance 94.05% by using the active suspension
system.

h) Another adjustment on weighting matrices of Sim 5 is
presented in Sim 8. The diagonal element of matrix Q̄
are increased 103 time while the matrix R is fixed as in
the Sim 5. According to the simulation results of Sim
8, the active suspension system makes improvement on
the ride safety 78.96%, ride comfort 34.39%, and total
performance 65.59%.

According to the simulation results, the best performance
of ride comfort was achieved by the active suspension system
of Sim 7, while the active suspension system with least sus-
pension deflection was resulted in the Sim 6. Time responses
of the suspension systems in Sim 6 and Sim 7 are shown in
Figure 5 to Figure 7. The Figure 5 shows deflections of the
front and rear suspension. The active suspension system of
Sim 6 produced in the least deflections for both front and
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Fig. 5. The front suspension (FS) deflection and the rear suspension (RS)
deflection of passive and active suspension systems.

rear suspensions among the three suspension systems. The
Figure 6 shows the vehicle heaving and pitching motions.
The active suspension system of Sim 7 results in the least
heaving and pitching motions among the three suspension
system. The least heaving and pitching motions implicates
the best ride comfort. The active suspension system of Sim
6 exhibits oscillations of heaving and pitching motions.
This oscillations reduce the ride comfort of the vehicle. A
comparison of the required control force for both active
suspension systems are presented in the Figure 7. The figure
shows that the active suspension system of Sim 6 requires
more control force than the active suspension system of
Sim 7. Considering the implementation cost, this makes
implementation of the active suspension system of Sim 6
be more expensive.

V. CONCLUSIONS

An optimal state feedback control design for active sus-
pension system has been presented. The control design was
done based on an half-car suspension model and applying
the LQR control design method. Performance evaluation of
the suspension system was carried out through computer
simulations. Performance of the active suspension system
is determined by the weighting matrices of the LQR cost
function. The cost function includes the weighting matrix of
system output and the weighting matrix of the system input.
Eight variations of the weighting matrices were presented
and simulated. The results show that: 1) weighting matrices
of the system output and the system input have to be initially
tuned such that costs of the system output and the system
input are balance, 2) giving more weighting on the ride
comfort resulted in the better performance than giving more
weighting on the suspension displacement. The best active
suspension system for ride comfort was achieved in the Sim
7 by improving the vehicle ride comfort 94.81%, the vehicle

Fig. 6. The vehicle body motions of using passive and active suspension
systems.
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Fig. 7. Control forces generated by the front and rear actuators.

ride safety 5.97%, and the total suspension-performance
94.81%.

This study was done by modeling the tyre as spring. A
more realistic and reliable tyre model should be considered
for a further study, for an example by applying a tyre model
presented in [30].
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