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Applying the Non-linear Transformation Families
to the Lagged-variance of EGARCH and GJR
Models

Didit B. Nugroho, Tundjung Mahatma, Yulius Pratomo

Abstract—This study performed four non-linear transforma-
tions, including Tukey, Exponential, Modulus, and Yeo—Johnson
to the lagged-variance, and four skewed and/or heavy-tailed
distributions, including Student-t{, Hansen’s skewed Student-¢
(HST), Fernandez-Steel’s skewed Student-¢ (FST), and skewed
generalized error distribution (SGED) to error distribution in
estimating GARCH, GJR, and EGARCH models. The Adaptive
Random Walk Metropolis (ARWM) method was constructed in
the Markov Chain Monte Carlo (MCMC) algorithm to perform
the Bayesian inference of models. On the basis of empirical
study of Swiss Market Index, the results provide strong evidence
that ARWM method can be a statistically efficient MCMC
method for the Bayesian inference of the GARCH-type models.
On comparing the estimated models based on the Log-likelihood
Ratio Test (LRT) and Deviance Information Criterion (DIC),
we found the superiority of volatility fitting for the models with
non-linear transformation. In all considered distributions, the
exponential transformation produces the best performance in
fitting the GARCH and GJR models, meanwhile the modulus
transformation yields the best performance in fitting the other
one. DIC suggested the EGARCH models with HST distribution
based on the modulus transformation in the lagged-variance as
the best fit model.

Index Terms—GARCH, heavy-tailedness, non-linear trans-
formations, skewness.

I. INTRODUCTION

In time series and econometrics modeling, the class of
Generalized Autoregressive Conditional Heteroskedasticity
(known as GARCH) introduced in [1] is the most pop-
ular model to describe the time-varying variances of the
observations. Models from the GARCH class specifies the
current variance as an exact function of past errors and
variances. Let R; be the observable return of an asset at
discrete time ¢ with the associated conditional volatility of o;.
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A general specification for the returns process that exhibits
time-varying volatilities is given by

Ry = o464,

in which ¢, (the errors) are i.i.d. (independent and identically
distributed) with expectation 0 and variance 1. The basic
GARCH(1,1) model is the most popular to model conditional
variance (squared volatility) in the empirical study, where the
process is given as:

O't2 :eraRf_l Jrﬂatz_l. (D)

The GARCH(1,1) process in Eq. (1) defines the condi-
tional variance at current as a linear function of returns and
variances from the past. In the last three decades, several
non-linear variants have been derived from the basic GARCH
model to make good estimate and forecast of future variance
in financial markets. Most of them are developed to capture
such aspects as the asymmetric relation between conditional
variance and previous observations, see [2] for a brief survey
and discussion. The two most popular asymmetric GARCH
models are perhaps the exponential GARCH (EGARCH)
model studied in [3] and the GJR model given in [4].
This study therefore focuses on the EGARCH and GJR
models. The EGARCH model takes the natural logarithmic
value of the conditional variance and allows observations
of different signs to have a different effect on the natural
logarithmic of variance. Meanwhile, the GJR model extends
the basic GARCH model by adding a term which allows for
asymmetric effects of variance in term of the sign of the past
observation.

Another version of nonlinear ARCH model was offered
in [5] by taking the Box—Cox power transformation for the
current variance and the past observation. This model is
then known as NARCH model. Similar to that approach,
study in [6] developed the APARCH (asymmetric power
ARCH) model, which is the extension of GJR model, by
taking conventional power transformation for the variance
on both sides of the GARCH process. Recently, study in
[7]1 applied the Tukey transformation to the lag of the
variance process in Eq. (1) and showed that the proposed
model better performing than the basic GARCH model. The
approach of [7] is similar to [8] applied several non-linear
transformations to the lag of log-variance in the context of
stochastic volatility process.

When one estimates the conditional variance using the
time series models in the basic case, the error process
(e;) follows a Normal distribution. However, in reality, the
financial time series data do not come from a Normal
distribution, but the series tend to exhibit properties such
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as skewness and kurtosis. To overcome this problem, many
researchers perform skewed and/or heavy-tailed distributions
to make GARCH modeling more successful in fitting the
time series data. In the case of heavy-tailed distribution, study
in [9] showed that the Student-¢ distribution and generalized
error distribution (GED) outperform the Normal distribution.
Meanwhile, to model both skewness and kurtosis charac-
teristics, three different distributions have been proposed.
The three distributions: generalized Student-¢ of [10], skewed
Student-¢ of [11], and skewed GED of [12], were proposed
to provide a flexible distribution for modeling the empirical
distribution of financial time series data in the ARCH, regres-
sion, and absolute GARCH-in-mean models, respectively. In
particular, study in [13] compared the Normal, Skew Normal
of [14], Skewed Student-t, and Skewed GED and found
empirical evidence to support skewed distributions for the
return error in GARCH model.

Motivated by the previous works, the objective of this
study is to introduce an alternative non-linear class to the
EGARCH and GJR models. First, we incorporate the non-
linear transformations such as Extended Tukey, Extended
Box—Cox, Exponential, Modulus, and Yeo-Johnson into the
lag of the log-variance in the EGARCH process. These
transformations are applied to accommodate negative value
of log-variance. Meanwhile, the simple Tukey, Box—Cox,
Exponential and Modulus transformations that work well
only on positive values are applied to the lagged-variance
in the GJR process. Second, the models allow generalized
Student-t, skewed Student-t, and skewed GED in the error
distribution. Third, we employ the Adaptive Random Walk
Metropolis (ARWM) method in [15] in the Markov Chain
Monte Carlo (MCMC) algorithm to estimate the proposed
models. Finally, the appropriateness of the proposed models
is evaluated through the goodness-of-fit statistics provided
by models when fitted to the real data. To of our knowledge,
this study is considered a pioneer in modeling and estimating
the EGARCH and GJR models with skewed and heavy-tailed
distributions and non-linear transformations.

The rest of the paper is organized as follows. Section II
presents our proposed models, including non-linear transfor-
mation families, asymmetric GARCH models, and skewed
and heavy-tailed distributions. Section III describes the es-
timating in the Bayesian framework and explains the mea-
surements used to evaluate parameters and sampling method.
Section IV discusses an empirical study on the Swiss Market
Index and performs comparison of the competing models
based on the likelihood ratio test and deviance information
criterion. The last section gives some conclusions.

II. NON-LINEAR GARCH MODELS
A. Non-linear Transformation Families

The non-linear transformation families are widely used in
statistical study to make data as “Normal” as possible for
the purposes of increasing the statistical validity. Also, in
the mathematics modeling context, non-linear transforma-
tions can be used to generalize linear models to be more
powerful non-linear models. Thus, by applying non-linear
transformation families that nest linear specification, one can
choose the most suitable functional form for a variable pro-
cess. Recently, the non-linear transformation families were

successfully applied to the return data by [16], [17] to provide
better fitting than a basic model.

A class of non-linear transformations that are especially
popular to generalize the standard linear form is power
transformations. Firstly, a family of Tukey’s conventional
power transformations (called Simple Tukey (ST)) takes the
following form [18]:

5
ST N x°, 6>0
g (x,5) = { log(x), 5=0 )
for x > 0. For dealing with negative observations, the ST
transformation has an extension called Extended Tukey (ET)
transformation, which is defined as in [17]:

9" (x,0) = sgn(z)|z|°,6 > 0, 3)

where the signum function, sgn(x), is defined as 1 for z > 0,
0 for z = 0, and —1 for x < 0. We include the case of 6 = 0
by defining

gET(x, 0) = sgu(x)log(|z|),d = 0. 4)

When § = 1, the standard linear form is produced as a special
case.

Notice that the ST family has a discontinuity at § = 0. This
problem was rectified by the Box—Cox (BC) transformation,
which takes he following form:

2 —1
9" (,6) = 5

log(z),
To concern with real values, we could consider the Extended

Box—Cox (EBC) transformation, with the addition of the § =
0 case, which is given by [17]:

0#0 5)
0 =0.

sgn(z)|z)0—1

— )

sgn(z) log(z),

EBC(:C (;)

)

0=0.

9

There have existed several popular alternative versions
of the BC transformations which are defined for any real
number (see [19]). For example, the Exponential (abbreviated
as Exp) transformation takes the following form:

exp{dz} —1
g5 (,6) = 5 070 )
x, 6=0,
the form of the Modulus (abbreviated as Mod) transformation
is given by:
sgn(x)[(Jz|+1)° — 1]

gj\/IOd(l', 6) — 5 5 (S # O (8)

sgn(z) log(|z[+1), §=0,

and a modification of the Mod transformation, called Yeo—
Johnson (abbreviated as YJ) transformation, takes the fol-
lowing form:

1)° —
@+; L 050,040
log(x + 1), x>0,0=0
9" (x,0) = (1g(_x)2—)5_1 ©)
52 , ©<0,0#2
—log(—z+1), x<0, d=2

If x is strictly positive, the YJ transformation is the same as
the Mod transformation.
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B. Non-linearities in Asymmetric GARCH Models

GARCH-type models are popular since this class considers
the time-varying volatility in asset returns as an unobserved
variable. This makes uncertainty about the specifications of
volatility process whether linear or non-linear. Since the
previous power transformations include the case of linear
form, applying such transformations in the lagged-volatility
process allows the unobserved variable to select the adop-
tion between the linear and non-linear specifications. For
these objectives this study propose a class of asymmetric
GARCH(1,1) models which incorporates a family of power
transformations in the lagged-volatility.

As the part of our model, the return of financial time series
R, at time ¢ is assumed to be modelled by

Ry =0, e ~N(0,1), t=1,...,T, (10)

in which N denotes the Normal distribution. When return
R, is positive (negative), it describes good (bad) news in an
asset market. The GJR model introduced in [4] is based on a
modification of the conditional variance equation of the basic
GARCH specification, which assumes that the asymmetric
behaviour of current conditional variance depends on the sign
of the past returns. Our general non-linear GJR(1,1) model,
called the NL1-GJR(1,1) model, is given by

2 NL

o7 =w+ (a+v1g,_,so)Ri_1 + BgrY, (A1)

for t = 2,...,T, where 1;4; = 1 if condition A holds and
0 otherwise, and g'* = ¢"V*(07,0) is a power transfor-
mation for o2. When v = 0, we get the symmetric NLI-
GARCH(1,1) model. This means negative return and positive
return have the same effect on the conditional variance. If
v > 0 (or v < 0), bad (good) news will increase the volatility
more than good (bad) returns (according to [20]). The case
of v > 0 reflects a phenomenon commonly known as the
“leverage effect”, signifying that a negative return produces
higher future volatility (variance) than a positive return of
same magnitude (according to [21]).

Since the variance o7 in Eq. (11) is always positive for
t=1,...,T —1, we employ three transformation families:
ST, Exp, and Mod transformations. Notice that, in this case,
the ST power transformation can be viewed as a simplified
version of the BC transformation and also the Mod and YJ
transformations have the same functional form. When the
values of § = 0 in the case of Exp transformation and § = 1
in other cases, the standard GJR(1,1) model is produced.
Notice that the power function g is always positive for
af > (. Therefore, the GJR(1,1) model conditions on the
parameters of the NL1-GJR(1,1) model are still valid and can
be used, i.e. w > 0, a+~ > 0, and 8 > 0 to ensure the non-
negativity of the conditional variance and a+8+0.5y < 1 to
satisfy the covariance-stationary condition. The last condition
was derived by [22] based on the following theorem.

Theorem 2.1: If E|e;[*™< oo and E[w]*™ < oo,
then the necessary and sufficient condition for the ex-
istence of the 2m-th moment of the solution R, is
E [BJr (Ol+’)/1[Rt71>0])}2m < 1, where m is a positive
integer

In contrast to the GARCH specification, [3] proposed the
EGARCH (Exponential GARCH) model by taking the loga-
rithm on the conditional variance so that it does not require

non-negativity parameters constraint. The mathematical form
of our general non-linear EGARCH(1,1) model, called the
NL1-EGARCH(1,1), is described as:

R, R,_
L+ BglE 4+ =2,

Ot—1

hi =w+a«a (12)

1
Ot—1
for t = 2,...,T, where h; =log (07) and g'* = g (h, 9).
Since h; is real-valued variable, we can apply the ET, Exp,
Mod, and YJ transformations. Notice that, in this case, the
ET transformation can be viewed as a simplified version
of the EBC transformation. The above model also enables
the capture of the asymmetric behavior of volatility in asset
return, which is represented by the parameter . If v = 0, it
indicates a perfect symmetric model, with asymmetry given
by v # 0. In this case, the existence of leverage effect is
reflected by v < 0.

C. Distributions Allowing the Skewness and Kurtosis

One of the flexible distributions which generalizes Stu-
dent’s ¢ distribution and allows to capture both skewness and
kurtosis (a measure of tail thickness) was derived in [10]. The
Hansen’s skewed Student’s ¢ (HST) distribution for a random
variable y with expectation 0 and standard deviation ¢ > 0
can be defined by

HST(y|o, v, \) = be [1

(13)
—0.5(v+1
N 1 byc~! +a 2 D
v—2\1+sgn(byo~! + a)A
where
-2 I'(0. 1
) Vit B P C I P O | Gt
v—1 (v — 2)I'(0.5v)

Here, 2 < v < oo is the degrees of freedom which controls
the height and tails of the density and —1 < A < 1
determines degree of skewness. A left (negative) skewed
distribution is indicated by A € (—1,0), whereas a right
(positive) skewed distribution is indicated by A € (0,1). So,
if A = 0, HST distribution reduces to the traditional Student’s
t distribution in which the smaller v gives heavier tails.

A different version of the skewed Student’s ¢ distribution
was proposed in [11]. For a random variable y with expecta-
tion 0 and standard deviation o > 0, the Fernandez—Steel’s
skewed Student’s ¢ (FST) distribution can be defined by

2 T(0.5(v+1)) 1
FST A) = 1
(y|07 v, ) A1 F(O.5V) 7ro'2(y — 2)
1 —0.5(r+1)
2 2 -2
T o2(v — 2>y (M Ly<o + A 1[y>0]):|

(14)

Clearly, when \ = 1, the density simplifies to the traditional
Student’s ¢ distribution. Negative skewness is generated by
A € (0,1), whereas positive skewness corresponds to A > 1

Another class of flexible distributions, which covers both
asymmetrics and tail-thickness, is the skewed generalized
error distribution (SGED) suggested in [12]. In contrast to
the two skewed Student’s ¢ distributions above, the SGED
is a generalization of Skew Normal. The SGED probability
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density function for the random variable y with expectation
0 and standard deviation o > 0 is given by

C |y+UU|K
SGED A)=— -
(ylo, K, A) aexp{ [1 +sgn(y + uo)Ajgro”
(15)
where:
) ) 1 1 0.5 3 0.5
= — F - = F » F P A -
C 2q (Ii) , q <K,> <K,) S( ) )
20A
=V 143)\2 —442)2 y =
Vi+3 ROV

() )

Here, ~ is the shape parameter with constraint x > 0 and
controls the height and tails of the density, A is the skewness
parameter with constraint —1 < A < 1. When 0 < x < 2,
the tails of the distribution become heavier than the Normal
distribution; when s > 2, the tails of the distribution become
thinner than the Normal distribution. Meanwhile, when ) is
more positive, the distribution is more skewed to the right and
will be more skewed to the left when )\ is more negative. So,
for k = 2, the SGED reduces to the Normal distribution when
A =0 and to the Skew Normal distribution when A # 0.

III. MCMC ESTIMATION

The Maximum Likelihood Estimation (MLE) and
Bayesian MCMC methods are popular statistical methods for
estimating the parameters of a statistical model. In particular,
the inference in our models is fully based on the Bayesian
computational approach. We focus on MCMC algorithm that
have been used and become a reference method for analysing
computational complexity of model (see [23] for a survey
of MCMC). Empirically, the Bayesian MCMC approach
performs better than the MLE approach in accuracy (see,
for example, [24], [25], [26]).

Bayesian approach relies on likelihood formulation, but in
practice it often customarily takes the natural logarithm of
the likelihood function. By taking the log (means the natural
logarithm), it is not only greatly simplifies the complex
mathematical expressions, but it also helps numerically since
the product of many small probabilities can be resolved by
summing the log probabilities. It could significantly reduce
the computer numerical error.

A. Priors and Conditional Log-likelihood Function

In the Bayesian framework, it is further required to
complete the specification of statistical model by specifying
probability density (referred to as likelihood and denoted
by L(data]d)) and prior distribution (denoted by p(6)) for
unknown parameter ¢. Using Bayesian terminology, the
estimated probability of parameter after observing the data
is called a “posterior probability” (denoted by p(f|data)) and
it is stated in the following Bayes’ theorem [27].

Theorem 3.1: A posterior probability for the parameter 6
given the observed data is equal to the conditional probability
of data given 6, multiplied by the probability of 6 without
any given conditions and divided by the probability of data

without any given conditions. In the proportional form, it is
expressed as follows:

Posterior < Likelihood x Prior,

where the symbol “o<” means “proportional to”.

In this study we choose the exponential prior distribution
on the shape parameter k& and the degrees of freedom
parameter v as in [28] and the truncated Normal priors on
other parameters as in [29]:

p(z1) o« exp(— O5x1/1000)1[11>0] (16)
p(z2) o< exp(—0.522/1000), a7
p(A) o< exp(—0.5A%/1000)1 (<1, (18)
p(k) o exp(—0.01k)1p>0), (19)
p(v) o exp(=0.01(r —2))1p>2, (20)

where 1 € {w,a, 8} and x5 € {v,0}.

Our purpose is to draw statistical inference based on
a sequence of observed returns, R = {Rj,Rs,...,Rr},
with the sequence of associated conditional variances is

01,09, ...,0p. First, let us consider the HST specification.
We define
W, = (bRo; ' +a)/(1+1Iw)
WW, = 14+W?2/(v-2),

where Iy takes the value of 1 if bR:o; 'S 0 and —1
otherwise. Under the HST specification, the conditional log-
likelihood function of returns with the conditional vari-
ance o7 follows either NL1-EGARCH(1,1) or NL1-GJR(1,1)
models can be expressed as

Z(R|61) = log(L(R[6)))
= Tllog(b) + log(c)]
T
_vt ! Zlog(WWt)»

t=1

2y

where 61 = (w, «, B,7,v, A\, ).

Second, we consider the FST specification. Let us define
Zy = 14+2\R20; ?(v—2)~! where z) takes the value of \? if
R, < 0 and A~2 otherwise. Under the FST specification, the
conditional log-likelihood function of returns for the NLI-
EGARCH(1,1) and NL1-GJR(1,1) models is given by

T {10g(2) —log(A + %)

+log <I‘ (;(V + 1)>)

—log <F (;I/>) — %log(w(v - 2))}
T 1 T

- glog (0¢) =

Finally, the SGED specification is considered. The con-
ditional log-likelihood function of returns for the NLI-
EGARCH(1,1) and NLl-GJR(l 1) models is given by

f(R\el) =

). (22)

|Rioy ' + U|K
Z(R|O) =T1 1
(RJfz) = Tlog(C Zogo—t Z TN
(23)
where 05 = (w, a, 8,7, k, A, d) and s takes the value of 1 if
Rio; ' 4+ u > 0and —1 otherwise.
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B. The ARWM Sampler

In MCMC simulation, there are two typically distinct
steps. As a first step it simulates a Markov chain by using
a sampler. The second step is then to use the Monte Carlo
approximation to estimate the descriptive statistics measures
(such as mean, standard deviation, Bayesian credible interval,
and inefficiency factor) for the Markov chain. There are
several samplers that have been proposed. Here we employ
the ARWM method of [15]. This sampler was successfully
applied to GARCH(1,1)-type models by [30], [31], [32].

The ARWM method is designed to improve the sampling
efficiency of the random walk Metropolis, which is the
simplest and one of the most common sampler types in
practical use. For a parameter 6 and at iteration n € N,
schematically, the sampler involves the following ways:

(i) Suppose that at iteration (n — 1)th, we have #("~1) and
step-size A1),
(ii) Draw a new value 6* = 6"~V + N/(0, A("~1),
(iii) Calculate the Metropolis ratio:

T(g(n—lw*) = Z(R[0) +log(p(6"))
—ZRJOD)
—log(p(0™~ V). @4

Draw u ~ U(0,1), in which ¢/ is the Uniform distribu-
tion. If u < exp {7" (0(”*1), 9*) } we accept 6* and set
(") = 9* Otherwise, we set (%) = g(n=1),

(v) Update the step-size A ¢ [Amin, Amax] and com-

pute:
m(6*) _ 5
A = max Aminy A(n)ni )

(iv)

- (25)
where m(0*) denotes the number of acceptance for 6*.
If A < Apax, We set A = A but otherwise we set
A = A

This study sets Apin = 1074, Apax = 1000, n = 0,6 as in

[15] and chooses a targeted acceptance rate close to 7 = 0.44

as in [33].

In the case of models with the HST and FST specifications,
the MCMC scheme works in the following steps:

(0) Choose a starting value 9(0), the number of iterations
N, the burn-in-period J, and set n = 1.

(1) (1) Update a sequence of parameter values w™, qm)
B, A ) () - X(") by using the ARWM
method for each parameter.

(i) If n > J, record the values of the parameters.
(iii) If n < N, set n =n + 1 and then go to step 2.

(2) Using N — J recorded draws, calculate various de-
scriptive statistics measures to summary the Bayesian
inference.

The similar way is also employed for the models with the

SGED specification. The burn-in-period refers to a certain

number of iterations at the beginning of the chain in order

to minimize the effect of starting values. In our algorithm,

N and J are specified as 15000 and 5000 iterations, respec-

tively. Begin with the starting values: wg = 0.01, ag = 0.2,

Bo = 0.7, v0 = 0, vy = 10, k9 = 2, dan ¢ = 0.5, the 10000

remaining draws on each parameter are used to calculate

the mean, integrated autocorrelation time (IACT), and 95%

highest posterior density (HPD) interval.

C. HPD Interval and IACT

The HPD interval is one of the Bayesian credible intervals,
where it is not the same as the equal-tailed interval when the
distribution is not unimodal and symmetric. Following [34],
the 95% HPD interval of {#)},_; s, where M = 10000
(in our case), is constructed in the following steps:

(1) Compute My = [0.05 % M] and Mgpan = M — My,
where [x] denotes the standard rounding function for x.

(2) Sort draws to obtain the ordered values: {6 }1_,, where
0h <Oy <---<0n

(3) Compute 0° = {0130, — {Ok}py".

(4) Find a position k* such that 8*(k*) is a minimum value.

(5) The 95% HPD intervals:

(Hk* s ek*_;'_]\/[spa“) .

Two desirable fundamental properties of a Markov chain
are high efficiency and good chain mixing. These issues can
be resolved with the help of convergence diagnostics. The
convergence properties of the draw update can be assessed
graphically using a trace plot. When the draw update stays
in the same value for too many consecutives iterations, it
indicates a poor mixing. Ideally, a chain have had well
mixing or reached stationary if the trace plot of draws
fluctuates around a mean value with a relatively constant
variance. To measure the mixing/convergence speed of a
Markov chain, this study calculates the autocorrelation of the
recorded draws after discarding a burn-in period. We look at
the IACT which is defined as:

oo
IACT =i = p(t),

t=—00

(26)

where p(t) is the normalized autocorrelation function at

time ¢t. The value of 7;,; is estimated using Sokal’s adap-

tive truncated periodogram estimator by applying the Fast

Fourier transform (FFT) to compute autocorrelations from

the recorded draws. The procedure to estimate 7;,; for the

individual chain 0 = {G(i)}izm,_“’ M was implemented in

Matlab by [35] and described as follows:

(1) Calculate x = FFT(0) and take the real and imaginary
parts of x, namely xg = Re(x) and z; = Im(z),
respectively.

(2) Compute the squared magnitude zp = :L’% + 22 and
then set xg) =0.

(3) Take y = Re(FFT(xzp)), and compute p = y(—yl)

(4) Compute 7, = —% + Zle (y@ — 1) where 7, < 0.
(5) The value of IACT: 2 (7, + %51).

The value of IACT gives a reasonable measure of the
efficiency of a sampler since it can be interpreted as the
number of iterations required to produce an independent
draw from the sampler. This means that a sampler with
a smaller IACT leads to lower autocorrelation and better
mixing, requiring shorter chains per independent draw and
generating a high efficiency.

IV. AN APPLICATION: SWISS MARKET INDEX

This section addresses the testing for ARWM sampler
and estimation of the parameters of the extended GARCH
models. Each model is fitted to the Swiss Market Index (SMI)
as one of the proxies of the global market.
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A. The Data Set and Descriptive Statistics

In this study, we evaluate the performance of presented
models by fitting the models to daily returns of the SMI
for a period covering from January 2000 to December
2017. For this period, there are 4443 daily returns based on
available trading days. The daily SMI data are extracted from
the Oxford-Man Institute of Quantitative Finance (Realized
Library Version: 0.2) which provides it for public. The SMI
is traded on the SIX Swiss Exchange and contains the 20
stocks with the largest market values. This index have been
used in other studies, such as in [36] which applied the
GARCH(1,1) model to estimate the implied volatility process
from the prices of options for the years 1992-1996 and in
[37] which fitted the index for the years 2008-2009 to the
AR(1)-GARCH(1,1) model.

0.1

0.05f

-0.05
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Fig. 1. Daily returns series of SMI

Fig. 1 displays the time series of returns for the SMI for
the observation period. The daily returns were calculated
by R: = 100 x (log (P;) — log (P;—1)), where P, is the
closing price of the SMI on day ¢. Notice that the average
of the return series appears to be close to zero (—0.019),
whereas the variance of the return series clearly changes
over time. The return data have been checked for several
standard statistics. We found that the SMI returns have a
negative skewness of —0.3046 and a kurtosis of 11.50. These
values indicate that the distribution of SMI returns has fatter
tails than the Normal distribution and a longer left tail.
This deviation from the Normal distribution is confirmed
by the Jarque—Bera (JB) normality test with a statistic of
1343.5 (p = 0.000) and critical value of 5.98, at the 5%
significance level. Hence, it provides a motivation to exploit

several alternative non-Normal distributions such as HST,
FST, and SGED specifications.

B. Testing the Efficiency of Estimator

It is essential to assess the efficiency of sampling method
that involves a large number of parameters and a complicated
likelihood function. Table I reports the IACT values for the
parameters of distribution and transformation. Notice that the
values for all the considered parameters are less than 100,
except for the case of the Modulus transformation which is
applied to the EGARCHhst and EGARCHfst models. The
IACT values is then used to compute Effective Sample Size
(ESS) which interprets the number of independent samples
drawn through the Markov Chain. Since the ESS is calculated
as the MC length (after the burn-in) divided by the IACT,
here we have ESSs larger than 100 (excluding two cases)
which can be considered good according to [38]. It indicates
that the consecutive samples drawn by our sampler have
lower correlation or higher efficiency, which is recommended
to make reliable inferences on the interest parameter. There-
fore, we say that our MCMC algorithm is well behaved.
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Fig. 2. Trace plots of posterior samples for parameter YJ and parameters
of the HST (top), FST (middle), and SGED (bottom) distributions in the
YJ1-EGARCH(1,1) models

Performance of a sampler can also be assessed by visual
inspection of the trace plots for the posterior samples. For
example, Fig. 2 displays the trace plots for the Markov chains
of three parameters constructing the YJ1-EGARCH(1,1)

TABLE I
PERFORMANCE OF ARWM SAMPLER AS MEASURED BY TACT.

GARCH¢(1,1) GARCHbhst(1,1)

GARCHfst(1,1) GARCHsged(1,1)

Trans. v ) v A ) v A ) K A )
NoT 10.88 639 738 7.88 6.24 2943 10.27

ST 7.29 41.27 6.50 4.83 96.59 7.12 6.22 56.06 3830 11.63 4598
Exp 6.97 14.90 759 530 14.12 6.60 5.84 15.28 40.43 571 2036
Mod/Y]J 6.99 31.93 6.12 691 47.32 5.69 8.11 23.37 40.82 6.12  68.58

GJIRt(1,1) GJRhst(1,1) GJRfst(1,1) GJRsged(1,1)

Trans. v 0 v A ) v A ) K A )
NoT 5.98 6.99 6.96 6.61 6.92 3221 5.57

ST 6.15 46.52 6.27 7.63 85.71 5.39 5.60 58.98 27.64 761 57.57
Exp 6.90 20.46 642 7.22 11.89 5.83 7.90 19.46 26.23 5.67 4587
Mod/Y]J 6.58 30.81 781 6.64 25.94 5.65 6.82 27.55 27.23 9.59 38.58

EGARCHz#(1,1) EGARCHhst(1,1) EGARCHTfst(1,1) EGARCHsged(1,1)

Trans. v 0 v A ) v A ) K A [
NoT 5.39 6.75  6.17 5.97 7.16 48.22 6.23

ST 7.85 25.85 775  6.29 13.54 7.26 6.75 7.66 32.20 541 1143
Exp 9.93 13.89 635 551 15.29 5.86 7.61 15.90 31.56 833 24.84
Mod 6.16 76.48 595 595 114.30 6.66 6.78 12291 3493 526 6237
YJ 6.51 26.61 6.46 527 15.60 6.23  10.50 15.78 28.86 6.74  28.74
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models with HST, FST, and SGED distributions. The trace
plots show that the chains seem to mix well and the param-
eter convergence was achieved. It indicates that the ARWM
sampler quickly (effectively) moved through the parameter
space.

C. Discussion on the Model Output

In this section, we verify the presence of non-linearity
in the lagged-variance, asymmetry effects in the variance
equation, and skewness and kurtosis in the asset returns
distribution. The model fitting results are presented in Tables
II-V. In these tables, for each model, we report the estimates
of the posterior means, standard deviations, and 95% HPD
intervals for the key parameters only.

1) On Non-linear Transformations: In the model spec-
ification, the non-linear transformation is replaced by a
linear transformation making it a basic model. Regarding
the GJR(1,1) models, the non-linearity assumption is fully
guaranteed by all transformations in all distribution spec-
ifications since the § parameter’s HPD interval at the 5%
significant level diverges from the linear assumption, referred
to as 0 = O for the Exponential transformation and § = 1 for
the others. We find that even 99% HPD interval of § deviates
from the linear assumption in the Student-{ specification.
Thus, the basic GJR(1,1) model is rejected and the data
provide significant evidence of non-linear lagged variance.

When looking at the results from the EGARCH(l,1)
models, the ET and Mod transformations demonstrate sig-
nificant evidence against the basic EGARCH(1,1) model in
all distribution specifications. Specifically, the J parameter
estimates for both transformations are significantly different
from 1 at the 1% and 10% significant levels respectively in
the Student-¢{ and SGED cases. In the case of HST and FST
distributions, the parameter of ET transformation has a higher
significance level than the parameter of Mod transformation.
The parameter ¢ is significant at a 5% level when the ET
transformation is applied, meanwhile the parameter § in
applying the Mod transformation is significant at a 1% level
which is preferable. This represents strong evidence that the
Mod transformation significantly outperforms the others.

On the basis of the above results, the application of
Tukey and Mod transformations in the lagged variance works
well for the GJR(1,1) and EGARCH(1,1) processes in each
distribution case and for the GARCH(1,1) model, but only
in the HST specification. Meanwhile the Exp transforma-
tion works well to transform the lagged variance in the
GJR(1,1) process when non-Normal distributions is applied
and in the GARCH(1,1) process with the HST and SGED
specifications. The YJ transformation, as well as the Exp
transformation, does not perform well in the EGARCH(1,1)
models. Therefore, we cannot make any conclusions based
on the parameter significance that a non-linear transforma-
tion family is definitely a best choice for any models and
distributions. However, the statistical significance of the §
parameter estimates provides sufficient evidence to reject the
null hypothesis of a linear process for conditional variance
and suggest the use of a non-linear transformation family for
the lagged-variance.

2) On Asymmetric Effects: In order to capture the asym-
metric effect of returns to the conditional variance, the

GJR(1,1) and EGARCH(1,1) model were selected under
three different non-Normal distributions. In terms of HPD
interval, daily SMI return series provides significant evidence
of the presence of asymmetric effect in both models and
in all distribution cases. In particular, the parameter - is
statistically significant at the 1% level and positive in the
GJR(1,1) model and negative in the EGARCH model. In
other words, the leverage effect exists in both models.

We further observe in each asymmetric GARCH(I,1)
model that when the non-linear transformation families are
applied, the estimated asymmetric parameter across different
transformations are close to each other in each of the
specified distribution. The estimates for  are also quite
similar to those obtained in the basic asymmetric model.
These results indicate that the presence of asymmetric effect
is not affected by the transformation of the lagged-variance.
In other words, the asymmetric GARCH(1,1) models do not
depend on the non-linearity form of lagged-variance.

3) On Flexible Parametric Distributions: We first con-
sider estimation results of the paramaters controling the tail
heavyness in four types of distribution, including the shape
parameter x in SGED and the degree of freedom of the
parameter v in the others. All models with Student-¢, HST,
and FST distributions produce the degrees of freedom smaller
than 30, indicating the existence of heavy-tails in the distri-
bution of the SMI returns (according to [39]). Meanwhile,
the estimates of x are less than 2 and significantly different
from 2 for each model and transformation, indicated by the
99% HPD interval excluding 2. This significance describes
that the distribution of SMI returns has heavier tails than the
Normal distribution. So, the four types of distribution is able
to adequately capture the kurtosis of the return series of SMI
which suggests necessity of heavy-tail feature in explaining
leptokurtosis of the SMI data.

Second, we consider the presence of skewness in the SMI
returns. Results show that all estimates of A\ in the HST,
FST, and SGED describe significantly negative skewness.
In particularly, the parameter skewness of A is statistically
significant at the 1% level for the HST and SGED speci-
fications since the HPD interval excludes zero and at the
5% level for the FST specification since the HPD interval
excludes one. This significance indicates that the distribution
of the SMI returns has asymmetric side as observed in our
preliminary analysis. So, the three types of distribution is
able to adequately capture the skewness of the return series
of SMI which suggests necessity of skewness feature in
explaining asymmetry of the SMI returns. According to [40],
the negative skewness of the SMI return distribution means
that the asset generates many small gains and a few large
losses in the time period considered. Therefore, although the
SMI may provide stable profits, technical investors or traders
should be aware of optimal funds invested. This awareness
avoids large losses, especially in times of crises like in 2008—
2009.

Next, we jointly analize the skewness and heavy-tailedness
parameters on flexible distributions. The above analysis
shows that a statistically significant presence of both skew-
ness and kurtosis in the HST, FST, and SGED specifica-
tions for the SMI return series is confirmed. From those
significances, the departures from Normal, Skew Normal, and
Student-t in the distribution of the SMI returns are rejected.
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TABLE II
ESTIMATED POSTERIOR MEANS (PM), STANDARD DEVIATIONS (SD), AND 95% HPD
INTERVAL FOR THE PARAMETERS OF THE GARCH(1,1) MODELS WITH STUDENT-t
DISTRIBUTED ERRORS.

Trans. Stats. ¥ v 0
GARCH¢(1,1)
NoT PM (SD) 7.31 (0.82)
HPD (5.87,8.96)
ST PM (SD) 7.37 (0.73) 0.9872 (0.0076)
HPD (5.99,8.80) (0.9733,1.0052)
Exp PM (SD) 7.40 (0.78) —0.0111 (0.0063)
HPD (6.00,8.96)  (—0.0224,0.0022)
Mod/YJ  PM (SD) 7.40 (0.76) 0.9849 (0.0133)
HPD (5.96,8.87) (0.9577,1.0104)
GIRK(1,1)
NoT PM (SD) 0.1418* (0.0143) 7.96 (0.88)
HPD (0.1151,0.1704) (6.48,9.88)
ST PM (SD) 0.1429* (0.0158) 8.11 (0.85) 0.98227(0.0065)
HPD (0.1136,0.1745) (6.54,9.84) (0.9695,0.9945)
Exp PM (SD) 0.1472* (0.0177) 8.10 (0.89)  —0.0138%(0.0058)
HPD (0.1131,0.1796) (6.37,9.76)  (—0.0249,0.0030)
Mod/Y] PM (SD) 0.1450* (0.0174) 8.11 (0.91) 0.9745%(0.0118)
HPD (0.1156,0.1818) (6.34,9.72) (0.9527,0.9990)
EGARCH((1,1)
NoT PM (SD) —0.1079* (0.0101) 8.25 (0.91)
HPD (—0.1274,—-0.0885)  (6.66,10.18)
ET PM (SD) —0.1139* (0.0104) 8.17 (0.90) 0.98027(0.0085)
HPD (—0.1354,—-0.0943)  (6.37,9.86) (0.9637,0.9964)
Exp PM (SD) —0.1082* (0.0103) 8.20 (0.90) 0.0066 (0.0046)
HPD (—0.1272, —0.0882) (6.54,9.93) (—0.0025,0.0152)
Mod PM (SD) —0.1141* (0.0105) 8.19 (0.92) 0.9155%(0.0298)
HPD (—0.1332,—-0.0923)  (6.50,10.04) (0.8560,0.9665)
YJ PM (SD) —0.1093* (0.0101) 8.21 (0.91) 1.0104 (0.0082)
HPD (—0.1279, —0.0896)  (6.49,9.99) (0.9932,1.0254)

Symbol * indicates statistically significant for HPD interval at the 1% level.

TABLE III
ESTIMATED POSTERIOR MEANS, STANDARD DEVIATIONS, AND 95% HPD INTERVAL FOR THE PARAMETERS OF
THE GARCH(1,1) MODELS WITH HST DISTRIBUTED ERRORS.

GARCHhs(L,1)

Trans. Stats. ¥ v A 0
NoT PM (SD) 750 (0.79)  —0.0991* (0.0194)
HPD (5.97,8.99)  (—0.1348,—0.0601)
ST PM (SD) 7.62 (0.78) —0.0984* (0.0195) 0.9887*** (0.0074)
HPD (6.14,9.12)  (—0.1378,—0.0638) (0.9751,1.0035)
Exp PM (SD) 7.61 (0.80) —0.0974* (0.0199) —0.0117** (0.0058)
HPD (6.169.23)  (—0.1335,—0.0563)  (—0.0236,—0.0005)
Mod/YJ] PM (SD) 7.68 (0.81) —0.0973* (0.0198) 0.9824*** (0.0117)
HPD (6.259.28)  (—0.1348, —0.0568) (0.9605,1.0069)
GJRhst(1,1)
NoT PM (SD) 0.1367* (0.0188) 8.21 (0.94) —0.1030* (0.0204)
HPD (0.0988,0.1705) (6.56,10.27)  (—0.1446, —0.0637)
ST PM (SD) 0.1446* (0.0176) 8.26 (0.91) —0.1034* (0.0211) 0.9841** (0.0073)
HPD (0.1088,0.1774) (6.50,9.97)  (—0.1422,—-0.0617) (0.9696,0.9982)
Exp PM (SD)  0.1430* (0.0177) 837 (0.98)  —0.1055* (0.0203)  —0.0155** (0.0058)
HPD (0.1036,0.1772) (6.58,10.27)  (—0.1457,—-0.0677)  (—0.0264, —0.0048)
Mod/YJ  PM (SD) 0.1417* (0.0162) 8.38 (0.97) —0.1065* (0.0206) 0.9724** (0.0112)
HPD (0.1080,0.1701) (6.60,10.25)  (—0.1485, —0.0659) (0.9508,0.9943)
EGARCHhst(1,1)
NoT PM (SD) —0.1062* (0.0100) 8.59 (0.99) —0.1068* (0.0199)
HPD (—0.1257,—0.0869)  (6.80,10.60)  (—0.1454, —0.0696)
ET PM (SD) —0.1137* (0.0109) 8.42 (0.97) —0.1077* (0.0199) 0.9796** (0.0093)
HPD (—0.1353,—0.0942)  (6.43,10.29) (—0.1471,—0.0689) (0.9602,0.9980)
Exp PM (SD) —0.1077* (0.0096) 8.55 (1.02) —0.1066* (0.0200) 0.0075 (0.0046)
HPD (—0.1267,—0.0893)  (6.88,10.66)  (—0.1448, —0.0669) (—0.0017,0.0161)
Mod PM (SD) —0.1128* (0.0102) 8.52 (1.00) —0.1077* (0.0202) 0.9285* (0.0315)
HPD —0.1321, —0.0933 (6.81,10.60)  (—0.1442, —0.0680) (0.8672,0.9861)
YI PM (SD)  —0.1092* (0.0101)  8.61 (1.03)  —0.1078* (0.0204) 1.0107 (0.0078)
HPD (—0.1279,—0.0892)  (6.82,10.70)  (—0.1474, —0.0665) (0.9959,1.0266)

Symbols *, #* and *** indicate statistically significant for HPD interval at the 1%, 5%, and 10% levels, respectively.

Furthermore, the estimation results for the distribution the estimates of distribution parameters are not affected by
parameters in the models with non-linear transformations transformations.
are close to those in the basic models. This indicates that
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TABLE IV

ESTIMATED POSTERIOR MEANS, STANDARD DEVIATIONS, AND 95% HPD INTERVAL FOR THE PARAMETERS
OF THE GARCH(1,1) MODELS WITH FST DISTRIBUTED ERRORS.

GARCHfst(1,1)

Trans. Stats. ¥ v A 4
NoT PM (SD) 7.48 (0.82)  0.9772** (0.0096)
HPD (6.00,9.19) (0.9577,0.9949)
ST PM (SD) 7.55(0.79)  0.9774** (0.0092) 0.9895 (0.0094)
HPD (6.19,9.09) (0.9591,0.9946) (0.9724,1.0089)
Exp PM (SD) 7.65 (0.83) 0.9773** (0.0096) —0.0118 (0.0066)
HPD (6.09,9.25) (0.9570,0.9952) (—0.0240, 0.0016)
Mod/YJ PM (SD) 7.66 (0.83)  0.9777** (0.0094) 0.9804 (0.0116)
HPD (6.18,9.27) (0.9572,0.9949) (0.9564,1.0027)
GIRTst(1,1)
NoT PM (SD) 0.1426% (0.0184) 8.19 (0.91)  0.9768*F (0.0093)
HPD (0.1056,0.1786) (6.55,10.02) (0.9595,0.9957)
ST PM (SD) 0.1423* (0.0185) 8.35(0.94)  0.9772** (0.0097) 0.9830** (0.0070)
HPD (0.1066,0.1782) (6.64,10.18) (0.9590,0.9967) (0.9704,0.9984)
Exp PM (SD) 0.1403* (0.0150) 8.38 (0.99)  0.9769** (0.0095)  —0.0154** (0.0058)
HPD (0.1135,0.1717) (6.72,10.49) (0.9590,0.9950) (—0.0270, —0.0041)
Mod/YJ  PM (SD) 0.1444* (0.0153) 8.28 (0.96)  0.9773** (0.0097) 0.9726** (0.0108)
HPD (0.1177,0.1773) (6.54,10.05) (0.9575,0.9961) (0.9529,0.9938)
EGARCHfst(1,1)
NoT PM (SD) —0.1083* (0.0100) 8.49 (0.97)  0.9763** (0.0095)
HPD (—0.1272,—-0.0882)  (6.65,10.36) (0.9583,0.9951)
ET PM (SD) —0.1133* (0.0103) 8.44 (0.96)  0.9761** (0.0094) 0.9811** (0.0085)
HPD (—0.1335,—0.0934)  (6.64,10.25) (0.9587,0.9944) (0.9634,0.9962)
Exp PM (SD)  —0.1089* (0.0100)  8.54 (0.96)  0.9763** (0.0099) 0.0070 (0.0051)
HPD (—0.1292, —0.0897)  (6.84,10.61) (0.9572,0.9960) (—0.0026,0.0173)
Mod PM (SD) —0.1140* (0.0104) 843 (0.97)  0.9771** (0.0094) 0.9201* (0.0304)
HPD (—0.1333,—-0.0916)  (6.63,10.36) (0.9572,0.9942) (0.8615,0.9762)
YJ PM (SD) —0.1085* (0.0103) 8.43 (0.95)  0.9771** (0.0095) 1.0105 (0.0077)
HPD (—0.1288, —0.0885)  (6.64,10.27) (0.9599,0.9966) (0.9958,1.0254)

Symbols *, ** and *** indicate statistically significant for HPD interval at the 1%, 5%, and 10% levels,

respectively.

TABLE V

ESTIMATED POSTERIOR MEANS, STANDARD DEVIATIONS, AND 95% HPD INTERVAL FOR THE PARAMETERS OF THE
GARCH(1,1) MODELS WITH SGED DISTRIBUTED ERRORS.

GARCHsged(1,1)

Trans. Stats. 5 K A 0
NoT PM (SD) 1.408 (0.037) —0.11717 (0.0186)
HPD (1.341,1.848)  (—0.1508, —0.0798)
ST PM (SD) 1.406* (0.036)  —0.1186™ (0.0176) 0.9874 (0.0093)
HPD (1.332,1.469)  (—0.151, —0.082) (0.9709,1.0073)
Exp PM (SD) 1.400* (0.034)  —0.1184" (0.0171)  —0.0188™* (0.0089)
HPD (1.336,1.470)  (—0.149, —0.083)  (—0.0348, —0.0011)
Mod/YJ PM (SD) 1.402* (0.037)  —0.1192* (0.0179) 0.9688 (0.0191)
HPD (1.334,1.474) (—0.1544, —0.0844) (0.9320,1.0062)
GJRsged(1,1)
NoT PM (SD) 0.12197 (0.0142) 1.423* (0.035)  —0.12557 (0.0181)
HPD (0.0970,0.1506) (1.354,1.490)  (—0.1611, —0.0908)
ST PM (SD) 0.1292* (0.0159) 1.432* (0.037)  —0.1247 (0.0182) 0.9809** (0.0078)
HPD (0.0963,0.1601) (1.358,1.501)  (—0.1610, —0.0919) (0.9653,0.9966)
Exp PM (SD) 0.1279* (0.0169) 1.423* (0.036)  —0.1247* (0.0184)  —0.0190™* (0.0082)
HPD (0.0972,0.1598) (1.358,1.493)  (—0.1582,—0.0853) (—0.0356, —0.0038)
Mod/YJ PM (SD) 0.1261* (0.0174) 1.426* (0.036)  —0.1247 (0.0191) 0.9643™* (0.0141)
HPD (0.0944.,0.1594) (1.356,1.497)  (—0.1669, —0.0919) (0.9374,0.9918)
EGARCHsged(1,1)
NoT PM (SD) —0.1014™ (0.0091) 1.431% (0.036) —0.1281" (0.0188)
HPD (—0.1204, —0.0818)  (1.355,1.504)  (—0.1678, —0.0945)
ET PM (SD)  —0.1044* (0.0100)  1.430* (0.035)  —0.1291" (0.0187) 0.9873™** (0.0077)
HPD (—0.1229, —0.0847) (1.362,1.496) (—0.1639, —0.0912) (0.9725,1.0015)
Exp PM (SD)  —0.1025* (0.0100)  1.433* (0.038)  —0.1271" (0.0179) 0.0050 (0.0055)
HPD (—0.1203, —0.0838)  (1.365,1.501)  (—0.1649, —0.0921)  (—0.0059,0.0149)
Mod PM (SD)  —0.1048* (0.0097)  1.427* (0.039)  —0.1283" (0.0188) 0.9568"** (0.0218)
HPD (—0.1226, —0.0854) (1.354,1.501) (—0.1624, —0.0891) (0.9167,1.0012)
YJ PM (SD)  —0.1024* (0.0105)  1.429* (0.038)  —0.1275" (0.0191) 1.0085 (0.0083)
HPD (—0.1196, —0.0836) (1.367,1.499) (—0.1617, —0.0909) (0.9919,1.0237)

Symbols *, ** and *** indicate

respectively.
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D. Testing the Adequacy of the Model

When two models are nested—that is, the simpler model
can be derived from the full (more complex) model by
placing additional constraints on its parameters [41]—then
their goodness-of-fit to describe the observed data can be
assessed by using a Log-likelihood Ratio Test (LRT). In our
case, the LRT statistic can be used to choose between the
basic GARCH-type model (as a simple model M, including
GARCH, GJR, EGARCH models without transformation)
and an NL1-GARCH-type model (as a full model M,
including GARCH, GJR, EGARCH models with non-linear
transformations). The comparison of the fitting performance
of these two same type models is performed by conducting
the following hypothesis:

HO . (; = 0EXp7 1ST’M0d’Y] (basic model)
H1 : 6 # OEXp7 IST,Mod,YJ (NLI model)

The LRT statistic is calculated as twice the difference in
log-likelihoods:

LRT = 2 <$(M1, 0) — £ (M, é)) :

where 6 is the average of estimated values. The following
theorem offers an asymptotic distribution of the LRT statistic
[42].

Theorem 4.1: Given some suitable regularity conditions,
the distribution of the LRT statistic is approximately X%d)'
distributed if sufficient data is acquired, where d is the
difference between the number of free parameters.

Table VI contains the results for the log-likelihood values
as well as LRT statistics comparing basic and NL1 mod-
els. Since the difference in the number of free parameters
between the two nested models is 1, those statistics are
then compared with the 99%, 95%, and 90% critical values,

in the case of ST transformation, there is a sufficient evi-
dence to reject the null hypothesis. The exception is for the
GARCH models with FST and SGED specifications which
are accepted at all canonical significance levels (1%, 5%, and
10%). Applying the Exp transformation, the null hypothesis
is rejected in the case of GARCH and GJR models and
accepted in the case of EGARCH model. In the case of
Mod transformation, the rejection of the null hypothesis is
provided by all cases, except for the GARCH with FST
distribution. Finally, the YJ transformation is rejected to
be applied in the EGARCH model with any distributions.
The results conclude that non-linear transformations have the
potential to outperform the basic GARCH-type models.

Notice that the results of the superiority of families of
transformations confirm the previous findings related to the
significance of the transformation parameter. There are some
cases in which the non-linear transformation parameter is not
statistically significant at all canonical significance levels, but
the model with non-linear transformation is superior than the
basic model. For example, all NL1-GARCHt models statisti-
cally outperform the basic GARCHt model even though the
parameter § is not statistically significant in terms of HPD
intervals at all canonical significance levels. In this case,
its posterior estimates are primarily less than a value that
corresponds to no transformation. In addition, the ST and
Mod transformations seems to have similar strengths, while
the strength of the Exp transformation is similar to those of
the YJ transformation. This is indicated by the similar LRT
statistics.

Furthermore, since all competing models are not nested,
the DIC (Deviance Information Criterion) values were cal-
culated to compare the performance of all models and find
a best fit model. The DIC statistic for each estimated model
with parameter 6 is calculated as follows [43]:

namely X?l) = 6.64,3.84,2.71 respectively. We find that DIC = _4E0‘R[$(R|9)} +2.2(R]0), 7
TABLE VI
ESTIMATED LOG-LIKELIHOOD, LRT (GARCH vs NL1-GARCH), AND DIC FOR EACH MODEL.
Trans — LRT DIC s LRT DIC e LRT DIC
> GARCH{(1,1) GIR(1,1) EGARCH((1,1)
NoT 5278.04 B 10561.034 5233.09 - 10470.744 5221.82 - 10448.705
ST 5276.37  3.34"" 10557.022 5230.48  5.22" 10465.852 5219.79  4.06™ 10445.59,
Exp 527596  4.16™ 10556.99; 5229.72  6.74°  10465.601 522121 122 10448.153
Mod 5276.58  2.92 10559.173 5230.77  4.64™ 10467.633 521928  5.08" 10444.361
YJ 522130  1.04  10448.694
GARCHbst(1,1) GIRhst(1,1) EGARCHAhst(T,1)
NoT 5266.63 - 10537414 5221.02 B 10448.02,4 5209.18 N 10424413
ST 5265.12  3.02 10535.625 521834 536" 10443.143 5207.00  4.36™ 10421.235
Exp 5264.61  4.04™ 10535.09; 521695  8.14° 10440.59; 5208.86 0.64  10425.154
Mod 5265.05  3.16™ 10535.763 5218.01  6.02 10442.54, 5206.32  5.27° 10419.061
YJ 5208.86 0.64  10425.155
GARCHTst(1,1) GIRTst(1,1) EGARCHTst(1,1)
NoT 5275.30 B 10555.654 5230.98 - 10468.054 5219.79 . 1044597,
ST 527450 1.60  10554.793 522836  5.24™ 10463.423 521747  4.64™ 10441.662
Exp 527371  3.18" 10553.44, 5226.79  8.38"  10459.69; 521923  1.12  10445.663
Mod 5274.16  2.28  10553.83% 5228.11  5.74™ 10462.94, 5217.07  5.44™ 10440.761
YJ 521932 0.94  10446.115
GARCHsged(1,1) GIRsged(1,1) EGARCHsged(1,1)
NoT 5279.62 B 10564.824 5240.57 - 10486.824 5229.76 - 10465.845
ST 527856  2.12  10562.833 5237.74  5.66™ 10482.633 522840 272" 10463.714
Exp 527752 4.20™ 10560.32; 5237.05 7.04" 10481.87; 522934  0.84 10465.173
Mod 527821  2.82 10562.199 5237.55  6.04™ 10482.54, 5228.09  3.34™ 10462.58;
YJ 5229.19  1.14 10465214

Symbols *, ** and *** indicate statistically significant at the 1%, 5%, and 10% levels, respectively. Meanwhile,
subscript denotes the rank of the model.
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where 6 is an estimate of § maximizing the posterior. Given
a set of candidate models for the data, the preferred model
is the one that produces the smallest DIC.

Table VI also reports the results for the DIC values and the
corresponding ranking in a set of models with same type and
distribution. According to this grouping, all NL1-GARCH-
type models provides a better fit than the basic GARCH-
type models, except for the EGARCH models with HST and
FST distributions. The results indicate that transforming the
lagged-variance in the GARCH and GJR models by using
exponential transformation can provide the best fit for any
distributions. Meanwhile, the Modulus transformation yields
the best performance when it is applied to the EGARCH
model with any distributions.

In addition, the models including asymmetry effect in
the variance process perform better than GARCH model in
each distribution and non-linear transformation, where the
EGARCH model is the best one. On comparing four distri-
butions, the models with HST distribution is found to give
the best result, followed by the models with FST, Student-t,
and SGED specifications. Notice that the models with SGED
distribution is outperformed by the models with Student-
t distribution although the SGED specification is able to
capture both skewness and heavy-tailedness of the return
data. In general, this concludes that the best fit volatility
model is provided by the Mod1-EGARCHhst model.

V. CONCLUSIONS

This study applied four non-linear transformation families,
including Tukey, Exponential, Modulus, and Yeo—Johnson, to
the lagged-variance in three different GARCH-type models:
GARCH(1,1), GJR(1,1), and EGARCH(1,1) models. Here
we incorporated four different returns error distributions:
Student-t, Hansen’s skewed Student-¢, Fernandez—Steel’s
skewed Student-t, and skewed generalized error distribution
into the investigated models. The Bayesian inference of the
models was performed by employing the ARWM method in
MCMC scheme. The model and method were applied to the
Swiss Market Index over the daily period from January 2000
to December 2017 for a total of 4443 returns.

Our findings can be summarised as follows. First, in terms
of IACT as well as ESS, we found the ARWM method to
be very efficient statistically to sample our proposed models
which have complicated likelihood functions. Second, our
findings suggest that the GARCH-type models might have
performed better when a non-linear transformation family
is applied to the lagged-variance. In particular, the GARCH
and GJR models based on the exponential transformation and
EGARCH model based on the Modulus transformation have
statistically significant ability to fit the data in any considered
distributions. Furthermore, since the DIC favored the HST
distribution, this study generally concludes that the best fitted
model for the SMI data is the EGARCH model based on
the Modulus transformation with the return error following
the Hansen’s skewed Student-¢ distribution. This means that
the model might be suitable for modeling daily returns in a
market, such as SMI, which is mostly filled by companies
managed by foreign elites [44].
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