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Abstract—This paper concerns a modified Leslie-Gower sys-
tem subject to single feedback control. By applying some
preliminary lemmas, the permanence of the system is obtained.
Based on this permanence result, the uniqueness of a globally
attractive positive almost periodic solution of the system is
established by Lyapunov function method. An example with
computer simulation supports the feasibility of our theoretical
findings.

Index Terms—Permanence, Global attractivity, Almost peri-
odic solution, Modified Leslie-Gower system, Single feedback
control.

I. INTRODUCTION

FOr any continuous bounded function ϕ : R → R, we
denote

ϕl = inf
t∈R

ϕ(t) , ϕu = sup
t∈R

ϕ(t).

Recently, many scholars have studied the following mod-
ified Leslie-Gower predator-prey model which was firstly
proposed and investigated by Aziz-Alaoui and Daher Okiye
[4]: 

ẋ(t) =x(t)
[
r1 − b1x(t)− a1y(t)

x(t) + k1

]
,

ẏ(t) =y(t)
[
r2 −

a2y(t)

x(t) + k2

]
.

(1)

Some outstanding results have been obtained: such as global
attractivity and bifurcation analysis [4–18] for autonomous
model with delay, interference, impulses, Lévy jumps, stage-
structured, harvesting, refuge and so on; permanence, pe-
riodic solution and almost periodic solution [19–27] for
nonautonomous model with different functional response,
refuge and feedback controls. It is obvious that those works
[22, 23, 27] which considering modified Leslie-Gower sys-
tem with feedback controls are based on at least two feedback
control variables. This arrangement implies that different
species are influenced by different strategy. However, one
strategy could affect on both species in the real world. For
instance, spraying pesticide can keep down weeds and also
have some bad side effects on corps or beneficial animals
at the same time [28]. Chemotherapeutic drugs not only
make cancer cells diminish quickly but also cause damage to
normal cells and human immunity [29]. These phenomena
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reveal the theoretical and practical values of discussing single
feedback control variable. Motivated by above reasons and
some recent papers [30–39], we propose a modified Leslie-
Gower system with single feedback control as follows:
ẋ(t) =x(t)

[
r1(t)− b1(t)x(t)− a1(t)y(t)

x(t) + k1(t)
− f1(t)u(t)

]
,

ẏ(t) =y(t)
[
r2(t)− a2(t)y(t)

x(t) + k2(t)
− f2(t)u(t)

]
,

u̇(t) =− β(t)u(t) + e1(t)x(t) + e2(t)y(t),
(2)

where x(t) and y(t) stand for densities of prey and predator,
respectively. u(t) is the single feedback control variable.
All the parameters are continuous bounded functions whose
lower and upper bounds are positive. The initial condition
for system (2) is:

x(0) > 0, y(0) > 0, u(0) > 0. (3)

The remainder of this work is arranged as follows. The
permanence of system (2) is considered in Section II. In
Section III and IV, the global attractivity and uniqueness of a
positive almost periodic solution of system (2) are discussed.
Then, in Section V, our results are verified by one example
with numerical simulation. Finally, we conclude in Section
VI.

II. PERMANENCE

In this section, we recall the following useful lemma at
first.
Lemma 2.1 ([1]). Suppose c > 0, d > 0. For t ≥ 0 and
x(0) > 0, the following statements hold

(1) if ẋ ≥ x(d− cx), then lim inf
t→+∞

x(t) ≥ d
c ;

(2) if ẋ ≤ x(d− cx), then lim sup
t→+∞

x(t) ≤ d
c ;

(3) if ẋ ≥ d− cx, then lim inf
t→+∞

x(t) ≥ d
c ;

(4) if ẋ ≤ d− cx, then lim sup
t→+∞

x(t) ≤ d
c .

Theorem 2.1. Assume

rl1k
l
1 − au1W2 > fu1 k

l
1W3, (Q1)

and
rl2 > fu2W3, (Q2)

hold, where W1 =
ru1
bl1

, W2 =
ru2 (W1 + ku2 )

al2
, W3 =

eu1W1 + eu2W2

βl
, then system (2) with initial condition (3) is

permanent.
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Proof. From (Q1) and (Q2), there exists ε > 0 satisfying

rl1k
l
1 −

au1r
u
2 (W1 + ε+ ku2 )

al2
− (au1 − fu1 kl1)ε

>
fu1 k

l
1[(al2e

u
1 + eu2r

u
2 )(W1 + ε) + eu2r

u
2k

u
2 + eu2a

l
2ε]

al2β
l

,

(4)

and

rl2−fu2 ε >
fu2 [(al2e

u
1 + eu2r

u
2 )(W1 + ε) + eu2r

u
2k

u
2 + eu2a

l
2ε]

al2β
l

.

(5)
We can deduce from the first equation of (2) that

ẋ(t) ≤ x(t)
(
ru1 − bl1x(t)

)
. (6)

Using Lemma 2.1 and (6), one has

lim sup
t→+∞

x(t) ≤ ru1
bl1

4
= W1. (7)

In view of (7), we could choose T1 > 0 such that

x(t) ≤W1 + ε
4
= W1ε, t > T1. (8)

Substituting (8) into the second equation of (2) gives

ẏ(t) ≤ y(t)
(
ru2 −

al2y(t)

W1ε + ku2

)
, t > T1. (9)

Applying Lemma 2.1 to (9) yields

lim sup
t→+∞

y(t) ≤ ru2 (W1ε + ku2 )

al2
. (10)

Therefore, for above ε, one could choose T2 ≥ T1 satisfying

y(t) ≤ ru2 (W1ε + ku2 )

al2
+ ε

4
= W2ε, t > T2. (11)

Substituting (8) and (11) into the third equation of (2), we
deduce

u̇(t) ≤ −βlu(t) + eu1W1ε + eu2W2ε, t > T2. (12)

By Lemma 2.1, one gets

lim sup
t→+∞

u(t) ≤ eu1W1ε + eu2W2ε

βl
. (13)

So, there exists T3 ≥ T2, such that

u(t) ≤ eu1W1ε + eu2W2ε

βl
+ ε

4
= W3ε, t > T3. (14)

We can obtain from (2), (11) and (14) that

ẋ(t) ≥ x(t)
[
rl1−bu1x(t)− a

u
1W2ε

kl1
−fu1W3ε

]
, t > T3. (15)

Using (15), (4) and Lemma 2.1, we have

lim inf
t→+∞

x(t) ≥ rl1k
l
1 − au1W2ε − fu1 kl1W3ε

bu1k
l
1

.

This implies the existence of T4 satisfying T4 > T3 and

x(t) ≥ rl1k
l
1 − au1W2ε − fu1 kl1W3ε

bu1k
l
1

− ε 4= w1ε, t > T4.

(16)
From (2), (14) and (16), one can get

ẏ(t) ≥ y(t)
[
rl2 −

au2y(t)

w1ε + kl2
− fu2W3ε

]
, t > T4. (17)

Using (5) and applying Lemma 2.1 to (17) lead to

lim inf
t→+∞

y(t) ≥ (rl2 − fu2W3ε)(w1ε + kl2)

au2
. (18)

Similarly, there exists T5 > T4, such that

y(t) ≥ (rl2 − fu2W3ε)(w1ε + kl2)

au2
− ε 4= w2ε, t > T5. (19)

By (2), (16) and (19), we derive

u̇(t) ≥ −βuu(t) + el1w1ε + el2w2ε, t > T5. (20)

Using Lemma 2.1 again, one has

lim inf
t→+∞

u(t) ≥ el1w1ε + el2w2ε

βu
. (21)

Setting ε→ 0, we get

lim sup
t→+∞

y(t) ≤r
u
2 (W1 + ku2 )

al2

4
= W2,

lim sup
t→+∞

u(t) ≤e
u
1W1 + eu2W2

βl

4
= W3,

lim inf
t→+∞

x(t) ≥r
l
1k

l
1 − au1W2 − fu1 kl1W3

bu1k
l
1

4
= w1,

lim inf
t→+∞

y(t) ≥ (rl2 − fu2W3)(w1 + kl2)

au2

4
= w2,

lim inf
t→+∞

u(t) ≥e
l
1w1 + el2w2

βu

4
= w3.

(22)

Thus, Theorem 2.1 can be established by (7) and (22). �

III. GLOBAL ATTRACTIVITY

The global attractivity of model (2) will be discussed in
this part.
Theorem 3.1. Assume (Q1) and (Q2), further suppose[
b1(t)− W2a1(t)

(w1 + k1(t))2
− W2a2(t)

(w1 + k2(t))2
− e1(t)

]l
> 0,

(Q3)[ a2(t)

W1 + k2(t)
− a1(t)

w1 + k1(t)
− e2(t)

]l
> 0, (Q4)

and [
β(t)− f1(t)− f2(t)

]l
> 0, (Q5)

hold, where wi and Wi (i = 1, 2) are given by Theorem 2.1,
then model (2) is globally attractive.
Proof. Assume (x(t), y(t), u(t))T and (x∗(t), y∗(t), u∗(t))T

are any two positive solutions of (2) with initial condition (3).
It follows from Theorem 2.1, (Q3), (Q4) and (Q5) that there
exist ε1 > 0 and t6 > t5 such that for t > t6, we have[

b1(t)− (W2 + ε)a1(t)

(w1 − ε1 + k1(t))2
− (W2 + ε1)a2(t)

(w1 − ε1 + k2(t))2

− e1(t)
]l
> ε1,[ a2(t)

W1 + ε1 + k2(t)
− a1(t)

w1 − ε1 + k1(t)
− e2(t)

]l
> ε1,[

β(t)− f1(t)− f2(t)
]l
> ε1,

(23)
and

w1 − ε1 ≤ x(t), x∗(t) ≤W1 + ε1,

w2 − ε1 ≤ y(t), y∗(t) ≤W2 + ε1,

w3 − ε1 ≤ u(t), u∗(t) ≤W3 + ε1.

(24)
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Set Θ1(t) = |lnx(t) − lnx∗(t)|, Θ2(t) = |lny(t) − lny∗(t)|
and Θ3(t) = |u(t)− u∗(t)|, then direct calculation leads to

D+Θ1(t)

≤
[
− b1(t) +

a1(t)y(t)

(x(t) + k1(t))(x∗(t) + k1(t))

]
|x(t)− x∗(t)|

+
a1(t)|y(t)− y∗(t)|
x∗(t) + k1(t)

+ f1(t)|u(t)− u∗(t)|,

D+Θ2(t)

≤f2(t)|u(t)− u∗(t)|+ a2(t)y∗(t)|x(t)− x∗(t)|
(x∗(t) + k2(t))(x(t) + k2(t))

− a2(t)|y(t)− y∗(t)|
x(t) + k2(t)

,

(25)
and

D+Θ3(t) ≤− β(t)|u(t)− u∗(t)|+ e1(t)|x(t)− x∗(t)|
+ e2(t)|y(t)− y∗(t)|.

(26)
Let Θ(t) = Θ1(t) + Θ2(t) + Θ3(t), one can get from (24)-
(26) that

D+Θ(t)

≤
[
− b1(t) +

a1(t)y(t)

(x(t) + k1(t))(x∗(t) + k1(t))

+
a2(t)y∗(t)

(x∗(t) + k2(t))(x(t) + k2(t))
+ e1(t)

]
|x(t)− x∗(t)|

+
[ a1(t)

x∗(t) + k1(t)
− a2(t)

x(t) + k2(t)
+ e2(t)

]
|y(t)− y∗(t)|

+
[
f1(t) + f2(t)− β(t)

]
|u(t)− u∗(t)|

≤ −
[
b1(t)− (W2 + ε1)a1(t)

(w1 − ε1 + k1(t))2
− (W2 + ε1)a2(t)

(w1 − ε1 + k2(t))2

− e1(t)
]
|x(t)− x∗(t)| −

[ a2(t)

W1 + ε1 + k2(t)

− a1(t)

w1 − ε1 + k1(t)
− e2(t)

]
|y(t)− y∗(t)|

−
[
β(t)− f1(t)− f2(t)

]
|u(t)− u∗(t)|, t > t6.

(27)
For t > t6, combining (23) with (27) leads to

D+Θ(t) ≤ −ε1
[
|x(t)−x∗(t)|+|y(t)−y∗(t)|+|u(t)−u∗(t)|

]
,

(28)
which shows Θ is non-increasing on [t6,+∞). Integrating
(28) from t6 to t, we obtain

Θ(t) + ε1

[ ∫ t

t6

|x(s)− x∗(s)|ds+

∫ t

t6

|y(s)− y∗(s)|ds

+

∫ t

t6

|u(s)− u∗(s)|ds
]
< Θ(t6) < +∞, t > t6.

By the proof of [20, Theorem 3.1], one can similarly deduce

lim
t→+∞

|x(t)− x∗(t)| = lim
t→+∞

|y(t)− y∗(t)|

= lim
t→+∞

|u(t)− u∗(t)| = 0.

This ends the proof. �

IV. ALMOST PERIODIC SOLUTION

Now we come to deal with the existence and uniqueness
of positive almost periodic solution of model (2) when

b1(t), β(t) and ai(t), fi(t), ei(t), ki(t), ri(t) (i = 1, 2) are
continuous bounded almost periodic functions whose lower
and upper bounds are positive. One can refer to [2, 3] for
some basic theory about almost periodic function.

Let (E) be the set of all solutions (x(t), y(t), u(t))T of
model (2) with w1 ≤ x(t) ≤ W1, w2 ≤ y(t) ≤ W2, w3 ≤
u(t) ≤W3.
Lemma 4.1. (E) 6= Ø.
Proof. According to definition of almost periodic function,
there exists a sequence {tn} satisfying tn →∞ and

b1(t+ tn)→ b1(t), β(t+ tn)→ β(t), ai(t+ tn)→ ai(t),

fi(t+ tn)→ fi(t), ei(t+ tn)→ ei(t), ki(t+ tn)→ ki(t),

ri(t+ tn)→ ri(t) (i = 1, 2),

as n → ∞ uniformly. Suppose v(t) = (x(t), y(t), u(t))T

is a solution of model (2) with w1 ≤ x(t) ≤ W1,w2 ≤
y(t) ≤ W2,w3 ≤ u(t) ≤ W3 for t > t6. Then v(t+ tn) are
evidently equi-continuous and uniformly bounded on each
bounded subset of R. In virtue of Ascoli’s theorem, going
if necessary to a subsequence, we suppose that v(t+ tn)→
q(t) = (q1(t), q2(t), q3(t))T as n → ∞ uniformly on each
bounded subset of R. Select t7 ∈ R satisfying tn + t7 > t6
for any n, so for t > 0, one has

x(t+ tn + t7)− x(tn + t7)

=

∫ t+t7

t7

x(s+ tn)
[
r1(s+ tn)− b1(s+ tn)x(s+ tn)

− a1(s+ tn)y(s+ tn)

x(s+ tn) + k1(s+ tn)
− f1(s+ tn)u(s+ tn)

]
ds,

y(t+ tn + t7)− y(tn + t7)

=

∫ t+t7

t7

y(s+ tn)
[
r2(s+ tn)− a2(s+ tn)y(s+ tn)

x(s+ tn) + k2(s+ tn)

− f2(s+ tn)u(s+ tn)
]
ds,

and

u(t+ tn + t7)− u(tn + t7)

=

∫ t+t7

t7

[
− β(s+ tn)u(s+ tn) + e1(s+ tn)x(s+ tn)

+ e2(s+ tn)y(s+ tn)
]
ds.

Letting n → ∞, then Lebesgue’s dominated convergence
theorem shows that

q1(t+ t7)− q1(t7) =

∫ t+t7

t7

q1(s)
[
r1(s)− b1(s)q1(s)

− a1(s)q2(s)

q1(s) + k1(s)
− f1(s)q3(s)

]
ds,

q2(t+ t7)− q2(t7) =

∫ t+t7

t7

q2(s)
[
r2(s)− a2(s)q2(s)

q1(s) + k2(s)

− f2(s)q3(s)
]
ds,

q3(t+ t7)− q3(t7) =

∫ t+t7

t7

[
− β(s)q3(s) + e1(s)q1(s)

+ e2(s)q2(s)
]
ds.

By the arbitrariness of t7, q(t) is a solution of (2). Obviously,
wi ≤ qi(t) ≤Wi (i = 1, 2, 3) on R, so q(t) ∈ (E). �
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Theorem 4.1. If all conditions in Theorem 3.1 hold, then
model (2) admits a unique positive almost periodic solution.
Proof. From Lemma 4.1, model (2) admits a bounded posi-
tive solution µ(t) = (µ1(t), µ2(t), µ3(t))T , t > 0. Hence, we
can find a sequence {t′k} such that {t′k} → ∞ as k → ∞
and (µ1(t+ t

′

k), µ2(t+ t
′

k), µ3(t+ t
′

k))T satisfies



ẋ1(t) =x1(t)
[
r1(t+ t

′

k)− b1(t+ t
′

k)x1(t)

− a1(t+ t
′

k)y(t)

x(t) + k1(t+ t
′
k)
− f1(t+ t

′

k)u(t)
]
,

ẏ(t) =y(t)
[
r2(t+ t

′

k)− a2(t+ t
′

k)y(t)

x(t) + k2(t+ t
′
k)

− f2(t+ t
′

k)u(t)
]
,

u̇(t) =− β(t+ t
′

k)u(t) + e1(t+ t
′

k)x(t)

+ e2(t+ t
′

k)y(t).

It follows from Theorem 2.1 and the assumption of almost
periodic coefficient that {µi(t + t

′

k)} (i = 1, 2, 3) are equi-
continuous and uniformly bounded. Then, Ascoli’s theorem
shows the existence of a uniformly convergent subsequence
{µi(t + tk)} ⊆ {µi(t + t

′

k)} satisfying for any ε2 > 0, we
can choose K(ε2) > 0 such that when m, k ≥ K(ε2),

|µi(t+ tm)− µi(t+ tk)| < ε2, i = 1, 2, 3,

which implies that µi(t) (i = 1, 2, 3) are asymptotically al-
most periodic functions. So, there exist continuous functions
di(t+tk) and almost periodic functions ci(t+tk) (i = 1, 2, 3)
satisfying

µi(t+ tk) = ci(t+ tk) + di(t+ tk), i = 1, 2, 3,

and

lim
k→+∞

ci(t+ tk) = ci(t), lim
k→+∞

di(t+ tk) = 0, i = 1, 2, 3.

Hence, lim
k→+∞

µi(t + tk) = ci(t) and ci(t) (i = 1, 2, 3) are

almost periodic functions too.
Moreover,

lim
k→+∞

µ̇i(t+ tk) = lim
k→+∞

lim
h→0

µi(t+ tk + h)− µi(t+ tk)

h

= lim
h→0

lim
k→+∞

µi(t+ tk + h)− µi(t+ tk)

h

= lim
h→0

ci(t+ h)− ci(t)
h

, i = 1, 2, 3.

So ċi(t) (i = 1, 2, 3) is existence.
According to definition of almost periodic function, we can
choose a sequence {tn} with {tn} → ∞ and

b1(t+ tn)→ b1(t), β(t+ tn)→ β(t), aj(t+ tn)→ aj(t),

fj(t+ tn)→ fj(t), ei(t+ tn)→ ei(t), kj(t+ tn)→ kj(t),

rj(t+ tn)→ rj(t) (j = 1, 2),

uniformly on R as n→∞.

Evidently, µi(t+tn)→ ci(t) (i = 1, 2, 3) as n→∞. Hence,

ċ1(t) = lim
n→+∞

µ̇1(t+ tn)

= lim
n→+∞

µ1(t+ tn)
[
r1(t+ tn)− b1(t+ tn)µ1(t+ tn)

− a1(t+ tn)µ2(t+ tn)

µ1(t+ tn) + k1(t+ tn)
− f1(t+ tn)µ3(t+ tn)

]
=c1(t)

[
r1(t)− b1(t)c1(t)− a1(t)c2(t)

c1(t) + k1(t)

− f1(t)c3(t)
]
,

ċ2(t) = lim
n→+∞

µ̇2(t+ tn)

= lim
n→+∞

µ2(t+ tn)
[
r2(t+ tn)

− a2(t+ tn)µ2(t+ tn)

µ1(t+ tn) + k2(t+ tn)
− f2(t+ tn)µ3(t+ tn)

]
=c2(t)

[
r2(t)− a2(t)c2(t)

c1(t) + k2(t)
− f2(t)c3(t)

]
,

and

ċ3(t) = lim
n→+∞

µ̇3(t+ tn)

= lim
n→+∞

[
− β(t+ tn)µ3(t+ tn)

+ e1(t+ tn)µ1(t+ tn) + e2(t+ tn)µ2(t+ tn)
]

=− β(t)c3(t) + e1(t)c1(t) + e2(t)c2(t).

Therefore, (c1(t), c2(t), c3(t))T is a positive almost periodic
solution of model (2) and Theorem 3.1 further shows the
uniqueness of this solution. �

V. EXAMPLE AND NUMERIC SIMULATION

In this part, we will give one example with numerical
simulation to support our results.
Example 5.1. Consider this model:

ẋ(t) =x(t)
(

4.8 + cos
√

2t− (10− sin
√

5t)x(t)

− (0.7 + 0.2cos
√

13t)y(t)

x(t) + 3.8 + cost
− 0.02u(t)

)
,

ẏ(t) =y(t)
(

0.5 + 0.2cos
√

7t− (1.5 + 0.2cos
√

3t)y(t)

x(t) + 1.6

− 0.05u(t)
)
,

u̇(t) =− (1.3 + 0.1cos(
√

3t))u(t) + 0.3x(t) + 0.2y(t).
(29)

One could easily verify that conditions in Theorem 4.1 are
all fulfilled. Hence, system (29) is permanent and admits a
unique positive almost periodic solution which is globally
attractive. These results are illustrated in Fig. 1.

VI. CONCLUSION

A modified Leslie-Gower predator-prey system with single
feedback control is considered. By applying some prelimi-
nary lemmas and Lyapunov function method, we obtained the
permanence and uniqueness of a globally attractive positive
almost periodic solution for this model. These results show
that single feedback control can greatly affect the dynamic
behaviors of this system which is different from systems
with two or more feedback control variables. On the other
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Fig. 1. Numeric simulations of system (29) with the initial
conditions (x(0), y(0), u(0))T = (0.4, 0.2, 0.6)T , (0.8, 0.7, 0.3)T ,
(0.1, 0.95, 0.5)T and (0.6, 0.3, 0.2)T , respectively.

hand, we all know that time delay is an important influence
factor for the dynamic behaviors of ecological model and
we will study Leslie-Gower predator-prey system with time
delay and single feedback control in the future.
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