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Abstract—In this work, the consistent tanh expansion (CTE)
method is developed for a high-order classical Boussinesq-
Burgers (HCBB) equation. Via the CTE method, we obtain
many exact significant solutions including soliton-resonant so-
lutions, soliton-periodic wave interactions and soliton-rational
wave interactions. The CTE related nonlocal symmetries are
also proposed. The nonlocal symmetries can be localized to
find finite Bäcklund transformations by prolonging the model
to an enlarged one.

Index Terms—high-order classical Boussinesq-Burgers
(HCBB) equation, Bäcklund transformation (BT), Interaction
solutions, Lie point symmetry.

I. INTRODUCTION

IT is well known that there are many approaches to find the
exact solutions for a given partial differential equation in

the nonlinear science, such as Hirota’s bilinear method [1],
Bäcklund transformation (BT) [2], Darboux transformation
(DT) [3], Painlevé analysis [4], (G’/G)-expansion method
[5] and so on. Recently, Lou and his group [6-8] propose
the consistent Riccati expansion (CRE) and consistent tanh
expansion (CTE) method through the nonlocal symmetry to
find interaction solutions of NLEEs. On account of this, there
are a lot of paper here to study this problem [9-12].

In this work, we consider the following high-order classi-
cal Boussinesq-Burgers equation [13]

ut +
3
2 (1− β)(uux)x − 3

2 (uv)x − 3u2ux

− 1
4uxxx = 0,

(1a)

vt − 3β(1− 1
2β)(2uxuxx + uuxxx)− 3

2vvx
−3

2 (1− β)(uvx)x − 3(u2v)x − 1
4vxxx = 0.

(1b)

where u = u(x, t) is the height deviating from the equilib-
rium position of water, v = v(x, t) is the field of horizontal
velocity, β is a constant representing different dispersive
power. In the case of β = 0, the HCBB equation (1) reduces
to a high-order classical Boussinesq system. And through
the transformation (u, v, x, t, β) −→ (−u,−v,−x,−t, 1), it
reduces to a high-order Boussinesq-Burgers equation [14-
18].

In [13], Geng and Wu constructed finite-band solutions
of the HCBB equation (1) based on the Lax pairs of the
stationary evolution equations. In this work, we should use
the CTE method to seek the interaction solutions between
solitons and potential STO waves. The CTE related nonlocal
symmetries are also proposed. The nonlocal symmetries can
be localized to find finite BT by prolonging the model to an
enlarged one.
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II. CTE METHOD AND EXPLICIT SOLUTIONS

Based on the CTE method [6-12], the generalized tanh
function expansion for the HCBB equation (1) can be read
as

u = u1 tanh(w) + u0 +
1
2wx, (2a)

v = v2 tanh
2(w) + v1 tanh(w) + v0. (2b)

where u1, u0, v2, v1, v0 and w are some arbitrary function of
x, t. In the expansion (2a), we have written u0 as u0 +

1
2wx

for convenience later. So, we have the following two cases.
Case 1 We have

u1 = 1
2wx,

v2 =
βw2

x

2 − w2
x,

v1 = −βwxx

2 + wxx,

v0 = (2− β)
(

w2
x+wxx

2 + u0x

)
.

(3)

while u0 and w are determined by the following two equa-
tions

u0t − ( 14u0xx + 3
2u0u0x + u3

0)x = 0, (4a)

wt − ( 14wxx + 3
4w

2
x + 3

2u0wx)x
−w3

x − 3u0wx(u0 + wx) = 0.
(4b)

Case 2 We have

u1 = − 1
2wx,

v2 = −βw2
x

2 ,

v1 = βwxx

2 ,

v0 =
βw2

x

2 − βwxx

2 − βu0x.

(5)

while u0 and w are determined by the following two equa-
tions

u0t − ( 14u0xx − 3
2u0u0x + u3

0)x = 0, (6a)

wt − ( 14wxx − 3
4w

2
x − 3

2u0wx)x − w3
x

−3u0wx(u0 + wx) = 0.
(6b)

In order to make the solutions more clear, we have two
theorems as follows
Theorem 1 If u0 and w are the solutions of Eq. (4), then

u = 1
2wx[tanh(w) + 1] + u0, (7a)

v = 2−β
2

[
w2

xsech2(w) + wxx tanh(w)
+wxx + 2u0x].

(7b)

is the solution of the HCBB eqution (1).
Theorem 2 If u0 and w are the solutions of Eq. (6), then

u = −1
2wx[tanh(w)− 1] + u0, (8a)

v = β
2

[
w2

xsech2(w) + wxx tanh(w)
−wxx − 2u0x].

(8b)
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is the solution of the HCBB equation (1).
According to the above two theorems, by solving the u0

and w equation (4) or (6), we can get various interaction
solutions among different types of nonlinear excitations. In
fact, the u0 equations (4a) and (6a) are just two kinds of well
known linearizable Sharma-Tasso-Olver (STO) equation [19-
21]. The w equations (4b) and (6b) can also be linearized
because they are two potential forms of the variable coeffi-
cient STO (PSTO) equations.

In this work, we only restrict the trivial STO solution

u0 = c. (9)

where c is an arbitrary constant. In this case the w equations
(4b) and (6b) are each simplified to the following two
constant coefficient PSTO equations

wt − ( 14wxx + 3
4w

2
x + 3

2cwx + 3c2w)x
−w3

x − 3cw2
x = 0.

(10)

and
wt − ( 14wxx − 3

4w
2
x − 3

2cwx + 3c2w)x
−w3

x − 3cw2
x = 0.

(11)

A. Single soliton solutions

Eqs. (10) and (11) have the following trivial solution

w = kx+ ωt,
ω = k(k2 + 3ck + 3c2),

(12)

where k is an arbitrary constant, which leads to the following
single soliton solutions of the HCBB equation (1)

u = 1
2k tanh

[
kx+ k(k2 + 3ck + 3c2)t

]
+c+ 1

2k,
(13a)

v = 2−β
2 k2sech2

[
kx+ k(k2 + 3ck + 3c2)t

]
. (13b)

and

u = −1
2k tanh

[
kx+ k(k2 + 3ck + 3c2)t

]
+c+ 1

2k,
(14a)

v = β
2 k

2sech2
[
kx+ k(k2 + 3ck + 3c2)t

]
. (14b)

Taking k = 1
2 , c = 1, β = 1 in (13), we can show the

single soliton solutions of the HCBB equation (1) in Fig 1.

B. Interaction solutions

In order to obtain the interaction solutions of the HCBB
equation (1), we consider w in the form

w = kx+ ωt+ g, (15)

where g = g(x, t), on account of which, Eqs. (10) and (11)
lead to the following PSTO waves

gt − 1
4 (gxx + 6c1gx + 12c21g + 3g2x)x − g3x

−3c1g
2
x + ω0 = 0,

(16)

and

gt − 1
4 (gxx − 6c1gx + 12c21g − 3g2x)x − g3x

−3c1g
2
x + ω0 = 0,

(17)

where c1 and ω0 are related to k, c and ω by

c1 = c+ k,
ω0 = ω − k(k2 + 3ck + 3c2).

(18)

(a) The solution of u(x, t) with -5 ≤ x ≤ 5, -5 ≤ t ≤ 5

(b) The solution of v(x, t) with -5 ≤ x ≤ 5, -5 ≤ t ≤ 5

Fig. 1. Single soliton solutions of the HCBB equation.

Substituting Eq. (15) along with Eq. (16) into Eq. (7), we
get the interaction solution for the HCBB equation (1)

u = 1
2 (k + gx)

[
tanh(kx+ ωt+ g) + 1

]
+ c, (19a)

v = 2−β
2

[
(k + gx)

2sech2(kx+ ωt+ g)
+gxx tanh(kx+ ωt+ g) + gxx

]
.

(19b)

Similarly, substituting Eq. (15) along with Eq. (17) into
Eq. (8), we also get the interaction solution for the HCBB
equation (1)

u = −1
2 (k + gx)

[
tanh(kx+ ωt+ g)− 1

]
+ c, (20a)

v = β
2

[
(k + gx)

2sech2(kx+ ωt+ g)
+gxx tanh(kx+ ωt+ g)− gxx

]
.

(20b)

It is well known that the PSTO equation has many types
of known exact solutions. Thus, we can use those known
solutions to construct the interaction solutions between a
soliton and those PSTO waves.

1) Multiple resonant soliton solutions
Eq. (16) possesses the following multiple wave solutions

g = 1
2 ln

[ n∑
i=1

lie
(kix+ωit)

]
(21)

with ωi = −2ω0 + ki(
1
4k

2
i + 3

2c1ki + 3c21), and ki, li are
arbitrary constants. Substituting (21) into the expression (19),
we can obtain (n+1) resonant soliton solutions of the HCBB
equation (1).
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(a) The solution of u(x, t) with -20 ≤ x ≤ 20, -20 ≤ t ≤ 20

(b) The solution of v(x, t) with -20 ≤ x ≤ 20, -20 ≤ t ≤ 20

Fig. 2. Multiple resonant soliton solutions of the HCBB equation.

Similarly, Eq. (17) possesses the following multiple wave
solutions

g = − 1
2 ln

[ n∑
i=1

lie
(kix+ωit)

]
(22)

with ωi = 2ω0+ki(
1
4k

2
i − 3

2c1ki+3c21), and ki, li are arbitrary
constants. Substituting (22) into the expression (20), we can
also obtain (n+ 1) resonant soliton solutions of the HCBB
equation (1).

Taking n = 2, k = 1
2 , c = 1, ω = 1, l1 = 1, k1 = 2, l2 =

2, k2 = 3, β = 1 in (22), we can show multiple resonant
soliton solutions of the HCBB equation (1) in Fig 2.

2) Multiple interactions with periodic waves
It is not difficult to find soliton interactions with sine-

cosine periodic waves. Such as, the PSTO (16) possesses the
following exact solutions

g = 1
2 ln

n∑
i=1

{
di cos

[
li(x+ ait)

]
e(kix+bit)

}
(23)

where ai = 3(c1+
ki

2 )
2− 1

4 l
2
i , bi = −2ω0+3kic

2
1− 3

2c1(l
2
i −

k2i )+
1
4k

3
i − 3

4kil
2
i , and di, ki, li(i = 1, 2, · · · , n) are arbitrary

constants.
Similarly, the PSTO (17) possesses the following exact

solutions

g = −1
2 ln

n∑
i=1

{
di cos

[
li(x+ ait)

]
e(kix+bit)

}
(24)

where ai = 3(c1 − ki

2 )
2 − 1

4 l
2
i , bi = 2ω0 +3kic

2
1 +

3
2c1(l

2
i −

k2i )+
1
4k

3
i − 3

4kil
2
i , and di, ki, li(i = 1, 2, · · · , n) are arbitrary

constants.

In other words, the expression (23) with (19), and the ex-
pression (24) with (20) also exhibit the interaction solutions
of multiple solitons and multiple periodic waves.

Taking n = 2, k = 1, c = 2, ω = 1, l1 = 2, k1 = 1, d1 =
1, l2 = 3, k2 = 2, d2 = 2, β = 1 in (24), we can show
multiple interactions with periodic waves of the HCBB
equation (1) in Fig 3.

(a) The solution of u(x, t) with -5 ≤ x ≤ 5, 0 ≤ t ≤ 10

(b) The solution of v(x, t) with -5 ≤ x ≤ 5, 0 ≤ t ≤ 10

Fig. 3. Multiple interactions with periodic waves of the HCBB equation.

3) Multiple interactions with rational waves
In order to obtain more solutions of Eqs. (16) and (17),

we consider ω in the following result

ω = k(k2 + 3ck + 3c2). (25)

Thus, Eq. (16) is simplified to

gt − 1
4 (gxx + 6c1gx + 12c21g + 3g2x)x

−g3x − 3c1g
2
x = 0.

(26)

It is not difficult to verify that Eq. (26) possesses the
following solution

g = 1
2 ln

[
a1x

2 + a2x+ 6a1c
2
1xt+ 9a1c

4
1t

2

+3c1(a2c1 + a1)t
]
,

(27)

which means the solution (27) along with (19) becomes an
interaction solution between a soliton and a rational wave.

Similarly, according to (25), Eq. (17) is simplified to

gt − 1
4 (gxx − 6c1gx + 12c21g − 3g2x)x

−g3x − 3c1g
2
x = 0,

(28)
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Eq. (28) possesses the following solution

g = −1
2 ln

[
a1x

2 + a2x+ 6a1c
2
1xt+ 9a1c

4
1t

2

+3c1(a2c1 − a1)t
]
,

(29)

which also means the solution (29) along with (20) becomes
an interaction solution between a soliton and a rational wave.

Taking k = 4, c = 2, a1 = 1, a2 = 2, β = 1 in (27),
we can show multiple interactions with rational waves of the
HCBB equation (1) in Fig 4.

(a) The solution of u(x, t) with 4 ≤ x ≤ 10, -4 ≤ t ≤ 2

(b) The solution of v(x, t) with 4 ≤ x ≤ 10, -4 ≤ t ≤ 2

Fig. 4. Multiple interactions with rational waves of the HCBB equation.

III. NONLOCAL SYMMETRIES RELATED TO CTE
METHOD

To find nonlocal symmetries related to CTE method , we
write down non-auto Bäcklund (BT) theorems for the HCBB
equation (1).
Theorem 3 If {u0, w} is a solution of Eq. (4), then

u = wx + u0,
v = (2− β)(wxx + u0x).

(30)

is a solution of the HCBB equation (1).
Theorem 4 If {u0, w} is a solution of Eq. (6), then

u = wx + u0,
v = −β(wxx + u0x).

(31)

is a solution of the HCBB equation (1).
Now it is ready to study the nonlocal symmetries of the

HCBB equation (1). A symmetry

σ =

(
σu

σv

)

of the HCBB equation is defined as a solution of its linearized
system

σu
t +

[
3
2 (1− β)(uσu)x − 3u2σu − 3

2vσ
u

−3
2uσ

v − 1
4σ

u
xx

]
x
= 0,

(32a)

σv
t −

{
3β(1− 1

2β)
[
(uσu)xx − uxσ

u
x

]
+ 3

2 (1− β)(uσv
x + vxσ

u) + 3u2σv + 6uvσu

+ 3
2vσ

v + 1
4σ

v
xx

}
x
= 0.

(32b)

which means the HCBB equation (1) is form invariant under
the transformation(

σu

σv

)
−→

(
u
v

)
+ ϵ

(
σu

σv

)
(33)

with the infinitesimal parameter ϵ. Thus, the HCBB equation
(1) has the following nonlocal symmetry theorems.
Theorem 5 If {u, v} is related to {u0, w} by (30), and
{u0, w} is a solution of (4), then(

σu

σv

)
=

(
wxe−2w

(2− β)(wxx − 2w2
x)e

−2w

)
(34)

is a nonlocal symmetry of the HCBB equation (1).
Theorem 6 If {u, v} is related to {u0, w} by (31), and
{u0, w} is a solution of (6), then(

σu

σv

)
=

(
wxe2w

−β(wxx + 2w2
x)e

2w

)
(35)

is a nonlocal symmetry of the HCBB equation (1).
The nonlocal symmetries can be localized by introducing

an enlarged system. Thus, the nonlocal symmetry given in
Theorem 5 has the following localization theorem for the
enlarged system

ut +
3
2 (1− β)(uux)x − 3

2 (uv)x
−3u2ux − 1

4uxxx = 0,
vt − 3β(1− 1

2β)(2uxuxx + uuxxx)
−3

2 (1− β)(uvx)x − 3
2vvx − 3(u2v)x

−1
4vxxx = 0,

u = wx + u0,
v = (2− β)(wxx + u0x),
w1 = wx,
w2 = −w1x,
u0t − ( 14u0xx + 3

2u0u0x + u3
0)x = 0,

wt − ( 14wxx + 3
4w

2
x + 3

2u0wx)x
−w3

x − 3u0wx(u0 + wx) = 0.

(36)

Similarly, the nonlocal symmetry given in Theorem 6 has
the following localization theorem for the enlarged system

ut +
3
2 (1− β)(uux)x − 3

2 (uv)x
−3u2ux − 1

4uxxx = 0,
vt − 3β(1− 1

2β)(2uxuxx + uuxxx)
−3

2 (1− β)(uvx)x − 3
2vvx − 3(u2v)x

−1
4vxxx = 0,

u = wx + u0,
v = −β(wxx + u0x),
w1 = wx,
w2 = w1x,
u0t − ( 14u0xx − 3

2u0u0x + u3
0)x = 0,

wt − ( 14wxx − 3
4w

2
x

−3
2u0wx)x − w3

x − 3u0wx(u0 + wx) = 0.

(37)
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Theorem 7 For Eq. (36), the HCBB equation (1) possesses
a Lie point symmetry

σu = w1e−2w,
σv = −(2− β)(w2 + 2w2

1)e
−2w,

σw = − 1
2e−2w,

σu0 = 0,
σw1 = w1e−2w,
σw2 = (w2 + 2w2

1)e
−2w.

(38)

which is a localization of the nonlocal symmetry for the
original HCBB equation (1).
Theorem 8 For Eq. (37), the HCBB equation (1) possesses
a Lie point symmetry

σu = w1e2w,
σv = −β(w2 + 2w2

1)e
2w,

σw = 1
2e2w,

σu0 = 0,
σw1 = w1e2w, σw2 = (w2 + 2w2

1)e
2w.

(39)

which is a localization of the nonlocal symmetry for the
original HCBB equation (1). When a nonlocal symmetry is
localized, it can be used to find its finite transformations and
the related symmetry reductions. Thus, we have the following
finite transformation theorems.
Theorem 9 if {u, v, w, u0, w1, w2} is a solution of the
prolonged HCBB equation (36), so {u′, v′, w′, u′

0, w
′
1, w

′
2}

is with

u′ = u+ ϵw1

−ϵ+e2w ,

v′ = v − (2− β)
[

ϵw2

−ϵ+e2w +
2ϵw2

1e2w

(−ϵ+e2w)2

]
,

w′ = 1
2 ln(−ϵ+ e2w),

u′
0 = u0,

w′
1 = w1e2w

−ϵ+e2w ,

w′
2 = w2e2w

−ϵ+e2w +
2ϵw2

1e2w

(−ϵ+e2w)2 .

(40)

Theorem 10 if {u, v, w, u0, w1, w2} is a solution of the
prolonged HCBB equation (37), so {u′, v′, w′, u′

0, w
′
1, w

′
2}

is with

u′ = u+ ϵw1

−ϵ+e−2w ,

v′ = v − β
[

ϵw2

−ϵ+e−2w +
2ϵw2

1e−2w

(−ϵ+e−2w)2

]
,

w′ = 1
2 ln(−ϵ+ e−2w),

u′
0 = u0,

w′
1 = w1e−2w

−ϵ+e−2w ,

w′
2 = w2e−2w

−ϵ+e−2w +
2ϵw2

1e−2w

(−ϵ+e−2w)2 .

(41)

From the finite BT transformation Theorem 9 and Theorem
10, we can obtain new solutions of the HCBB equation (1)
from any seed solutions.

IV. CONCLUSIONS

In conclusion, the solitons and any other types of potential
STO waves interaction solutions of the HCBB equation (1)
are studied with the help of the CTE method. In particular,
the multiple soliton-resonant solutions, soliton-periodic wave
interactions and soliton-rational wave interactions are explic-
itly presented. The CTE related nonlocal symmetries are also
proposed. The nonlocal symmetries can be localized to find
finite BT by prolonging the model to an enlarged one.
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