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Abstract—In this paper, we present the Walsh transform
fW : F2n → Z of some quadratic trace forms f(x) =

Tr(
∑m
i=0 aix

2i+1) over finite fields of characteristic two where
the degree of extension n is even. In this article, we consider only
trace forms with one or two terms where ais are coming from
base field F2. We use the Walsh coefficient fW (0) to investigate
the number of rational points on Artin-Schreier curves over F2n

of the form χ : y2 + y =
∑m
i=0 aix

2i+1. Using these results we
also derive some maximal Artin-Scheier curves.

Index Terms—Finite Fields, Quadratic Forms, Walsh trans-
form, Artin-Schreier curves.

I. INTRODUCTION

LET K = F2n be the finite field with 2n elements. Let
Tr denote the trace map from F2n to F2 defined by

Tr(x) =
∑n−1
i=0 x

2i . For a boolean function f : K → F2,
the Walsh transform of f is the function fW : K → Z
defined by

fW (a) =
∑
x∈K

(−1)f(x)+Tr(ax).

The Walsh spectrum of f is the set {fW (a) : a ∈ K}.
The famous examples of functions whose Walsh spectrum is
three valued are the Gold functions [8] f(x) = Tr(x2

a+1)
where gcd(a, n) = 1 and n is odd and the spectrum is
{0,±2

n+1
2 }. Another important set of functions are the

Kasami-Welch functions f(x) = Tr(x4
a−2a+1), which have

the same transform values under the same hypotheses. Later
Lahtonen et al.[17] considered more general form of Kasami-
Welch functions, f(x) = Tr(xd), d = 2ta+1

2a+1 and calculated
fW (1) under certain conditions. In his paper, Fitzgerald [6]
showed some important results for the trace forms with two
terms over characteristic two which explicitly give the two
basic invariants of quadratic forms namely dim rad(Q) and
Λ(Q). In this article, we have used some of the techniques
introduced in [9] and [21] to find the Walsh transforms of
some quadratic trace forms. Cusick and Dobbertin[9] were
actually confirming two cojectures of Niho. Besides, one can
check [3] for explicit evaluation of Walsh transforms of Gold
type functions.

In section 2 we mention the preliminary definitions and
symbols used throughout this paper.

In section 3 we introduce some new results for quadratic
trace forms with one or two terms. But we stick to the case
of n, degree of extension to be even.
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Algebraic curves over finite fields have various applica-
tions in coding theory, cryptography, quasi-random numbers
and related areas. For references see [13], [14], [15], [16].
For these applications it is important to know the number of
rational points of the curve. In section 4 we investigate the
the application of Walsh transform of quadratic functions to
obtain the number of rational points on Artin-Schreier curves
over F2n of the form χ : y2 + y =

∑m
i=0 aix

2i+1. Van der
Geer and Van der Vlugt [18] used p-linearlized polynomials
to find new maximal Artin-Schreier curves. Later Wilfred and
Anbar[19], [20] did a thorough study of the Artin-Schreier
curves and described the number of rational points using
Walsh transform fW (0) of quadratic trace forms. In this
regard one can also check Bartoli et al.[2]. But most of
their works are for Fpn for p odd. In this section we only
consider the case p = 2 and use the theorems from section
3 to describe the number of rational points of χ in terms
of Walsh coefficients QW (0) of the quadratic trace forms
Q(x) = Tr(

∑m
i=0 aix

2i+1).

II. PRELIMINARIES

Let F = F2,K = F2n and

R(x) =
m∑
i=0

aix
2i ,

where ai ∈ {0, 1}. We consider the trace forms which are
the quadratic forms QKR : K → F given by QKR (x) =
Tr(xR(x)). These types of trace forms have appeared in
many literature and they have been widely used to compute
weight enumerators of certain binary codes [1], [4], to con-
struct curves with many rational points and associated trace
codes [7] and to construct binary sequences with optimal
correlations [10], [11]. In each of these applications we need
the number of solutions ( in K) to QKR (x) = 0, denoted by
N(QKR ). It has been shown [12, 6.26,6.32], for the different
type of quadratic forms:

N(QKR ) =
1

2
(2n + Λ(QKR )

√
2n+r(Q

K
R )),

where r(QKR ) = dim rad(QKR ) and

Λ(QKR ) =


0, if QKR ' z2 +

∑ν
i=1 xiyi

1, if QKR '
∑ν
i=1 xiyi

−1, if QKR ' x21 + y21 +
∑ν
i=1 xiyi

Here rad(QKR ) denotes the radical of the bilinear form
B(x, z) of the trace form Q(x) which is defined by

B(x, z) = Q(x) +Q(z) +Q(x+ z) for x, z ∈ F2k .
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Also vp(n) denotes the highest power of p dividing n and
χ(x) = (−1)Tr(x).

III. WALSH SPECTRUM OF SOME QUADRATIC FORMS

The first result we introduce in this section is for the
Walsh transform of trace forms with one term where n, the
degree of extension is even but n

2 is odd.
We define TrL(x) =

∑m−1
i=0 x2

i

which will be used in
this section. We will also use the fact that for x, y ∈ K,
Tr(x2

i

y) = Tr(xy2
−i

).

Theorem 1: Let E = F2n , n = 2m,L = F2m , m be odd
and f(x) = Tr(x2

k+1). Then

fW (α) =
∑
x∈E

χ(x2
k+1 + αx)

=

{
2m

∑
µ∈M

χ(µz0), when k is odd
2m

∑
µ∈M

χ(µ2k+1 + µz0), when k is even,

where M = {µ ∈ L|µ2k + µ2−k

+ z1 = 0}, GF (4) =
{0, 1, β, γ} ⊂ E = L[β] and α = z0 + βz1 ∈ E for z0, z1 ∈
L.
Proof: We have F22 ⊂ E. We consider F22 = {0, 1, β, γ},
where β + γ = 1, β2 = γ, γ2 = β. Note that E = L[β], as
m is odd. Further,

β2i =

{
β, when i is even
γ, when i is odd.

Also Tr(λ + µβ) = Tr(λ + µγ) = TrL(µ) for λ, µ ∈ L.
Now for x = λ+ µβ,

f(x) = Tr(x2
k+1)

= Tr((λ+ µβ)2
k+1)

= Tr(λ2
k+1 + λµ2kβ2k + λ2

k

µβ + µ2k+1β2k+1).

So when k is even

f(x) = Tr(λ2
k+1 + µ2kλβ + µλ2

k

β + µ2k+1γ)

= TrL(µ2kλ+ µλ2
k

+ µ2k+1).

For α = z0 + z1β,

fW (α) =
∑
µ,λ∈L

χ(µ2kλ+µλ2
k

+µ2k+1 +λz1 +µz0 +µz1)

as

Tr(αx) = Tr((z0 + z1β)(λ+ µβ))

= Tr(z0λ+ λz1β + z0µβ + z1µγ)

= TrL(λz1 + µz0 + µz1).

So

fW (α) =
∑
µ,λ∈L

χ(µ2kλ+ µ2−k

λ+ µ2k+1

+λz1 + µz0 + µz1)

=
∑
µ∈L

χ(µ2k+1 + µz0 + µz1)
∑
λ∈L

χ(λ(µ2k

+µ2−k

+ z1))

= 2m
∑
µ∈M

χ(µ2k+1 + µz0 + µz1),

where M = {µ ∈ L|µ2k + µ2−k

+ z1 = 0}.
For k odd,

f(x) = Tr(λ2
k+1 + µ2kλγ + µλ2

k

β + µ2k+1)

= TrL(µ2kλ+ µλ2
k

).

So

fW (α) =
∑
µ,λ∈L

χ(µλ2
k

+ µ2kλ+ λz1 + µz0 + µz1)

=
∑
µ∈L

χ(µz0 + µz1)
∑
λ∈L

χ(λ(µ2k + µ2−k

+ z1)

= 2m
∑
µ∈M

χ(µz0 + µz1),

For µ ∈ M we have µ2k + µ2−k

+ z1 = 0 which implies
TrL(µz1) = 0.
Hence, for k even

fW (α) = 2m
∑
µ∈M

χ(µ2k+1 + µz0 + µ2k+1 + µ2−k+1)

= 2m
∑
µ∈M

χ(µ2k+1 + µz0)

and for k odd fW (α) = 2m
∑
µ∈M

χ(µz0). 2

Corollary 1: For Theorem 1, if gcd(m, k) = 1, then
Walsh spectrum is {0,±2m+1}.
Proof: For gcd(m, k) = 1, µ2k + µ2−k

+ z1 = 0 has
solution in L iff TrL(z1) = 0. In that case it has
two solutions {µ, µ + 1}. So |M | = 0 or 2. Therefore,
fW (a) = 0 or± 2m+1. 2

In the next theorem we will consider trace forms with two
terms like f(x) = Tr(x2

a+1 + x2
b+1). Similar result can

be found in [21] but for odd n with restrictions 0 ≤ a < b
and gcd(b− a, n) = gcd(b+ a, n) = 1.

Theorem 2: Let E = F2n , n = 2m,L = F2m , m be odd
and f(x) = Tr(x2

a+1 + x2
b+1). Then

fW (α) =
∑
x∈E

χ(x2
a+1 + x2

b+1 + αx)

=


2m

∑
µ∈M

χ(µ2a+1 + µ2b+1 + µz0), if a, b even
2m

∑
µ∈M

χ(µz0), if a, b odd
2m

∑
µ∈M

χ(µ2a+1 + µz0), if a even, b odd
2m

∑
µ∈M

χ(µ2b+1 + µz0), if a odd , b even

where M = {µ ∈ L|µ2a + µ2−a

+ µ2b + µ2−b

+ z1 =
0},GF (4) = {0, 1, β, γ} ⊂ E = L[β] and α = z0+βz1 ∈ E
for z0, z1 ∈ L.
Proof: Using the same arguments as in Theorem 1, we have

Tr(λ+ µβ) = Tr(λ+ µγ) = TrL(µ) for λ, µ ∈ L.

Case 1: a, b even. For x = λ+ µβ and α = z0 + z1β,

f(x) = Tr((λ+ µβ)2
a+1 + (λ+ µβ)2

b+1)

= TrL(µ2a+1 + µ2aλ+ µλ2
a

+ µ2bλ

+µλ2
b

+ µ2b+1)
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and TrL(αx) = TrL(λz1 + µz0 + µz1). Therefore,

fW (α) =
∑
µ,λ∈L

χ(µ2a+1 + µ2aλ+ µ2−a

λ

+µ2b+1 + µ2bλ+ µ2−b

λ

+λz1 + µz0 + µz1)

=
∑
µ∈L

χ(µ2a+1 + µ2b+1 + µz0 + µz1) ·∑
λ∈L

χ(λ(µ2a + µ2−a

+ µ2b + µ2−b

+ z1))

= 2m
∑
µ∈M

χ(µ2a+1 + µ2b+1 + µz0 + µz1)

where M = {µ ∈ L|µ2a + µ2−a

+ µ2b + µ2−b

+ z1 = 0}.
Now µ2a+µ2−a

+µ2b+µ2−b

+z1 = 0 implies TrL(µz1) = 0.

Hence fW (α) = 2m
∑
µ∈M

χ(µ2a+1 + µ2b+1 + µz0).
Case 2: a, b odd.

fW (α) =
∑
µ,λ∈L

χ(µλ2
a

+ µ2aλ+ µλ2
b

+ µ2bλ+ λz1

+µz0 + µz1)

=
∑
µ∈L

χ(µz0 + µz1)
∑
λ∈L

χ(λ(µ2a + µ2−a

+λ(µ2b + µ2−b

+z1))

= 2m
∑
µ∈M

χ(µz0)

Case 3: a even, b odd.

fW (α) =
∑
µ,λ∈L

χ(µ2aλ+ µλ2
a

+ µ2a+1 + µλ2
b

+ µ2bλ

+λz1 + µz0 + µz1)

=
∑
µ∈L

χ(µ2a+1 + µz1 + µz0)
∑
λ∈L

χ(λ(µ2a + µ2−a

+λ(µ2b + µ2−b

+z1))

= 2m
∑
µ∈M

χ(µ2a+1 + µz0)

Case 4: a odd, b even. Same as Case 3. 2

We can get the following result of [21] as a corollary
from the previous theorem.

Corollary 2: For Theorem 2, if gcd(b − a,m) = 1 =
gcd(b+ a,m), then the Walsh spectrum is {0,±2m+1}.
Proof: when gcd(b − a,m) = gcd(b + a,m) = 1, we can
show that x2

a

+ x2
−a

+ x2
b

+ x2
−b

+ z1 = 0 has solution
in L iff TrL(z1) = 0 and in that case it has two solutions.
Hence fW (α) = 0 or 2m+1. 2

Using the above theorem and Theorem 1.5 from
Fitzgerald’s [6], we can find the size of the set M as
follows:

Proposition 1: Having the same conditions like The-
orem 2 along with the condition 0 ≤ a < b,
we can describe the size of the set M as |M | =

0 or 2gcd(b−a,m)+gcd(b+a,m)−gcd(e,m) where e = gcd(b −
a, b+ a).

Proof: Consider φ : F2m → F2m as φ(x) = x2
2b

+ x2
b+a

+

x2
b−a

+ x.

v2(m) = 0 ≤ max{v2(b − a), v2(b + a)}.
From [6, Theorem 1.5], we see |Kerφ| =
2gcd(b−a,m)+gcd(b+a,m)−gcd(e,m). Hence |M | =
0 or 2gcd(b−a,m)+gcd(b+a,m)−gcd(e,m) where e =
gcd(b− a, b+ a).

2

Lahtonen et al. [17] discussed the Walsh spectrum of
f(x) = Tr(x2

a+1) over F2k for odd k and gcd(a, k) = 1
and described fW (α) in terms of fW (1). In the next
theorem we determine fW (α) for k even and gcd(k, a) = 1.

Theorem 3: Let K = F2k , k be even and gcd(a, k) = 1,
f(x) = Tr(x2

a+1). Then for b ∈ K,

fW (b) =



0, if Tr(b) = 0 and
b ∈ Im(L)

χ(β2a+1 + β2a)fW (1), if Tr(b) = 0 and
b ∈ 1 + Im(L)

χ(β2−a

+ αβ)fW (α)

or χ(β2−a

+ α2β)fW (α2), if Tr(b) = 1

where α ∈ K such that α2 + α + 1 = 0 with Tr(α) = 1,
L(x) = x2

a

+x2
−a

and β ∈ K satisfying L(β) = b or 1 + b
or α+ b or α2 + b depending on the cases.
Proof: Consider β an element of K, which will be fixed later.

fW (b) =
∑
x∈K

χ(x2
a+1 + bx)

=
∑
x∈K

χ((x+ β)2
a+1 + b(x+ β))

=
∑
x∈K

χ(x2
a+1 + β2a+1 + x2

a

β + β2ax

+bx+ bβ)

=
∑
x∈K

χ(x2
a+1 + β2a+1 + xβ2−a

+ β2ax

+bx+ bβ)

= χ(β2a+1 + bβ)
∑
x∈K

χ(x2
a+1 + x(L(β) + b))

where L(β) = β2a + β2−a

and we have used the fact that
Tr(x2

i

β) = Tr(xβ2−i

).
Claim: L is linear with Kernel GF (22):
L(β) = 0 =⇒ β2a + β2−a

= 0 =⇒ β22a + β = 0.
So β ∈ GF (22a) ∩ GF (2k) = GF (22) and
Kernel(L) = {0, 1, α, α2} where α2 + α + 1 = 0. So
K = Im(L)∪ (1 + Im(L))∪ (α+ Im(L))∪ (α2 + Im(L))
and Tr(α) = 1.
This follows from K = K0 ∪ Kc

0 as K0 =
Im(L)∪(1+Im(L)) and Kc

0 = (α+Im(L))∪(α2+Im(L)).
Now if Tr(b) = 0, then b ∈ Im(L) or b ∈ 1 + Im(L).
If b ∈ Im(L), then ∃β such that b = L(β) = β2a + β2−a

.
So fW (b) = 0.
If b ∈ 1 + Im(L), then b = 1 + β2a + β2−a

and
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fW (b) = χ(β2a+1 + bβ)
∑
x∈K

χ(x2
a+1 + x)

= χ(β + β2−a+1)fW (1)

= χ(β2a + β2a+1)fW (1)

If Tr(b) = 1, then b ∈ α + Im(L) or α2 + Im(L). So
b = α+ β2a + β2−a

or b = α2 + β2a + β2−a

.

If b = α+ β2a + β2−a

, then

fW (b) = χ(β2a+1 + bβ)
∑
x∈K

χ(x2
a+1 + αx)

= χ(αβ + β2−a+1)fW (α)

If b = α2 + β2a + β2−a

, then

fW (b) = χ(β2a+1 + bβ)
∑
x∈K

χ(x2
a+1 + α2x)

= χ(α2β + β2−a+1)fW (α2).

IV. RATIONAL POINTS OF ARTIN-SCHREIER CURVES

In this section we consider the Artin-Schreier curves as

χ : y2+y = xR(x), where R(x) =

m∑
i=0

aix
2i with ai ∈ F2.

The Hasse-Weil bound relates the number of rational points
of χ to its genus. Moreover, it states that for a smooth
geometrically irreducible projective curve χ over F2k of
genus g(χ) with N(χ) rational points

1 + 2k − 2g(χ)2
k
2 ≤ N(χ) ≤ 1 + 2k + 2g(χ)2

k
2

A curve is called maximal ( or minimal) if it attains the upper
bound (or lower bound).
Here we note that using[13, Proposition 3.7.10], the genus
of the curve χ is g(χ) = 1

2 degR(x). Also by Hilbert’s
Theorem 90, the number of rational points N(χ) of χ is

N(χ) = 2N(QKR ) + 1 = 2k + 1 + Λ(QKR )
√

2k+r

where r = dim rad(QKR ). The curve is maximal i.e. when
the equality holds in the Hasse-Weil upper bound

N(χ) ≤ 2k + 1 + 2g
√

2k = 2k + 1 + degR(x)
√

2k.

Clearly equality holds only if k is even and then χ is
maximal iff

1) degR(x) = 2
r
2 and

2) Λ(QKR ) = +1.

The next lemma whose proof is obvious or we can check
the proof in [19], is very usefull for our results.

Lemma 1: Let Q be a quadratic function from F2k to F2.
Then

|Z| = 2k−1 +
1

2
QW (0).

The next theorem follows directly from Theorem 1.

Theorem 4: Let E = F2n , n = 2m,L = F2m , m be odd
and f(x) = Tr(x2

k+1). Then the number of rational points
of

χ : y2 + y = x2
k+1

over F2n is given by

N(χ) =

{
1 + 2n + 2m|M |, when k is odd
1 + 2n + 2m

∑
µ∈M

χ(µ2k+1), when k is even,

where M = {µ ∈ L|µ2k + µ2−k

= 0}, GF (4) =
{0, 1, β, γ} ⊂ E = L[β].
Proof: From Theorem 1, we get

fW (0) =

{
2m|M |, when k is odd
2m

∑
µ∈M

χ(µ2k+1), when k is even,

where M = {µ ∈ L|µ2k + µ2−k

= 0}. The proof follows
from Lemma 1. 2

Theorem 5: Let E = F2n , n = 2m,m odd , L = F2m .
Then the number of rational points of

χ : y2 + y = x2
a+1 + x2

b+1

over F2n is given by

N(χ) =


ψn,m,1, if a, b even
1 + 2n + 2m · |M |, if a, b odd
ψn,m,2, if a even , b odd
ψn,m,3, if a odd , b even

where ψn,m,1 = 1 + 2n + 2m ·
∑
µ∈M

χ(µ2a+1 + µ2b+1),
ψn,m,2 = 1+2n+2m ·

∑
µ∈M

χ(µ2a+1), ψn,m,3 = 1+2n+2m ·∑
µ∈M

χ(µ2b+1) and M = {µ ∈ L|µ2a+µ2−a

+µ2b+µ2−b

= 0}.
Proof: From Theorem 2, we have

fW (0) =


2m

∑
µ∈M

χ(µ2a+1 + µ2b+1), if a, b even
2m|M |, if a, b odd
2m

∑
µ∈M

χ(µ2a+1), if a even , b odd

2m
∑
µ∈M

χ(µ2b+1), if a odd , b even

where M = {µ ∈ L|µ2a + µ2−a

+ µ2b + µ2−b

= 0}. The proof
follows from Lemma 1.

2

Now we can move towards some maximal Artin-Schreier curves.
The following theorem will introduce a collection of maximal
Artin-Schreier curves.

Theorem 6: Let E = F2n , n = 2m,L = F2m , m be odd. Then

χ : y2 + y = x2
k+1

over F2n is maximal if k is odd and m = lk where gcd(l,m) = 1.
Proof: From Theorem 4, we have
M = {µ ∈ L|µ2k + µ2−k

= 0} = {µ ∈ L|µ22k + µ = 0} =
F2m ∩ F22k = F2(m,2k) = F2(m,k) . When k is odd
N(χ) = 1+2n+2m|M | which must be equal to 1+2n+2m ·2k
for maximal curves. So 2(m,k) = 2k and the result follows. 2
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V. CONCLUSION

In this article, we have seen Walsh transforms of some quadratic
trace forms with one or two terms. Later we have considered some
Artin-Schreier curves and describe the number of rational points
on the curves using Walsh coefficient fW (0). Theorem 3 describes
the Walsh transform of Q(x) = Tr(x2

a+1) for even degree of
extension and gcd(a, k) = 1. This theorem can further be used to
find N(χ) for χ : y2+y = x2

a+1+x using the fact that fW (1) =
QW (0), where f(x) = Tr(x2

a+1 + x) = Tr(x2
a+1 + x2).
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