
A Convexity Method for Linear Multiplicative
Programming

Chunfeng Wang, Yaping Deng, Xiaodi Wu

Abstract—For solving linear multiplicative programming
(P0), a global optimization algorithm is proposed in this paper.
First, by using logarithmic transformation, we equivalently
transform problem (P0) into an problem (P). Then, a mixed
integer convex programming problem (M) is derived based
on piecewise linear approximation for nonconvex part of the
objective function in (P), which is a convex approximation of
(P). Finally, by solving the problem (M), an ϵ-global optimum
of (P0) can be acquired. The numerical results verify the
feasibility and effectiveness of this method.

Index Terms—Linear multiplicative programming,
Optimization, Piecewise linearization, Mixed-integer convex
programming

I. INTRODUCTION

THIS paper considers linear multiplicative programming
problem (P0) as follows:

(P0) :

 min f(x) =
p∏

i=1

(c⊤i x+ di)
γi ,

s.t. Ax ≤ b,

where
X = {x ∈ Rn : Ax ≤ b}

is nonempty and bounded,

A ∈ Rm×n, b ∈ Rm, x, ci ∈ Rn, di ∈ R,

and
c⊤i x+ di > 0, i = 1, · · · , p.

The problem (P0) has many applications in real-world,
such as financial problem [1,2], data mining [3], VLSI chip
design [4], and so on. In addition, the problem (P0) also
contains a wide category of mathematical programming prob-
lems, such as quadratic programming, bilinear programming,
linear multiplicative programming, and so on. Thus, it is
necessary to propose good algorithms, and it has attracted
considerable attention from researchers. However, just as
pointed out in [1], the problem (P0) belongs to a nonconvex
problem, and may have multiple local optima, most of
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which fail to be global optimal optima. In other words, it
is hard to solve problem (P0). During the past years, for
solving (P0), researchers have presented many approaches,
such as, outer-approximation method [5]; branch-and-bound
method [6,7]; level set method [8]; parameterization based
method [9-11]; cutting plane method [12,13]; primal and dual
simplex method [14]; heuristic method [15,16]. Although
great progress has been made, how to globally solve the
(P0) still is a Gordian knot. On the basis of rectangular
branch-and-bound frame, Kuno [17] presented an algorithm
for minimizing a product of affine functions over a polytope.
For solving a linear program with multiplicative constraints,
Benson [18] presented a decomposition branch-and-bound
algorithm. To solve a type of generalized linear multiplicative
programming, Jiao [19] established a reliable and effective
algorithm by utilizing the linear approximation of exponent
and logarithmic functions. By combining a suitable deleting
technique with the branch and bound scheme, Shen [20]
put forward a new accelerating method for generalized
linear multiplicative programming. Through using a lower
bounding procedure and a new branching scheme, Ryoo
et al. [21] presented a global optimization method for a
generalized linear multiplicative program. Recently, for a
special linear multiplicative optimization problem, Shen et
al. [22,23] developed two branch and bound methods.

The goal of this paper is to design a method to globally
solve (P0). In this algorithm, first, by using an equivalent
transformation, (P0) is transformed into (P); then, for the
nonconvex part of the objective function in problem (P), a
piecewise linearization method is designed. Based on such
piecewise linearization method, a mixed-integer convex pro-
gramming (M) is derived. Finally, through solving (M), an
ϵ-global optimum can be acquired. For a given ϵ, compared
with other methods, the proposed method only needs to solve
a mixed integer convex programming problem, which can be
easily solved by LINGO.

The organization of this paper is as follows. In Section II,
the equivalent transformation and the piecewise linearization
method are introduced. Four specific examples are imple-
mented to verify the efficiency and feasibility of the proposed
algorithm in Section III. Conclusion is given in Section IV.

II. PIECEWISE LINEAR APPROXIMATION OF
LOGARITHMIC FUNCTION

In the proposed method, the piecewise linear approxi-
mation plays a key role. To derive the piecewise linear
approximation, the objective function f(x) in problem (P0)
will be considered first. Without loss of generality, denote

T1 = {i|γi > 0},

and
T2 = {i|γi < 0}.
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By using logarithmic transformation, f(x) can be trans-
formed into the following form:

g(x) = ln(f(x))

=

p∑
i=1

γi ln(ci
⊤x+ di)

=
∑
i∈T1

γi ln(ci
⊤x+ di) +

∑
i∈T2

γi ln(ci
⊤x+ di).

Thus, the problem (P0) can be equivalently transformed into
problem (P) as follows:{

min g(x) =
∑
i∈T1

γi ln(ci
⊤x+ di) +

∑
i∈T2

γi ln(ci
⊤x+ di),

s.t. Ax ≤ b.

The equivalence between problems (P0) and (P) is given
by the following theorem.

Theorem 1. If x∗ is an optimum of problem (P0), then
x∗ is an optimum of problem (P). Conversely, if x∗ is an
optimum of problem (P), then x∗ is an optimum of problem
(P0).

Proof. According the process of transformation, it is not
difficult to derive the equivalence between (P0) and (P).

According to Theorem 1, to solve (P0), we can solve the
problem (P) instead. Next, will show how to solve (P).

For the function g(x) in (P), there are two parts∑
i∈T1

γi ln(ci
⊤x+ di)

and ∑
i∈T2

γi ln(ci
⊤x+ di).

We discuss them separately.
For the first part: since

ln(ci
⊤x+ di)

is a concave function, and γi > 0,∑
i∈T1

γi ln(ci
⊤x+ di)

is a concave function.
For the second part: since

ln(ci
⊤x+ di)

is a concave function, and γi < 0,∑
i∈T2

γi ln(ci
⊤x+ di)

is a convex function.
Obviously, the nonconvexity of problem (P) is caused by∑

i∈T1

γi ln(ci
⊤x+ di).

Therefore, to solve problem (P), for the nonconvex part∑
i∈T1

γi ln(ci
⊤x+ di),

this paper propose a convex technique based on piecewise
linear approximation of logarithmic function.

The specific process is as follows: for i ∈ T1, let

yi = ci
⊤x+ di.

Through solving 2|T1| linear programming problems, it is
easy to obtain the lower bound and upper bound of yi,

li = min
x∈X

ci
⊤x+ di,

ui = max
x∈X

ci
⊤x+ di,

that is
li ≤ yi ≤ ui, i ∈ T1.

Thus, problem (P) can be transformed into the following
form:

min g(x) =
∑
i∈T1

γi ln(yi) +
∑
i∈T2

γi ln(ci
⊤x+ di),

s.t. Ax ≤ b,
yi = ci

⊤x+ di,
li ≤ yi ≤ ui, i ∈ T1.

A. Linearization of single logarithm function

To derive the piecewise linear approximation function of∑
i∈T1

γi ln(ci
⊤x+ di),

first of all, we consider one term, i.e. γi ln yi. Furthermore,
the piecewise linear approximation function of multinomial
is given.

To intuitively illustrate the piecewise linear approximation
method, Fig. 1 below shows piecewise linear lower estima-
tion of pi(yi) with three segments, where si (i = 0, 1, 2, 3)
are segmentation points.

( )ip y       ( ) lni i ip y y       

0 is l       
1s       2s       

3= is u       

iy       

0       

Fig.1 Piecewise linear lower estimation with three segments

From Fig.1, it can be seen that, each linear lower estimator
has error with the original function. Meanwhile, we can see
that the error between the linear lower estimator and the
original function can be further reduced by adding more
segmentation points. Thus, for ensuring the approximation
degree of the piecewise linear approximation method, it can
be controlled by a given error ϵ. For the given ϵ, we first
need to determine the segmentation points.

To this end, let

pi(yi) = γi ln yi,

where li ≤ yi ≤ ui.
Without loss of generality, consider interval [si1, s

i
2]. Ob-

viously, the slope of secant over this interval is

ki2 =
pi(si2)− pi(si1)

si2 − si1
.
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In this paper, to determine the segmentation points, the
maximum error between the secant and the original function
is used. The process is as follows: assume that the maximum
error between secant and original function is achieved at the
point yi = t, then we have

(pi(t))
′
= ki2.

Furthermore, we have

t =
ri(s

i
2 − si1)

pi(si2)− pi(si1)
.

Let the maximum error at yi = t be ϵ, that is:

ϵ = ki2(t− si1) + pi(si1)− pi(t).

By solving this equation, we can get the next segmentation
point si2.

For a given ϵ, the following Algorithm 1 gives the detailed
process to determine these segmentation points.

Algorithm 1: Determining segmentation points
01: Initialization: Given ϵ > 0, let j = 0, sij = li, n = 0.
02: Using the method of root to determine sij+1 > sij , such

that the maximum error between secant and original
function is ϵ over the interval [sij , s

i
j+1].

03: Set j = j + 1.
04: If sij > ui

05: set sij = ui, n = j, then stop;
06: else
07: return to step 1.
08: End if
09: Output segmentation points.

According to Algorithm 1, when it terminates, these seg-
mentation points can be obtained, and the maximum error
between secant and original function is no more than ϵ.

Based on these segmentation points, the construction pro-
cess of piecewise linear function is given below. Let

kij =
pi(sij)− pi(sij−1)

sij − sij−1

be the slope of secant over the j-th interval,

∆sij = sij − sij−1, j = 1, · · · , n,

be the length of this interval. By introducing binary variables
ui
1, u

i
2, · · · , ui

n, we can get piecewise linear function of pi(yi)
as follows:

pi(yj) = pi(si0) +
n∑

j=1

kijp
i
j ,

where

yj = sj0 +
n∑

j=1

pij ,

∆siju
i
j+1 ≤ pij ≤ ∆siju

i
j , j = 1, ..., n,

0 ≤ pin ≤ ∆sinu
i
n.

Based on the above, it is easy to know that

pi(yi)− pi(yi) ≤ ϵ,

i.e.
pi(yi) ≤ pi(yi) + ϵ.

Set
pi(yi) = pi(yi) + ϵ.

Obviously, it is an upper estimation function of the original
function.

B. Piecewise linear approximation function of multinomial

In this subsection, we consider the piecewise linear ap-
proximation function for the sum term∑

i∈T1

γi ln(ci
⊤x+ di).

Based on the previous subsection, let

p(y) =
∑
i∈T1

γi ln(yi),

pi(yi) = γi ln(yi),

and
si0 = li, sini

= ui,

we can get a convex approximation (M) for (P), which is
given as follows:

(M) :


min

∑
i∈T1

(pi(si0) +
ni∑
j=1

kijp
i
j) +

∑
i∈T2

γi ln(ci
⊤x+ di),

s.t. ∆siju
i
j+1 ≤ pij ≤ ∆siju

i
j ,

0 ≤ pini
≤ ∆sini

ui
ni
, j = 1, ..., ni,

Ax ≤ b,

where

kij =
pi(sij)− pi(sij−1)

sij − sij−1

is the slop of the i-th logarithmic function over the j-th
interval, and

∆sij = sij − sij−1

is the length of the i-th logarithmic function, ui
j is a

binary variable. Obviously, (M) is a mixed-integer convex
programming.

The following Theorem 2 gives the relationship between
the optima of the problem (M) and the problem (P).

Theorem 2. If x∗ is a global optimum of problem (M),
then x∗ is an ϵ-global optimum of problem (P).

Proof. The conclusion can be derived easily from the
derivation process.

According to theorems 1 and 2, to obtain an ϵ-global
optimal solution of (P0), we can solve the mixed-integer
convex programming (M) instead.

III. NUMERICAL EXPERIMENTS

In this section, to test the feasibility of the proposed
algorithm, four numerical experiments are carried on. In
these four examples, the termination error ϵ = 0.01. The
algorithm is coded in Matlab (2018a), and the test examples
are implemented on the microcomputer with dual process
Intel(R) Core(TM) i5-4200M CPU (2.5GHz), LINGO is used
to solve mixed-integer convex programming problem.
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Example 1.

min (x1 + x2)× (x1 − x2 + 7)
s.t. 2x1 + x2 ≤ 14,

x1 + x2 ≤ 10,
−4x1 + x2 ≤ 0,
2x1 + x2 ≥ 6,
x1 + 2x2 ≥ 6,
x1 − x2 ≤ 3,
x1 + x2 ≥ 0,
x1 − x2 + 7 ≥ 0,
x1, x2 ≥ 0.

The optimal solution is (2,8), and the optimal value is 10.
Example 2.

min (x1 + x2 + 1)1.01 × (2x1 + x2 + 1)
×(x1 + 2x2 + 1)1.03

s.t. x1 + 2x2 ≤ 6,
2x1 + 2x2 ≤ 8,
1 ≤ x1 ≤ 3,
1 ≤ x2 ≤ 3.

The optimal solution is (1,1), and the optimal value is
50.5911.

Example 3.

min (−4x1 − 2x4 + 3x5 + 21)× (4x1 + 2x2 + 3x3

−4x4 + 4x5 − 3)× (3x1 + 4x2 + 2x3 − 2x4

+2x5 − 7)× (−2x1 + x2 − 2x3 + 2x5 + 11)
s.t. 4x1 + 4x2 + 5x3 + 3x4 + x5 ≤ 25,

−x1 − 5x2 + 2x3 + 3x4 + x5 ≤ 2,
x1 + 2x2 + x3 − 2x4 + 2x5 ≥ 6,
4x2 + 3x3 − 8x4 + 11x5 ≥ 8,
x1 + x2 + x3 + x4 + x5 ≤ 6,
x1, x2, x3, x4, x5 ≥ 1.

The optimal solution is (1,2,1,1,1), and the optimal value is
9504.

Example 4.

min (0.813396x1 + 0.6744x2 + 0.305038x3
+0.129742x4 + 0.217796)× (0.224508x1
+0.063458x2 + 0.93223x3 + 0.528736x4
+0.091947)

s.t. 0.488509x1 + 0.063458x2 + 0.945686x3
+0.210704x4 ≤ 3.562809,
−0.324014x1 − 0.501754x2 − 0.719204x3
+0.099562x4 ≤ −0.052215,
0.445225x1 − 0.346896x2 + 0.637939x3
−0.257623x4 ≤ 0.42792,
−0.202821x1 + 0.647361x2 + 0.920135x3
−0.983091x4 ≤ 0.84095,
−0.886420x1 − 0.802444x2 − 0.305441x3
−0.180123x4 ≤ −1.353686,
−0.515399x1 − 0.424820x2 + 0.897498x3
+0.187268x4 ≤ 2.137251,
−0.591515x1 + 0.060581x2 − 0.427365x3
+0.579388x4 ≤ −0.290987,
0.423524x1 + 0.940496x2 − 0.437944x3
−0.742941x4 ≤ 0.37362,
x1, x2, x3, x4 ≥ 0.

The optimal solution is (1.3148,0.1396,0,0.4233), and the
optimal value is 0.8902.

IV. CONCLUSION

For problem (P0), through using piecewise linear ap-
proximation function, a mixed-integer convex programming
problem (M) is derived. By solving (M), we can obtain an
ϵ-global optimum of (P0). Numerical experiments show that
this method is feasible and effective. As pointed out above,
the advantage of the proposed method is that the algorithm
only needs to solve a mixed integer linear programming
problem with a given calculation error ϵ. The disadvantage
is that a large number of binary variables may be introduced
for large-scale problem algorithm. In future work, we will
study whether there are other better methods to generate
segmentation points.
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