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Abstract—The VaR (Value at Risk), apart from its widespread
application in the banking sector to assess risks (operational,
market, etc.), turns out to be an incoherence risk measure if
it’s based on non-elliptical distributions. Indeed, this part will
be devoted to the study of the risk measure VaR in a space of
elliptical distributions (elliptical copulas) for a given portfolio,
and verify that this risk measure is coherent in the Artzner sense
if we work in an elliptical space, or even spherical. Finally,
the VaR copula calculation for the same portfolio made up
of n risk factors will be compared to other VaR calculation
methods (historical VaR, parametric VaR, Monte Carlo VaR
and Expected-Shortfall).

Index Terms—elliptical copula, VaR (Value-at-Risk), Monte
Carlo, Kolmogorov-Smirnov.

I. INTRODUCTION

In the most frequent cases, risk analysts (traders, actuaries,
etc.) often have visibility on the marginal distribution func-
tions of a vector of random variables rather than on their joint
distribution function. Therefore, the basic concept of a copula
is based on a mechanism for modeling the structure of de-
pendence of a random variables set. In a bi-variate approach,
for exemple, copulas can be used to define nonparametric
measures of dependency for pairs of random variables. When
general dependency patterns are relevant, such as those that
go beyond correlation or linear association, the copulas can
play an essential role in developing additional concepts and
measures of dependency. Each individual random variable
has an univariate marginal probability density function (and
by construction, a marginal cumulative distribution function).
The copula function “connects” all marginal distributions to
create a multivariate distribution function.

II. COHERENT RISK MEASURES

A. Definitions

In their seminal article, Artzner et al. (1999) [3] describe
the desirable properties that an ideal coherent measure should
verify: subadditivity, translation invariance, positive homo-
geneity and monotony.

Let Ω be a set of random variables, a function ρ : Ω→ R
is said to be a coherent risk measure if it has the following
properties:

Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for each X, Y
∈Ω.
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Positive homogeneity: ρ(λX) = λρ(X) for all X ∈ Ω and
λ > 0 , λ ∈ R.

Monotonicity: if X ≤ Y then ρ(X) ≤ ρ(Y ) for all X,
Y∈ Ω

Translation invariance: ρ(X + α) = ρ(X) + α for all X
∈ Ω, ρ ∈ R.

A risk measure is said to be monetary if it is monotonic
and invariant by translation.

In the case where ρ satisfies the first two conditions, we
say that it is convex. That means for each β ∈ [0, 1[, and we
will have:

ρ(βX + (1− β)Y ) ≤ βρ(X) + (1− β)ρ(Y ) (1)

In addition, the lack of subadditivity implies that the
portfolio diversification can lead to increased risk and avoid
adding VaR from different risk sources. Thus, VaR is not a
coherent measure in the work of Artzner et al. (1999), unlike
conditional VaR, and regulators should be careful to insist on
its use.

1) Counterexample to show that VaR (Value-at Risk) is
not always a sub additive measure: Let X and Y be two
random variables which follow the Pareto distribution [17]
such that X ∼ par(1, 1) and Y ∼ par(2, 1):

X ∼ par(1, 1)⇒ P (X ≤ tx) =
−1 + tx
tx

, tx > 1

⇒ V aR(X,α) = tx =
1

1− α

(2)

Y ∼ par(2, 1)⇒ P (Y ≤ ty) =
−2 + ty
ty

, ty > 2

⇒ V aR(Y, α) = ty =
2

1− α

(3)

fλ,X,Y (x, y) = λ(λ+ 1)(θ1θ2)(λ+1)(θ2x+ θ1y − θ1θ2)−(λ+2)

x > θ1, y > θ2, λ > 0
(4)

In our case, we have: θ1 = λ = 1; θ2 = 2

⇒ fX,Y (x, y) = 8(2x+ y − 2)−3 (5)

Then:

P [x+ y ≤ t] =

∫ +∞

1

∫ t−x

2

8(2x+ y − 2)−3dydx

=

∫ +∞

1

−[4(2x+ y − 2)−2]t−x2 dx

=

∫ +∞

1

(−4(t+ x− 2)−2 + 4(2x)−2)dx

= [4(t+ x− 2)−1]+∞1 + [
−4(2x)−1

2
]+∞1

(6)
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That means:

P [x+ y ≤ t] = −4(t− 1)−1 + 1 = α (7)

To compare P [x+ y ≤ t] with P [x+ y ≤ tx + ty] we must
study the sign of P [x+ y ≤ tx + ty]− α:

P [x+ y ≤ tx + ty]− α = −4(
1

1− α
+

2

1− α
− 1)−1

+(1− α)

P [x+ y ≤ tx + ty]− α = (1− α)(
−4

2 + α
+ 1) < 0

∀α : 0 ≤ α ≤ 1

(8)

So :
tx + ty < tx+y (9)

That means :

V aR(X,α) + V aR(Y, α) < V aR(X + Y, α) (10)

Whatever 0 ≤ α ≤ 1.
The interest of what follows in this chapter is to study an
example of coherent risk measures, the VaR [11] despite its
widespread application in the financial world, remains an
incoherent measure in the sense of Artzner et al. (1999)
(example of the Pareto distribution). In addition, when we
are in a space of elliptical distributions, the VaR becomes a
coherent risk measure.

III. SPHERICAL AND ELLIPTICAL DISTRIBUTIONS

Spherical distributions [3] provide a family of symmetric
distributions of uncorrelated random vectors with mean zero.

Let X = (X1, ..., Xn) be a random vector, the distribution
of X is said to be spherical if ∀U ∈ Rn∗n satisfies: UU t =
U tU = Inn we will have:

UX =d X (11)

The characteristic function ϕ(t) = E[exp(ittX)] of such
distribution admits a particular form:

Let φ : R+ → R such that ϕ(t) = φ(ttt) = φ(t21 +
. . . . . . . . . ..+ t2n)

And we write:
X ∼ Sn(φ)

(12)

If X admits a densityf(X) = f(X1, ..., Xn) and that
f(X) = g(XtX) = g(x2

1 + . . . . . . . . . .. + x2
n) such as:

g : R+ → R+, so these spherical distributions are well
interpreted as being distributions whose density is constant
in the spheres.

These distributions admit an alternative stochastic repre-
sentation:

X ∼ Sn(φ) if only if X =d RU (13)

With U est is a uniform random variable on the unitary
hypersphere Sn−1 = X ∈ Rn/XtX = 1 and R ≥ 0 is an
independent variable of U (see Frang, Kotz and Ng (1987))

Example: in the case of a reduced multivariate distribution
R ∼

√
χ2
n.

Let T: Rn → Rn, Y → X = T (Y ) = AY +µ, A ∈ Rn∗n,
µ ∈ Rn. X admits an elliptical distribution [3], and we write

X ∼ En(µ,Σ, φ), if only if Y ∼ Sn(φ). The characteristic
function of X is given by:

ϕ(t) = E[exp(ittX)]

= E[exp(itt(AY + µ))]

= E[exp(ittµ)]E[exp(i(Att)tY )]

= E[exp(ittµ)]φ(ttΣt)

(14)

Where: Σ = AAt

IV. THE JOINT AND COPULA DISTRIBUTION FUNCTIONS

Let (X1, ..., Xm) be a vector of random variables, the joint
distribution function is defined by:

F (X1, ..., Xm) = Pr[Xi ≤ xi, i = 1, . . . . . . ,m]
(15)

To see the relation between the marginal distribution
functions and the copulas, consider a continuous m-varied
distribution function F (Y1, ..., Ym) with the univariate dis-
tributions: F1(Y1), ...., Fm(Ym) and inverse functions (quan-
tiles): F−1

1 (a1), . . . . . . .., F−1
m (am). Such as a1, ..., am are

uniformly distributed variables, therefore:

F (y1, ..., y1) = F (F−1
1 (a1), . . . . . . .., F−1

m (am))

= Pr(A1 ≤ a1, . . . . . . ..Am ≤ am)

= C(a1, . . . . . . .., am)

(16)

C is the unique copula [1], [4], [13], [16] associated to
the multivariate distribution function (see Sklar’s theorem).
However, if Y∼ F, and F is continuous:
(F1(Y1)...., , Fm(Ym)) ∼ C(a1, . . . . . . .., am).

A. Some examples of copulas

The simplest copula formula, for uniformly distributed
variables u1 ,u2, . . . . . . , ud, is that of the product copula:

C(u1, u2, ..., ud) = u1u2 . . . .ud (17)

The Gaussian copula [9] also takes the following form:

CGaρ (Φ−1(ud) . . . ,Φ
−1(u2),Φ−1(u1)) =∫ Φ−1(ud)

−∞

∫ Φ−1(u2)

−∞

∫ Φ−1(u1)

−∞

1

(2π)
d
2

√
det(Σ)

exp(
−X ′Σ−1X

2
)dx1dx2 . . . dxd

(18)

With Φ is the reduced Gaussian distribution and Σ is the
correlation matrix.

V. ELLIPTICAL DISTRIBUTIONS IN RISK-MANAGEMENT:

Let X ∼ En(µ,Σ, φ) be a vector of n risks composing an
investment portfolio P , such as P = {z =

∑
λixi = λX ∈

R}.
The subadditivity of the VaR is verified in an elliptical

space, i.e :

(Z1, Z2) ∈ P ⇒ V aRα(Z1 + Z2) ≤ V aRα(Z1) + V aRα(Z2)
(19)

1) Subadditivity:
Proof: Let qα be the quantile of this reduced distribu-
tion (mean=0, sd=1), with 0.5 ≤ α ≤ 1(i.e : qα > 0),
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if we consider the distribution of the values of port-
folios made up of financial securities (stocks, bonds,
etc.), the VaR often corresponds to the quantile of the
distribution of portfolios at the threshold α = 99%,
and therefore:

V aRα(Z1) = µ1 + σ[Z1]qα

V aRα(Z2) = µ2 + σ[Z2]qα
(20)

And

V aRα(Z1 + Z2) = µ1 + µ2 + σ[Z2 + Z1]qα (21)

Let us show that σ[Z2 + Z1] ≤ σ[Z2] + σ[Z1] :
According to the Minkowski inequality we have:

σ(Z1 + Z2)

=

√∫∫
R2

(Z1 + Z2 − E(Z1 + Z2))2fZ1,Z2
dz1dz2

=

√∫∫
R2

(Z1 + Z2 − E(Z1)− E(Z2))2fZ1,Z2dz1dz2

=

√∫∫
R2

((Z1 − E(Z1) + Z2 − E(Z2))
√
fZ1,Z2

)2dz1dz2

≤

√∫∫
R2

((Z1 − E(Z1))
√
fZ1,Z2)2dz1dz2

+

√∫∫
R2

((Z2 − E(Z2))
√
fZ1,Z2

)2dz1z2

= σ[Z2] + σ[Z1]
(22)

Therefore:

µ1 + µ2 + σ[Z2 + Z1]qα ≤ µ1 + σ[Z1]qα + µ2 + σ[Z2]qα
(23)

Finally:

V aRα(Z1 + Z2) ≤ V aRα(Z1) + V aRα(Z2) (24)

In principle, the reduced quantile of Z1 + Z2 must
be deduced from the bivariate distribution of (Z1, Z2)
and then compare V aRα(Z1 + Z2) to V aRα(Z1) +
V aRα(Z2), therefore it’s useful to call the elliptical
bivariate copula to deduce the reduced quantile of
Z1 + Z2 (i.e : q

′

α) and subsequently confirm the
subadditivity. In this case reduced quantile is calculated
by using the following formula:

α =

∫ φ−1(u2=1)

−∞

∫ t−y

−∞
c(x, y)dxdy (25)

And who must verify q
′

α = t
standard deviation (x+y) ≤ qα

(case of a Gaussian copula and the t-copula), because
if standard deviation(x)=1 and standard deviation(y)=1,
the standard deviation(x+y) 6= 1. The property of the
subadditivity will be verified through the case study
proposed in this paper.

2) Positive homogeneity:
Consider:

V aRα(Zi) = µi + σ[Zi]qα

i = 1, 2
(26)

V aRα(λZi) = λV aRα(Zi) = λµi + λσ[Zi]qα, λ > 0
(27)

Because :

variance(λZi) = λ2variance(Zi) = (λσ[Zi])
2

(28)
And

E(λZi) = λE(Zi) = λµi (29)

Which means:

λV aRα(Zi) = λ(µi + σ[Zi]qα) = λµi + λσ[Zi]qα

= V aRα(λZi)
(30)

3) Monotony:
If we suppose that: Z1 ≤ Z2. And we know already
that: V aRα(X) = {inf(X)/F (X) ≥ α} and F (X)
is the cumulative distribution function of X, which
increasing, we will have the following:

V aRα(Z1) = {inf(Z1)/F (Z1) ≥ α} ≤
V aRα(Z2) = {inf(Z2)/F (Z2) ≥ α}

(31)

Which means:

V aRα(Z1) ≤ V aRα(Z2) (32)

4) Invariance by translation:

V aRα(Zi + λ) = (µi + λ) + σ[Zi + λ]qα

= (µi + λ) + σ[Zi]qα
(33)

Because:

variance(Zi + λ) = variance(Zi) = (σ[Zi])
2 (34)

And
E(Zi + λ) = µi + λ (35)

Finally:

V aRα(Zi + λ) = (µi + λ) + σ[Zi]qα

= µi + σ[Zi]qα + λ

= V aRα(Zi) + λ

(36)

VI. CASE STUDY

Consider a portfolio that consists of the shares of two
French companies (Faurécia (800 shares in C) which oper-
ates in the automotive sector, and Icade (900 shares in C) [5]
which for its part operates in the real estate sector). The set
of observations contains 261 observations since 08/10/2018.

First, it is necessary to adjust the loss distributions of
these shares to adequate probability distributions. Once these
marginal distributions are determined, it then comes to deter-
mine the appropriate elliptical copula [2] in order to calculate
the VaR [15] of the portfolio at α = 99% of the distribution
of losses ( the quantile of the sum of the using the bivariate
copula concerning the calculation of V aRα(Z2 + Z1). That
said, we go through a test of distribution adjustment for each
share, which is assumed to be continuous (the Kolmogorov-
Smirnov test, the Cramer-Von-Mises test. . . ).

It will also be appropriate to compare the V aRα(Z2 +Z1)
deduced from the bivariate copula to different calculations
of the VaR (historical, parametric VaR, Monte Carlo, the
Expected Shortfall .....).
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A. VaR calculation:

1) Historical VaR: For a horizon t = N (261 days in
our case), we can assess the portfolio with the historical
risk factors. This means that we determine for each date
N-1 potential daily variations, which are assimilated to N-1
potential losses (some losses are in fact gains). To be able to
extract the quantile at α, it suffices for that to arrange the N
potential losses and to take the absolute value of dN(1−α)ei-
th worst value.

2) Parametric VaR: This approach [8] assumes that vari-
ations in market risk factors follow a Gaussian distribution,
on the one hand, and these factors have a linear risk profit,
on the other hand. Therefore, for m risk factors, the variation
of the portfolio is as following:

∆V =
∑
i

ni∆xi (37)

Such as:
∆V : The variation of the portfolio.
ni: The quantity of the i-th risk factor.
xi: i-th risk factor with ∆xi ∼ N(µi, σi).
µ = (µ1, µ2 . . . . . . ., µm) , n = (n1, n2 . . . . . . ., nm) and

Σ is the variance-covariance matrix of ∆xi. Therefore:

∆V ∼ N(nµ
′
, nΣn

′
) (38)

And:

P (∆V ≤ V aRα(p)) = α⇒ P (
∆V − nµ′√

nΣn′
≤ qα) = α

(39)
Finally we have:

V aRα(p) = qα
√
nΣn′ + nµ

′
(40)

3) Copula VaR: This VaR calculation method will be
based on the quantile q

′

α , not deduced from the univariate
reduced distribution but from the multivariate copula. In the
case of a Gaussian copula or the t-copula.

we will have, as already mentioned:

α =

∫ φ−1(u2=1)

−∞

∫ t−y

−∞
c(x, y)dxdy (41)

And who must verify q
′

α = t
standard deviation (x+y) ≤ qα (case

of a Gaussian copula and the t-copula).
For the case of the Gaussian copula [1]:

x = φ−1(u1), y = φ−1(u2)

For the case of the t-copula [1]:
x = t−1

ν (u1), y = t−1
ν (u2)

With:
tν is the student distribution at ν degree of freedom, and

φ is the reduced Gaussian distribution.
Finally:

V aRα(p) = q
′

α

√
nΣn′ + nµ

′
(42)

In the case of a portfolio made up of two securities X1and
X2:

V aRα(p) = q
′

ασ(n1X1 + n2X2) + (E(n1X1) + E(n2X2))
(43)

This equality will be used later in the empirical study.

4) Monte Carlo VaR: This method is based on the same
principle of parametric simulation except that, instead of
estimating the distribution of returns based on past scenarios,
Monte-Carlo simulation [7] uses the scenarios which are
generated according to a model based on data history. It
is assumed that the returns of the securities are governed
by a parametric distribution with known parameters. The
calculation steps are given as follows:
• We generate m independent realizations of the m shares

yield process such that each process is a vector of length
T.

• For each j ∈ (1, . . . .., n), we calculate the
correspondingV aR(j)

i for the i-th security.
• Using the principle of the strong law of large numbers,

the V aRi of the i-th security is given as follows:

V aRi =
1

n

n∑
j

V aR
(j)
i (44)

The V aRp of the portfolio is given by:√
(V aR1, V aR2, . . . .., V aRm)C(V aR1, V aR2, . . . .., V aRm)′

(45)
Such as C is the correlation matrix of the m securities.

5) The Expected-Shortfall: The Expected-Shortfall (ES)
[10], [12], [14] is a risk measure that gives visibility of
the losses of a given portfolio, that can be observed beyond
the VaR. In principle, it is the average of the losses that a
portfolio can sustain beyond the VaR:

ES = E(X/X ≥ V aRα)

ES = E(−X/X ≤ −V aRα) (in elliptical distribution case)

ES =
E(−X,X ≤ −V aRα)

P (X ≤ −V aRα)

=
E(−X,X ≤ −V aRα)

1− α

=

∫ −V aRα
−∞ −xf(x)dx

1− α
(46)

f(x) is the distribution of the losses of the risk factor.
In the case of two securities, and using the copula, the

calculation will be as follows:

ES(p) = E(q/q ≥ q
′

α)
√
nΣn′ + nµ

′
(47)

E(q/q ≥ q
′

α) = E(−q/q ≤ −q
′

α)( elliptical distribution)

=
E(−(x+ y)/(x+ y) ≤ −t)
standard deviation(x+ y)

( case of 2 securities)

=

∫ φ−1(u2=1)

−∞
∫ −t−y
−∞ −(x+ y)c(x, y)dxdy

(1− α)(standard deviation(x+ y))
(48)

And t is already deduced from the relation (42) in the
parametric-copula VaR part.

It should also be noted that for a symmetric distribution:
V aRα = −V aR1−α.

B. Empirical part

Using the R software [6], the Kolmogorov-Smirnov ad-
justment test for the Gaussian distribution and the Student
distribution gives as output the following values:
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It is important to highlight that:
. (y2Faurécia) and (y21Icad) are respectively the daily

variations of Faurécia and Icad shares.
. y2 = (y2Faurécia) * 800, y21 = (y21Icad )* 900
. y3 and y4 are respectively the reduced values of y2 and

y21.
. d = y21 + y2.
According to the output of the software R, the values

of p-values of the Kolmogorov-Smirnov are greater than
5%, and therefore, the two portfolios can be fitted to the
reduced Gaussian distribution or to the student distribution
at df =(260-1) degree of freedom, but to choose between the
two distributions, we are based on the distribution whose the
p-value is > 5%: the output of the software R leads us to
choose the Gaussian distribution for the two shares.

TABLE I
KOLMOGOROV-SMIRNOV TEST FOR Y2FAURÉIA AND Y21ICAD LOSSES

R software console code:
Distribution

test Stutent Gaussian

Data y2 y21 y2 y21
D

statistic 0.50192 0.49042 0.034987 0.052034

p value < 2.2e-16 < 2.2e-16 0.9067 0.4796
Alternative
hypothesis two-side two-side two-side two-side
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Fig. 1. Density of the two shares y2Faurécia and y21Icad losses

The next step will be the construction of the Gaussian
copula of these two shares, that said, the calculation of the
Spearman dependency parameter via the following code:

TABLE II
THE CALCULATION OF THE SPEARMAN DEPENDENCY PARAMETER

R software console code:

>rho=cor.test( y3+y4,data=data1,method=’spearman’,conf.level=0.9)
$estimate
>rho

rho
0.2534864

u1

0.0
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Fig. 2. The cumulative distribution and probability density function of the
Gaussian copula with the Spearman dependence value = 0.2534864

Once the copula is determined, we are led to calculate the
reduced quantile of y21 + y2 by using the Gaussian copula,
which require finding the quantile t such as:

P [x+ y ≤ t] =

∫ +∞

−∞

∫ t−y

−∞

1

2π
√

(1− rho2)

exp

(
−(s2 − 2 ∗ rho ∗ s ∗ t+ t2)

2(1− rho2)

)
dsdt

(49)

And see if using quantile q
′

α will respects the condition of
subadditivity since it is the exact compute of the reduced
quantile of d = y21 + y2, and then compare it with the
quantile qα using the univariate reduced Gaussian distribu-
tion since d also follows a Gaussian distribution (q

′

α is the
quantile used in the demonstration of the subadditivity under
condition of an elliptical copula).
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TABLE III
CRAMER-VON MISES NORMALITY TEST FOR (D=Y21+Y2)

R software console code:

> cvm.test(d)

Cramer-von Mises normality test
data: d
W = 0.072335, p-value = 0.2597

TABLE IV
REIMANN INTEGRAL ALGORITHM ON R SOFTWARE

R software console code:

Reiman < − function (h, ax, bx, by, fun3) {
t=-8.578
o=5

while(o < 0.01 | o > 0.02) {
o=0
yi=bx+(h/2)
while (yi<=by) {
ay=t-yi
xi=ax+(h/2)
while (xi<=ay) {
o=o+fun3(xi, yi) ∗ (h2)

xi=xi+h }
yi=yi+h }

t=t+0.03 }
return (t) }

The quantile t resulting from the Gaussian copula formula
is deduced from a developed algorithm of the Riemann
integral principle in dimension d = 2, as following:
For t = -3.694 we retain P [y3 + y4 ≤ t] = 0.01013091 =

1− α. However, we know that:

V aRα(p) = q
′

ασ(n1X1 + n2X2) + (E(n1X1) + E(n2X2))
(50)

If y3 and y4 are reduced the y3 + y4 are not necessarily
reduced: Because in this case, the standard deviation of (y3
+ y4) = (1 + 1 + 2cov(y3, y4))1/2 and for an elliptical
distribution the q

′

α=99% = −q′1−α=1%, so the q
′

α=99% =
−(−3.694)

standard deviation(y3+y4) = 2.327662 ≈ −qnorm(0.01) =
2.326348. Finally the V aRα(p) using the copula is given
by:
Copula VaR = 3407,028 C (see Table VI) and which is
less than V aRα(n1X1) + V aRα(n2X2) (the subadditivity
is verified), given by “somme 2”: somme2 = 4232,734 C.

TABLE V
V aRα(n1X1) + V aRα(n2X2)

R software console code:

>somme2=vary21+vary2
>somme2

4232.734C

By comparing this risk value with another risk valua-
tion method: historical, parametric, Monte Carlo and the
Expected-Shortfall (ES) that we have already programmed
on the R software, we obtain: .

TABLE VI
ALL VAR CALCULATING METHODS

R software console code:

Historical VaR 3211.000 C

Parametric VaR 3371.209 C

Copula VaR 3407.028 C

Monte Carlo VaR 3757.244 C

Expected Shortfall 3914.921 C
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