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Abstract—In this paper, we propose a higher order extension
of well-known fourth order Ostrowski’s iterative method for
solving algebraic and transcendental equations. The newly
proposed scheme would involve the evaluation of the function
and the first derivative of the function, similar to Ostrowski’s
method. The expansion of the Taylor series is used to achieve
theoretical convergence of the newly proposed tenth order tech-
nique. Several numerical experiments support the underlying
theory on the convergence order of the proposed method.
The performance of the newly proposed method has been
compared with the existing well known competitors on some
classic academic problems. Numerical tests reveal that the new
method is comparable to existing methods and produces better
results within less CPU time.

Index Terms—Simple root, Nonlinear equation, Iterative
methods, Error.

I. INTRODUCTION

CONSTRUCTION of efficient higher order iterative
method for simple zero of the nonlinear univariate func-

tion is one of the most challenging problems in numerical
analysis. The analytical solution either does not exist or
computationally cumbersome to find the simple roots of the
following equations:

φ(x) = 0 (1)

where φ : D ⊂ R→ R be a differentiable univariate function
defined on an open interval D of R. Therefore, iterative
approaches can be used to solve equation (1) numerically.
An iterative method with an initial guess (x0) in the neigh-
bourhood of the root can manage to provide a better estimate
of the root after performing several iterations. The iterative
method is defined by

xn+1 = P (φ)(xn), for n = 0, 1, 2, 3, ... (2)

where P (φ) is called the iteration function.
An iterative method consisting of one step is called a one-
point iterative method and a method with multiple steps is
called multi-point iterative method. The problem that occurs,
when developing high-order one-point iteration methods is
the evaluation of the higher derivative of the function.
Computation of the second or higher-order derivative is
extremely difficult for many nonlinear equations. Therefore,
many researchers in the field of numerical analysis have paid
attention to construct new multi-point iteration techniques to
derive approximate solutions for nonlinear equations [1]–[3].
The Newton’s method (NM), is the most popular root-finding
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routine for univariate functions. The Newton’s method [4],
[5] is given by

xn+1 = xn −
φ(xn)

φ′(xn)
, n = 0, 1, 2, ... (3)

The Newton’s method is quadratically convergent in some
neighbourhood of simple roots. One of the renowned and
efficient multi-point iterative technique for solving equation
(1) is Ostrowski’s method [4], [5]. This method has a fourth-
order of convergence and is expressed as

yn = xn −
φ(xn)

φ′(xn)

xn+1 = xn −
φ(xn)− φ(yn)

φ(xn)− 2φ(yn)

φ(xn)

φ′(xn)
. (4)

In 2012, M. Matinfar et al. [6] had developed a tenth-
order multi-point iterative method (MAM), which is given
as follows:

yn =xn −
φ(xn)

φ′(xn)

zn =yn −
[
φ(yn)

x2n
+
φ(yn)

xn

]
φ(xn)

φ′(xn)

xn+1 =zn −

{
1
2αθ

2
n + (α+ 1)θn + 2 + 1

2α
}
φ(zn)

ψφ(xn, yn, zn)
, (5)

where

θn =
1

zn − ψφ(xn, yn, zn)

and

ψφ(xn, yn, zn) =− xx + 2yn − 3zn
(xn − zn)(yn − zn)

φ(zn)

+
(xn − zn)2

(xn − yn)2(yn − zn)
φ(yn)

+
yn − zn
xn − yn

φ′(xn)

+
(yn − zn)(2yn − 3xn + zn)

(xn − zn)(xn − yn)2
φ(xn).

In 2013, M. A. Hafiz et al. [7] had developed another new
tenth-order method (MHM), which is given as follows

yn =xn −
φ(xn)

φ′(xn)

zn =yn −
φ(yn)

φ′(yn)
− [φ(yn)]2P1(yn)

2[φ′(yn)]3

xn+1 =zn −
φ(zn)

φ[zn, yn]− (zn − yn)φ[zn, yn, yn]
. (6)
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In 2014, Y. Y. Al-Husayni et al. [8] had developed the
following tenth-order multi-point iterative method (YAM):

yn =xn +
φ(xn)

φ[Gn, xn]

zn =yn −
(

φ(xn)φ(Gn)

φ(yn)− φ(xn)

)(
1

φ[Gn, xn]
− 1

φ[Gn, yn]

)
xn+1 =zn −

φ(zn)

2φ[yn, xn]− φ[Gn, xn]

− w(tn)×
φ
(
zn − φ(zn)

2φ[yn,xn]−φ[Gn,xn]

)
2φ[yn, xn]− φ[Gn, xn]

, (7)

where φ[y, x] = φ(y)−φ(x)
y−x and Gn = xn + φ(xn)3.

In 2019, D. Sharma et al. [9] developed a family of an
iterative method having tenth order of convergence (DSM),
which is rewritten as follows:

yn = xn −
φ(xn)

sx

zn = xn − θ
φ(xn) + φ(yn)

sx
− (1− θ) φ(x2)2

sx
(
φ(xn)− φ(yn)

)
wn = zn −

φ(zn)

φ[zn, yn] + Ψzn(zn − yn)

xn+1 = wn −
φ(wn)

φ[wn, zn] + Ψwn(wn − zn)
, (8)

where

Ψzn = φ[zn, xn, xn] ≈ φ[zn, xn]− sx
zn − xn

,

Ψwn = φ[wn, xn, xn] ≈ φ[wn, xn]− sx
wn − xn

,

φ[wn, zn] =
φ(wn)− φ(zn)

wn − zn
and

sx =
φ(xn + φ(xn))− φ(xn − φ(xn))

2φ(xn)
.

In 2019, K. Nouri et. al. [10] had also developed a new
iterative method (KHM), having tenth order of convergence
defined as follows:

yn = xn −
φ(xn)

φ′(xn)

zn = yn −
φ(yn)

φ′(yn)

wn = yn +
φ(yn)

φ′(yn)

xn+1 = yn −
(yn − zn)φ(yn)2(φ(zn) + φ(wn))

φ(yn)2(A)− 4φ(yn)φ(zn)2 − 6φ(zn)3
, (9)

where A = φ(wn)− φ(zn).
Furthermore, Barrada et al. had introduced a new family of
Halley’s method having third order of convergence [11] and
a family of Chebyshev’s method [12]. Sharma et al. had
introduced an optimal fourth order method [13]. Soliaiman et
al. had developed two new efficient sixth order methods [14].
In this study, we propose a tenth order iterative technique
for finding simple roots of a nonlinear equation. We have
demonstrated a new iterative technique free from second
and higher order derivative evaluation of the function. We
have derived newly proposed method using Ostrowski’s

method and the expansion of Taylor series. The second-
order derivative is replaced with an estimate including the
function and its first derivative evaluations to reduce the
total number of function evaluations at each iteration. We
have checked that the numerical test supports the theoretical
result. We have tested the performance of the proposed
method on numerous numerical examples and found that
newly proposed method outperformed than some existing
well known methods available in the literature. The rest of the
paper is organised as follow. In Section II, the construction
of the method is described and convergence analysis is also
performed to establish the order of convergence. In Section
III, the newly proposed method is tested on some numerical
examples and comparisons of the results of new method with
other well-known methods of the same order are summarized
in tables. Finally, the conclusion of the study is given in
Section IV.

II. CONSTRUCTION OF NEW METHOD
Suppose that a function φ(x) = 0 is sufficiently differen-

tiable univariate function defined on a given open interval D
of R. Let x0 be the approximate to a simple root α of an
equation φ(x) = 0. We expand φ(x) using Taylor’s series
expansion about x0 as follows:

φ(x) = φ(x0) + (x− x0)φ′(x0) + (x− x0)2φ′′(x0). (10)

Substituting φ(x) = 0 in equation (10), to obtain

x = x0 −
φ(x0)

φ′(x0)
− (x− x0)2φ′′(x0)

φ′(x0)
. (11)

Now, from equation (4), we get

x− x0 =
φ(y0)− φ(x0)

2φ(y0)− φ(x0)

φ(x0)

φ′(x0)
, (12)

where y0 = x0 − φ(x0)/φ′(x0).
Substituting the value of x − x0 from equation (12) in the
right hand side of equation (11), we get

x = x0 −
φ(x0)

φ′(x0)
+

[
φ(x0)[φ(y0)− φ(x0)]

φ′(x0)[2φ(y0)− φ(x0)]

]2
φ′′(x0)

φ′(x0)
.

(13)
Rewriting equation (13) in iterative form, we get

xn+1 = xn−
φ(xn)

φ′(xn)
+

[
φ(xn)[φ(yn)− φ(xn)]

φ′(xn)[2φ(yn)− φ(xn)]

]2
φ′′(xn)

φ′(xn)
,

(14)
where yn = xn − φ(xn)/φ′(xn).
This is the third order of convergence. To get the higher
order of convergence, we use Ostrowski’s methods as first
two steps, and equation (14) as last step, and therefore we
get the following new method:

yn = xn −
φ(xn)

φ′(xn)

zn = xn −
φ(xn)

(
φ(yn)− φ(xn)

)
φ′(xn)

(
2φ(yn)− φ(xn)

)
xn+1 = zn −

(
φ(zn)

φ′(zn)
+

(
φ(zn)

(
φ(zn)− φ(xn)

)
φ(zn)

(
2φ(zn)− φ(xn)

))2

× φ
′′(zn)

2φ′(zn)

)
. (15)
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The method given in (15) requires the evaluation of second
order derivative. Higher order derivative evaluation make the
method more complicated, in order to reduce this difficulties,
we have approximated the second-order derivative, using a
combination of the known data steps.
Here, we have considered the function Q(t) = a+b(t−zn)+
c(t − zn)2 + d(t − zn)3 where a, b, c, and d are unknown
to be found. Using the following conditions of interpolation
[14]

φ(xn) = Q(xn), φ(zn) = Q(zn), φ′(xn) = φ′(xn),

φ′(zn) = Q′(zn), φ′′(zn) = Q′′(zn).

Thus, we have a system of linear equation. The following ap-
proximation is obtained after solving the system of equation
[14]:

φ′′(zn) =
2

xn − zn

(
3
φ(xn)− φ(zn)

xn − zn
− 2φ′(zn)−φ′(xn)

)
.

(16)
Substituting the value of φ′′(z) from equation (16) in

equation (15), we obtain a new iterative technique as follows:

yn = xn −
φ(xn)

φ′(xn)

zn = xn −
φ(xn)

(
φ(yn)− φ(xn)

)
φ′(xn)

(
2φ(yn)− φ(xn)

)
xn+1 = zn −

(
φ(zn)

φ′(zn)
+

(
φ(zn)

(
φ(zn)− φ(xn)

)
φ(zn)

(
2φ(zn)− φ(xn)

))2

× 1

2φ′(zn)

2

(xn − zn)

(
3
φ(xn)− φ(zn)

xn − zn

−2φ′(zn)− φ′(xn)

))
. (17)

The order of convergence of the preceding method is ana-
lyzed in the following Theorem 1.

Theorem 1: Let φ(x) be a real-valued and sufficiently
differentiable function in an open interval D ⊂ R. If φ(x)
has a simple root α ∈ D and x0 is sufficiently close to α,
then the method given in equation (17) has tenth order of
convergence.

Proof: Let en = xn − α be the nth iteration error.
Expanding φ(xn) and φ′(xn) using Taylor expansion about
α, we get

φ(xn) = φ′(α){en +
12∑
j=2

Dje
j
n +O[e13n ]}, (18)

where Dj = φ(j)(α)/φ′(α), for j = 2, 3, 4, ....
And

φ′(xn) = φ′(α){1 + e12j=2jDje
j−1
n +O[e13n ]}. (19)

From equations (18) and (19), we can write

φ(xn)

φ′(xn)
= en −D2e

2
n +

12∑
i=3

Aie
i
n +O[e13n ], (20)

where Ai(D2, D3, D4...) is the constant containing D,s
j i.e

A3 = 2(−D2
2 +D3), A4 = (4D3

3 − 7D2D3 + 3D4),

A6 = 16D5
2 − 5D3

2D3 + 28D2
2D4 − 17D3D4D2(3D2

3

− 13D3) + 5D6,

etc. Then using equation (20), we get

yn − α = D2e
2
n +

12∑
i=3

Aie
i
n +O[e13n ]. (21)

Again, expanding φ(yn) about α by using Taylor expansion,
we get

φ(yn) = φ′(α)
(
D2e

2
n +

12∑
i=3

Aie
i
n +O[e13n ]

)
. (22)

Using equations (18), (19), (20) and (22) in the second step
of (17), we get

zn − α = (D3
2 −D2D3)e4n − 2(2D4

2 − 4D2
2D3 +D2

3

+D2D4)e5n +
12∑
k=6

Bke
k
n +O[e13n ],

(23)

where Bk(D2, D3, D4, ...) is the of constant D,s
j

i, e B6 = 10D25 − 30D3
2D3 + 12D2

2D4 − 7D3D4

+ 3D2(6D2
3 −D5),

,

B7 = 2(10D6
2 − 40D4

2D3 −D3
3 + 20D3

2D4

+ 3D2
4 + 8D2

2(5D2
3 −D5)5D3D5

+ 2D2(D6 − 13D3D4)),

etc. Expanding φ(zn) and φ′(zn) using Taylor expansion
about α, we get

φ(zn) = φ′(α)
(
(D3

2 −D2D3)e4n − 2(2D4
2 − 4D22D3

+D2
3 +D2D4)e5n +

12∑
k=6

Bke
k
n +O[e13n ]

)
(24)

and

φ′(zn) = φ′(α)
(
1 + 2D2

2(D2
2 −D3)e4n − 4D2(2D4

2

−4D2
2D3 +D2

3

+D2D4)e5n +
12∑
l=6

Cle
l
n +O[e13n ]

)
,

(25)

where Cl(D2, D3, D4, ...) are constant.
Using equation (24) and equation (25) in the third step of
(17), i.e xn+1, we get

xn+1 − α = (D3
2 −D2D3)2D4e

10
n +O[e11n ], (26)

which is emplied as

en+1 = (D3
2 −D2D3)2D4e

10
n +O[e11n ]. (27)

Hence, the method given by equation (17) has tenth order
of convergence and (D3

2 − D2D3)2D4 is asymptotic error
constant.

III. NUMERICAL APPLICATIONS OF THE

PROPOSED METHOD
In this section, we illustrate the efficiency of newly

proposed iterative method by applying the method to
various nonlinear equations. Some examples of nonlinear
functions with their initial guesses and the roots of the
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corresponding functions are given below:

Example 1: φ1(x) = xex
2 − cos(−x), x0 = 0.5,

α = 0.58840177650099628.
Example 2: φ2(x) = e(−x

2+x+3) − cos(x − 1) + x,
x0 = −1, α = −1.1594672726420347.
Example 3: φ3(x) = x

3
2 − 3x + 2, x0 = 5,

α = 7.4777060274997321.
Example 4: φ4(x) = sin−1(x2 − 1) + x2

2 − 1, x0 = 1,
α = 1.1528937224350386.
Example 5: φ5(x) = sin(2cosx) − 1 − x2 + esin(x

3),
x0 = −0.6, α = −0.78489598766121254.
Example 6: φ6(x) = xex

2 − sin2x+ 3cosx+ 5, x0 = −2,
α = −1.207647827130919.

We test the newly proposed method on the following non-
smooth function found in [15]–[17].
Example 7:

φ7(x) =

{
x(x− 1) if x < 0

−2x(x+ 1) if x ≥ 0
, x0 = 1, α = 0.

Example 8:

φ8(x) =

{
3(x2 − x) if x < 0

−6(x3 + x) if x ≥ 0
, x0 = 0.5, α = 0.

Aso, we test the newly proposed method on the following
real life problems found in [18], [19].

Example 9: “Let’s study the Planck’s radiation law prob-
lem which used to calculate the energy density within an
isothermal blackbody that is given as follows [18]:

ψ(λ) =
8πchλ−5

e
ch
λkT − 1

, (28)

where
λ = is the wavelength of the radiation,
T= absolute temperature of the blackbody,
k= Boltzmann’s constant,
h= Planck’s constant, and
c= speed of light,

We have to determine wavelength λ which corresponds to
maximum energy density ψ(λ). Differentiating equation (28)
w.r.t λ, we get

ψ′(λ) =

(
8πchλ−6

e
ch
λkT − 1

)(
(ch/λkT )e

ch
λkT

e
ch
λkT − 1

− 5

)
. (29)

The maximum of ψ(λ) is obtained when(
(ch/λkT )e

ch
λkT

e
ch
λkT − 1

− 5

)
= 0

i.e (
(ch/λkT )e

ch
λkT

e
ch
λkT − 1

)
= 5.

Substituting x = ch/λkT , the above equation reduces to

1− e−x =
x

5
. (30)

Then, we defined a function

φ9(x) = 1− e−x − x

5
= 0. (31)

Thus, the solutions of φ9(x) = 0 produce the maximum
wavelength of radiatin λ by means of the following formula

λ ≈ ch

αkT
,

where α is the solution of φ9(x) = 0. Since
φ9(1) = −0.432121 and φ9(5) = 0.00673795, clearly
we see that a zero of φ9(x) appeares in the intervel [1,
5]. The approximate root of the equation (31) is given by
x ≈ 4.9651142317442763. using x0 = 3” [18].

Example 10: “In the study of multi-factor effect the trajec-
tory of an electron in the air gap between two parallel plates
is given by [19]

x(t) = x0 +
(
v0 + e

E0

mw
sin(wt0 + θ)(t− t0)

+ e
E0

mw
(cos(wt0 − θ) + sin(wt0 + θ))

)
,

(32)

where e and m are the charge and the mass of the electron at
rest, x0 and v0 are the position and velocity of the electron
at time t0 and E0sin(wt0 − θ) is the RF (radio fequency)
electric field between the plates.
Choosing the particulars parameters in the expression in
order to deal with a simpler expression, we get the following
nonlinear equation [19]

φ10(x) = x− 1

2
cosx+

22

28
,

x0 = 0.2, α ≈ 0.30946613920821465141.”

We have compared the new proposed method with the
methods given in (5), (6), (7), (8) and (9) denoted by MAM,
MHM, YAH, DSM, and KHM respectively. We denotes the
newly proposed method as NPM which defined in equation
(17). All the comparied results are given in Table I to Table
X. In the respective tables, we have presented the absolute
residual error of the corresponding functions (i.e |φ(xn)|),
error in the consecutive iterations |xn − xn−1| and the
approximate roots |xn|, the approximated computational
order of convergence (ACOC) after completion of four full
iterations. The ACOC is calculated by the following formula
[4]:

ACOC =
log | (xn+1−xn)

(xn−xn−1)
|

log | (xn−xn−1)
(xn−1−xn−2)

|
.

We have also included the CPU running time in seconds for
each method in the Table I to Table X. The elapsed CPU-
time is computed by selecting | f(xn) |≤ 10−1000 as the
stopping criterion. Note that CPU running time is not unique
and depends entirely on the computer’s specification, but here
we present an average of three performances to ensure the
robustness of the methods. In the last two columns of Table I
to Table X, we have also given the number of iteration (IT)
and total number of functions evaluation (TNFE) required
to satisfy the stopping criterion. The results have been
carried out with Mathematica 12.2 software on a CPU 2.30
GHz with 4GB of RAM running on the windows 10 on
Intel(R) Core(TM) i3-8145U. Form the results available in
the respective tables, we have found that the newly proposed
iterative method give better estimate of simple roots in less
CPU-time as compared to other existing methods.
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Table I
CONVERGENCE BEHAVIOUR FOR φ1

φ(x) Methods | xn | | xn − xn−1 | |φ(xn)| ACOC CPU Time IT TNFE

MAM 0.58840177650099628 5.8793× 10−11 4.1133× 10−21 2.0000 24.022300 8 32
MHM 0.58840177650099628 4.5008× 10−189 2.0218× 10−1129 6.0000 0.5496900 5 30

φ1 Y AM 0.58840177650099628 8.8166× 10−1035 5.7863× 10−10340 10.0000 17.496000 8 40
DSM 0.58840177650099628 2.2769× 10−929 4.2825× 10−9284 10.0000 19.135100 5 30
KHM 0.58840177650099628 2.4090× 10−1025 4.2825× 10−10245 10.0000 20.413600 5 30
NPM 0.58840177650099628 8.5212× 10−1196 3.8516× 10−11952 10.0000 0.3525300 4 20

Table II
CONVERGENCE BEHAVIOUR ON φ2

φ(x) Methods | xn | | xn − xn−1 | |φ(xn)| ACOC CPU Time IT TNFE

MAM 1.1594672726420347 7.6931× 10−10 4.9932× 10−19 2.0000 26.403000 8 32
MHM 1.1594672726420347 1.0710× 10−148 1.6068× 10−887 6.0000 0.4508300 6 36

φ2 Y AM 1.1594672726420347 3.9638× 10−670 1.4507× 10−6694 10.0000 17.320700 6 30
DSM 1.1594672726420347 1.9006× 10−653 2.2131× 10−6525 10.0000 22.719500 5 30
KHM 1.1594672726420347 1.9006× 10−653 2.2131× 10−6525 10.0000 16.819600 5 30
NPM 1.1594672726420347 1.4594× 10−944 5.3853× 10−9441 10.0000 0.3446470 5 25

Table III
CONVERGENCE BEHAVIOUR ON φ3

φ(x) Methods | xn | | xn − xn−1 | |φ(xn)| ACOC CPU Time IT TNFE

MAM 1.0000002500096525 6.7512× 10−4 3.7501× 10−7 1.9791 1.4288300 8 32
MHM 7.4641016151377546 1.7149× 10−50 3.8357× 10−303 6.0000 0.0291786 6 36

φ3 Y AM 0.91253413652291706 1.2765× 10−0 2.1554× 10−3 4.6020 3.4547600 8 40
DSM 1.0000000000000003 8.6040× 10−2 5.4338× 10−16 7.8577 3.6224000 7 42
KHM 0.39740380521880609 2.0574× 10−245 8.7358× 10−2455 3.4500 0.4676800 5 30
NPM 7.4641016151377546 4.2081× 10−288 1.4208× 10−2883 10.0000 0.0246871 5 25

Table IV
CONVERGENCE BEHAVIOUR ON φ4

φ(x) Methods | xn | | xn − xn−1 | |φ(xn)| ACOC CPU Time IT TNFE

MAM 1.1528937224350386 4.4047× 10−19 2.7341× 10−38 2.0000 11.872000 8 32
MHM 1.1528937224350386 3.7752× 10−172 2.9533× 10−1028 6.0000 0.1390940 7 42

φ4 Y AM 1.1528937224350386 1.4625× 10−1014 1.2458× 10−10141 10.0000 75.914400 5 30
DSM 1.1528937224350386 4.9187× 10−451 1.4728× 10−4500 10.0000 13.135100 6 36
KHM 1.1528937224350386 1.3916× 10−872 6.7979× 10−8719 10.0000 5.4488000 5 30
NPM 1.1528937224350386 1.2422× 10−936 1.9453× 10−9359 10.0000 0.1015200 5 25

Table V
CONVERGENCE BEHAVIOUR ON φ5

φ(x) Methods | xn | | xn − xn−1 | |φ(xn)| ACOC CPU Time IT TNFE

MAM 0.78489598766119938 2.0469× 10−7 3.7061× 10−14 2.0000 124.06800 8 32
MHM 0.78489598766121254 2.2623× 10−149 2.6876× 10−892 6.0000 1.2173300 7 42

φ5 Y AM 0.78489598766121254 9.3274× 10−221 2.0009× 10−2200 10.0000 75.914400 5 25
DSM 0.78489598766121254 0 2.2562× 10−3944 10.0000 19.135100 5 30
KHM 0.78489598766121254 8.0375× 10−457 1.5699× 10−4561 10.0000 66.748800 5 30
NPM 0.78489598766121254 7.3026× 10−811 3.0094× 10−8102 10.0000 0.8331250 5 25

Table VI
CONVERGENCE BEHAVIOUR ON φ6

φ(x) Methods | xn | | xn − xn−1 | |φ(xn)| ACOC CPU Time IT TNFE

MAM div. div. div. div. – – –
MHM 1.2076478271309189 1.0906× 10−6 9.2903× 10−34 5.9503 1.6348200 7 42

φ6 Y AM div. div. div. div. – – –
DSM div. div. div. div. – – –
KHM 1.2076478271309189 5.8962× 10−59 1.9197× 10−579 10.0000 61.134800 6 36
NPM 1.2076478271309189 5.3981× 10−87 1.4018× 10−862 10.0000 1.0217170 6 30
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Table VII
CONVERGENCE BEHAVIOUR ON φ7

φ(x) Methods | xn | | xn − xn−1 | |φ(xn)| ACOC CPU Time IT TNFE

MAM div. div. div. div. – – –
MHM 4.5860× 10−252 1.0230× 10−42 9.1720× 10−252 6.0000 0.0220036 6 36

φ7 Y AM div. div. div. div. – – –
DSM 1.2332× 10−142 3.0730× 10−29 1.2332× 10−142 5.0000 0.5761010 7 42
KHM 7.71637× 10−2427 2.0148× 10−243 1.5433× 10−2426 10.0000 0.2454000 5 30
NPM 1.5752× 10−4955 3.4358× 10−451 1.5753× 10−4955 10.0000 0.0170060 5 25

Table VIII
CONVERGENCE BEHAVIOUR ON φ8

φ(x) Methods | xn | | xn − xn−1 | |φ(xn)| ACOC CPU Time IT TNFE

MAM div. div. div. div. – – –
MHM 2.4587× 10−458 4.2800× 10−77 1.4753× 10−457 6.0000 0.0198278 6 36

φ8 Y AM 2.4246× 10−268 1.4066× 10−27 7.2740× 10−268 9.9997 0.3587970 6 36
DSM div. div. div. div. – – –
KHM 1.5928× 10−4014 3.4333× 10−402 9.5569× 10−4014 10.0000 0.2429390 5 30
NPM 4.6912× 10−7695 3.0775× 10−700 2.8147× 10−7694 10.9940 0.0128573 5 25

Table IX
CONVERGENCE BEHAVIOUR ON φ9

φ(x) Methods | xn | | xn − xn−1 | |φ(xn)| ACOC CPU Time IT TNFE

MAM 4.9651142316608617 0.000044851 1.6101× 10−11 2.0035 9.7335700 8 32
MHM 4.9651142317442763 1.2384× 10−128 7.3997× 10−775 6.0000 0.2084970 5 30

φ9 Y AM div. div. div. div. – – –
DSM 4.9651142317442763 3.0386× 10−526 3.6566× 10−5268 10.0000 7.9587200 5 30
KHM 4.9651142317442763 2.7087× 10−582 4.9915× 10−5830 10.0000 0.6082100 5 30
NPM 4.9651142317442763 1.1545× 10−608 1.6115× 10−6091 10.0000 0.1567100 5 25

Table X
CONVERGENCE BEHAVIOUR ON φ10

φ(x) Methods | xn | | xn − xn−1 | |φ(xn)| ACOC CPU Time IT TNFE

MAM 0.30946613912659715 0.000013547 6.9189× 10−11 2.0017 15.998100 8 32
MHM 0.30946613920821465 4.9357× 10−188 2.4196× 10−1127 6.0000 0.3040520 5 30

φ10 Y AM 0.30946613920821465 4.6579× 10−867 1.8885× 10−8668 10.0000 9.8006900 5 30
DSM 0.30946613920821465 4.5010× 10−628 5.7566× 10−6278 10.0000 18.186100 5 25
KHM 0.30946613920821465 9.0501× 10−667 1.1465× 10−6665 10.0000 10.458600 5 30
NPM 0.30946613920821465 2.2536× 10−882 1.2685× 10−8822 10.0000 0.2386380 5 25

IV. CONCLUSIONS

A new iterative scheme has been developed using Os-
trowski’s methods and Taylor series expansion. The effi-
ciency index for the new iterative scheme is 1.5848, and
it involves four evaluations function and one evaluation of
its first order derivative. We have also proved that the new
method preserves the tenth order of convergence with the
help of convergence analysis. The primary goal of develop-
ing this method is to provide a higher order convergence
technique that gives better results than other existing well-
known methods. Extensive experimentation has shown that
the absolute residual error of the proposed method is highly
efficient and competitive as compared to other existing tenth-
order methods. Also, from the last two columns of the tables,
we obsrved show that the newly proposed method reached
the stopping criterion in fewer or similar number of iterations
and the number of functions evaluations required is lesser

than the other existing well known methods. The elapsed
low CPU-time also confirms the highly efficient nature of
the proposed method as compared to the existing methods
of the same nature.

REFERENCES

[1] M. Raza, “Eleven Order Convergent Iterative Method for
Solving Nonlinear Equation,” International Journal of Ap-
plied Mathematics, vol. 25, no. 3, pp. 365-371, (2012).

[2] W. Henarita Chanu, S. Panday, and M. Dwivedi, “New
Fifth Order Iterative Method for Finding Multiple Root of
Nonlinear Function,” Engineering Letters, vol. 29, no. 3, pp.
942-947, (2021).

[3] G. Liu, C. Nie and J. Lei, “A Novel Iterative Method
for Nonlinear Equations,” IAENG International Journal of
Applied Mathematics, vol. 48. no. 4. pp. 444-448, (2018).

[4] J. F. Traub, “Iterative Methods for the Solution of Equations,”
Prentice-Hall: Englewood Cliffs, NJ, USA, (1964).

[5] A. M. Ostrowski, “Solution of Equations in Euclidean and
Banach Space,” Academic Press; New York, NY, USA, (1973).

IAENG International Journal of Applied Mathematics, 52:1, IJAM_52_1_18

Volume 52, Issue 1: March 2022

 
______________________________________________________________________________________ 



[6] M. Matinfar and M. Aminzadeh, “A Family of Optimal
Iterative Methods with Fifth and Tenth Order Convergence
for Solving Nonlinear Equation,” Journal of Interpolation and
Approx. in Scientific Computing, vol. 2012, 11 pages, (2012).

[7] M. A. Hafiz and S. M. H. Al-Goria, “Solving Nonlinear Equa-
tions Using a New Tenth- and Seventh-Order Methods Free
from Second Derivative,” International Journal of Differential
Equation and Applications, vol. 12, no. 4, pp. 169-183 (2013).

[8] Y. Y. Al Husayni and I. A. Subaihi, “Tenth Order Iterative
Methods without Derivative for Solving Nonlinear Equa-
tions,” Quest Journals. Journal of Research in Applied Math-
ematics, vol. 3, no. 4, pp. 13-18, (2014).

[9] D. Sharma and S. K. Rashi, “Efficient Family Of Derivative-
Free Tenth And Twelfth Order Iterative Methods for Nonlin-
ear Equations,” International Journal of Engineering, Applied
and Management Sciences Paradigms ICRMR-2019, pp. 71-
18 (2019).

[10] N. Kazem, R. Hassan and J. Leila, “Two High order Itera-
tive Methods for Roots of Nonlinear Equations,” Journal of
Mathematics, vol. 51, no. 3, pp. 47-59, (2019).

[11] M. Barrada and R. Benkhouya, “A New Halley’s Family
of Third-Order Methods for Solving Nonlinear Equations,”
IAENG International Journal of Applied Mathematics, vol.
50, no. 1, pp. 58-65, (2020).

[12] M. Barrada and R. Benkhouya, Ch. Ziti and A. Rhattoy, “New
Family of Chebyshev’s Method for Finding Simple Roots of
Nonlinear Equation,” Engineering Letters, vol. 28, no. 4, pp.

1263-1270, (2020).
[13] E. Sharma, S. Panday and M. Dwivedi, “New Optimal Fourth

Order Iterative Method for Solving Nonlinear Equations,”
International Journal on Emerging Technologies, vol. 11, no.
3, pp. 755-758, (2020).

[14] O. Said Soliaiman and I. Hashim, “Two New Efficient Sixth
Order Iterative Methods for Solving Nonlinear Equation,”
Journal of King Saud University-Science, vol. 31, no. 4, pp.
701-705, https://doi.org/10.1016/j. jksus.2018.03.021, (2019).

[15] S. Amat and S. Busquier, “On a Higher Order Secant Meth-
ods,” Applied Mathematics and Computation, vol. 141, no. 2,
pp. 321-329, (2003).

[16] S. Amat and S. Busquier, “On a Steffensen’s Type Method
and Its Behavior for Semismooth Equations,” Applied Mathe-
matics and Computation, vol. 177, no. 2, pp. 819-823, (2006).

[17] A. Cordero and J. R. Torregrosa, “A Class of Steffensen
Type Method with Optimal Order of Convergence,” Applied
Mathematics and Computation, vol. 217, no. 19, pp. 7653-
7659, (2011).

[18] D. Sharma, S. K. Parhi and S. K. Sunanda, “A New Class
of Sixth Order Root-Finding Methods with Its Dynamics and
Applications,” Universal Wise Publisher, vol. 1, no. 5, pp.
429, (2020).

[19] S. K. Rahimian, F. Jalali, J. D. Seader and R. E. White,
“A New Homotopy for Seeking All Roots of A Nonlinear
Equation,” Computers and Chemical Engineering, vol. 35,
no. pp. 403-411, (2011).

IAENG International Journal of Applied Mathematics, 52:1, IJAM_52_1_18

Volume 52, Issue 1: March 2022

 
______________________________________________________________________________________ 




