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Abstract—Spectra of weighted networks have received
increasing attention from scientific community, such as math-
ematical chemistry, computer science, coding theory. The real
networks behavior is completely differently, not only in the
degree distribution, but also in the weight distribution. In this
paper, we determine the generalized adjacency (resp., Laplacian
and signless Laplacian) spectra of the weighted neighbourhood
corona networks with different structures. As applications, the
two important indices of the weighted neighbourhood corona
networks are computed.

Index Terms—Weighted neighbourhood coronae networks;
Generalized adjacency matrix; Kirchhoff index; Spanning trees

I. INTRODUCTION

IN the past decade, the new researchs on complex network
have drawn attentions of scholars in many fields, such as

computer science, physics and chemistry and so on. The key
issues in the field of complex networks is to uncover the
topological characteristics and dynamic process of complex
networks. For example, Qi and Zhang et al. [1] studied the
spectra and their applications for extended Sierpiski graphs
and their applications. Dai et al [2] obtained the recursive
relationship of its eigenvalues at two successive generation
of the Markov matrix. Meanwhile, a fundamental issue in the
study of complex networks is to uncover how the structure
properties affect different dynamics, many of which are re-
lated to the exact knowledge of the spectra. In recently years,
spectra of weighted networks have attracted a great deal of
attention by some researchers [1−6], since various dynamical
processes and structural aspects of complex networks are
related to the spectra of the matrix. The wide applications
of the spectra of the matrix have Kirchhoff index, spanning
trees, eigentime identity, expected hitting time, and so on.

Real networks behave quite differently, not only in the
aspect of degree distribution but also in the context of weight
distribution. Dai et.al [7] gave a complete description of the
eigenvalues and the eigenvectors of graphs with the weight-
ed corona networks. Liu et.al [8] presented a complete-
ly characterization of generalized adjacency(resp.,Laplacian
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and signless Laplacian) spectra of graphs with the weighted
edge corona networks. In [7, 8], they pointed that it is
natural and interesting to study the other weighted networks.
The impacts of weight factors are vital in analyzing some
properties of networks. Practical realizations of weights in
real networks range from the number of passengers travelling
yearly between two airports in airport networks [9] the traffic
measured in packets per unit time between routers in the
Internet [10] or the intensity of predator-prey interactions
in ecosystems [11]. In spectra graph theory, spectra of the
adjacency and the Laplacian matrix plays an important role
in recognizing the graph properties[9-15]. In [15], the authors
used the adjacency matrix to prove the Aanderaa-Rosenberg
conjecture. Qi and Zhang [15-16] found the normalized
Laplacian spectra has important applications in exploring rel-
evant structural properties of the weighted fractals. Motivated
by these works, we consider the spectral properties of the
weighted neighbourhood corona networks.

In this paper, firstly, we give the generalized adjacency
spectra of the weighted neighbourhood corona graphs with
two different initial graphs. Then the spectral analysis of the
Laplacian spectra are given. Finally, the signless Laplacian
spectra of the weighted neighbourhood corona graphs with
two different structures are derived, which methods used are
similar in those in Section 3. The number of spanning trees
and Kirchhoff index of the weighted neighbourhood corona
are computed as an application of these tesults.

II. GENERALIZED ADJACENCY SPECTRA OF THE
WEIGHTED G1 ? G2

The adjacency, Laplacian and signless Laplacian spectra
of the neighbourhood corona graph [19] was given. Next the
weighted neighbourhood corona graphs is defined as follows.

(i) For a positive real number 0 < r ≤ 1, we call r the
weight factor.

(ii) Initial graph: G1 is a simple connected graph with n
vertices. And every edge has a unitary weight.

(iii) Attaching copy graph: G2 is a simple connected graph
with n2 vertices. And every edge has a unitary weight.
(iv) Gi2 is the copy of G2(i = 1, 2, · · · , k), its weighted
edges have been fixed by a factor r. Joining every neighbour
of the ith vertex of G1 to every vertex in the ith copy of G1

by a new edge, the newly generated edges carry the weight
r.

We have constructed the weighted neighbourhood corona
graphs G1 ? G2 with the weight factor. As instance, the
weighted neighbourhood corona graph P4?P3 is as illustrated
in Fig.1.
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Fig.1 the weighted neighbourhood corona graph

We use W (G) to express the generalized adjacency
matrix(weight matrix) of G, the entries Wi,j of W (G) are
defined as follows: if vertices i and j are adjacent in W (G),
then Wi,j = ωi,j , otherwise Wi,j = 0 , where ωi,j is the
weight of edge linking vertices i and j.

According to the construction of G1 ? G2, the generalized
adjacency matrix is as follows:
W (G1 ? G2) =(

W (G1) rjTn2
⊗W (G1)

r(jn2 ⊗W (G1))
T rW (G2)⊗ I(n1)

)
, (1)

where jTn2
denote the row vector with order n2 and all

elements are 1.

A. G2 is a d2-regular graph

Let G1 be a connected graph with n1 vertices attaching copy
graph G2 which is a d2-regular graph with n2 vertices. Let
X = [X1X2 · · ·Xn2+1]T be the eigenvector corresponding
to the eigenvalue λ of W (G1 ? G2). Then

W (G1 ? G2)X = λX. (2)

Next, we obtain the eigenvector of W (G1 ?G2). It divides
into the following two cases with λ 6= rd2.
Case 1 : X1 is nonzero vector
From Equations (1) and (2), it follows that

W (G1)X1 + rW (G1)(X2 +X3 + · · ·Xn2+1) = λX1, (3)

and



rWT (G1)X1 + rE1[W (G2)⊗ I(n1)][X2X3 · · ·Xn2+1]
T

= λX2,
rWT (G1)X1 + rE2[W (G2)⊗ I(n1)][X2X3 · · ·Xn2+1]

T

= λX3,
...

rWT (G1)X1 + rE1[W (G2)⊗ I(n1)][X2X3 · · ·Xn2+1]
T

= λXn2+1,

where Ei = (0, · · · , 0︸ ︷︷ ︸
i-1

, In1
, 0, · · · , 0︸ ︷︷ ︸

k-i

).

Since G2 is a d2-regular graph, there are d2-nonzero entries
in each row of matrix W (G2). By adding all equation in the
above equation, it gives

rn2W (G1)X1 + rd2(X2 +X3 + · · ·Xn2+1) (4)

= λ(X2 +X3 + · · ·Xn2+1),

which is

(X2 +X3 + · · ·Xn2+1) =
rn2

λ− rd2
WT (G1)X1. (5)

Substituting Equation (5) to Equation (3), we have

W (G1)X1 +
r2n2

λ− rd2
W (G1)WT (G1)X1 = λX1. (6)

Notice that σ(G1) = {λ1(G1), λ2(G1) · · ·λn1
(G1)}. Based

on Eq.(7), we have

λ2 − (rd2 + λi(G1))λ+ rd2λi(G1)− r2n2λi(G1) = 0, (7)

i = 1, 2, . . . , n1.
Solving the equation (7), we obtain

λ1,2 =

rd2 + λi(G1)±
√

(rd2 − λi(G1))2 + 4r2n2(λi(G1))2

2
, (8)

i = 1, 2, · · · , n1.
Case 2 : X1 is zero vector
From Equation (3) and Equation (4), we obtain

rA(G2)(X2 +X3 + · · ·Xn2+1) = 0,

and

r[A(G2)⊗ I(n1)][X2X3 · · ·Xn2+1]T = λ[X2X3 · · ·Xn2+1]T .

Notice that the spectra of A(G2) is σ(G2) =
{λ1(G2), λ2(G2) · · ·λn1

(G2) = d2}, we can straightforward
get that

λ = rλj(G2), j = 1, 2, · · · , n2 − 1. (9)

According to Equation (8) and Equation (9), we can easily
get that the multiplicity of λ = rλj(G2) is n1. Through the
above steps, we present the following results.

Theorem 2.1 Let G1 be a graph on n1 vertices and G2 be
an d2-regular graph on n2 vertices, where n1 ≥ 1, n2 ≥ 1
and d2 ≥ 1. Suppose σ(Gi) = {λ1(Gi) ≤ λ2(Gi), · · · ≤
λn2(Gi)}(i = 1, 2). Then the generalized adjacency spectra
of W (G1 ? G2) are as follows.

(i) rd2+λi(G1)±
√

(rd2−λi(G1))2+4r2n2(λi(G1))2

2 ∈ σ(G1 ? G2)
with multiplicity 1 for i = 1, 2, · · · , n1.
(ii)rλj(G2) ∈ σ(G1 ? G2) with multiplicity n1 for j =
1, 2, · · · , n2 − 1.

B. G2 is a complete bipartite graph

In this section, we will focus on finding out the spectra of
W (G1 ? G2) when G2 is a complete bipartite graph, it may
be a regular graph or not. As we known, a complete bipartite
graph G = Kp,q is defined as a graph that any vertex in X
has a unique edge with each vertex in Y , where |X| = p
and |Y | = q.
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Let G2 be a complete bipartite graph on k = p + q
vertices. Then the generalized adjacency matrix W (G1 ?G2)
associated with G1 ? G2 is given by
A(G1 ? G2) =

A rA rA · · · rA rA · · · rA
rAT 0 0 · · · 0 rI · · · rI

...
...

...
...

...
...

...
...

rAT 0 0 · · · 0 rI · · · rI
rAT rI rI · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

rAT rI rI · · · rI 0 · · · 0


.

Let X = [X1, X2, · · · , Xp+1, Xp+2, · · ·Xk+1]T be the
eigenvector corresponding to the eigenvalue λ of W (G1 ?
G2). Then W (G1 ? G2)X = λX .
It follows that

A(G1)X1 + rA(G1)

p+1∑
j=2

Xj + rA(G1)
k+1∑
j=p+2

Xj

= λX1, (10)

rAT (G1)X1 + r
k+1∑
j=p+2

Xj = λXl, l = 2, 3, · · · , p+ 1, (11)

rAT (G1)X1 + r

p+1∑
j=2

Xj = λXl,

l = p+ 2, p+ 3, · · · , k + 1. (12)

Next, two cases will be discussed.
Case 1 : λ 6= 0 From Eq.(11) and Eq.(12), it follows
X2 = X3 = · · ·Xp+1 and Xp+2 = Xp+3 = · · ·Xk+1.
Consequently, from Eq.(12) and Eq.(13), we derive

X2 =
r(λ+ rq)

λ2 − r2pq
AT (G1)X1 and

Xp+2 =
r(λ+ rq)

λ2 − r2pq
AT (G1)X1. (13)

Then from Eq.(11) and Eq.(13), we obtain

A(G1)X1 + rA(G1)p
r(λ+ rq)

λ2 − r2pq
AT (G1)X1

+rA(G1)q
r(λ+ rq)

µ2 − r2pq
AT (G1)X1 = λX1.

Notice that σ(G1) = {λ1(G1), λ1(G2), · · · , λn1(G1)}, so
we can obtain

λ3 − λi(G1)λ2 − (r2pq + r2pλ2
i (G1) + r2qλ2

i (G1))λ

−r2pq(2λ2
i (G1))− λi(G1)) = 0,

which implies that λ is a root of the cubic polynomial
x3 − λi(G1)x2 − (r2pq + r2pλ2

i (G1) + r2qλ2
i (G1))x −

r2pq(2λ2
i (G1))− λi(G1)) = 0, i = 1, 2, · · · , n1.

Case 2 : λ = 0
It is easily known that 0 is one of the generalized adjacency
eigenvalues of W (G1?G2). Moreover, as the total number of

nonzero is 3n1, we can obtain that 0 is the eigenvalue with
multiplicity n1(p+ q − 2). Then Theorem 2.2 is obtained.

Theorem 2.2 Let G1 be a graph on n1 vertices, G2

be a complete bipartite graph on k = p + q vertices.
Suppose σ(G1) = {λ1(G1), λ2(G1), · · · , λn1

(G1)}. Then
the generalized adjacency spectra of W (G1 ? G2) are as
follows.

(i) 0 ∈ σ(G1 ? G2) with multiplicity n1(p+ q − 2).
(ii) λ ∈ σ(G1 ? G2) with multiplicity 1 where λ is a
root of the cubic polynomial x3 − λi(G1)x2 − (r2pq +
r2pλ2

i (G1) + r2qλ2
i (G1))x − r2pq(2λ2

i (G1)) − λi(G1)) =
0, i = 1, 2, · · · , n1.

III. LAPLACIAN SPECTRA OF THE WEIGHTED G1 ? G2

In this section, we will obtain the Lapalcian spectra of the
weighted graph G1 ? G2. Let sn(i) denote the strength of
vertex i in G. It is defined by the sum of its linked edges
weight. Sn denotes the diagonal strength matrix of G with its
ith diagonal entry being the strength sn(i) of vertex i. The
Laplacian matrix of G is defined by L(G) = S(G)−W (G).
The Laplacian spectra of G is denoted by l(G) which are
the eigenvalues of L(G).

According to the construction of the weighted G1 ?G2, the
Lapalcian matrix is as follows:
L(G1 ? G2) =(

r1n2d1In1 + L(G1) −rjTn2
⊗A(G1)

−r(jn2 ⊗A(G1))
T r(L(G2) + rd1In2)⊗ I(n1)

)
, (14)

where jTn2
denote the row vector with order n2 and all

elements are 1.

The eigenvalue µ of L(G1 ? G2) with corresponding eigen-
vector is X = [X1X2 · · ·Xk+1]T . Then

L(G1 ? G2)X = µX. (15)

Next, we determine the Laplacian spectra of G1 ?G2 for the
following two cases.

Case1 : X1 is nonzero vector
From Eqs.(14) and (15), one knows

(L(G1) + rn2d1In1
)X1 − rA(G1)(X2 +X3 + · · ·Xn2+1)

= µX1. (16)

Meanwhile, set Ei = (0, · · · , 0︸ ︷︷ ︸
i-1

, In, 0, · · · , 0︸ ︷︷ ︸
k-i

), it also satisfies

that



−rAT (G1)X1 + rE1[(L(G2) + d1In2)⊗ I(n1)][X2 · · ·
Xn2+1]

T = µX2,
−rAT (G1)X1 + rE2[(L(G2) + d1In2)⊗ I(n1)][X2 · · ·
Xn2+1]

T = µX3,
...

−rAT (G1)X1 + rEn2 [(L(G2) + d1In2)⊗ I(n1)][X2 · · ·
Xn2+1]

T = µXn2+1.

By the above equation, it gives

−rn2A(G1)TX1 + rd1(X2 +X3 + · · ·Xn2+1) (17)

= µ(X2 +X3 + · · ·Xn2+1),
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namely,

(X2 +X3 + · · ·Xn2+1) =
−rn2

µ− rd1
AT (G1)X1. (18)

Substituting (18) to (17), we have

[L(G1) + rn2d1In1 ]X1 +
r2n2

µ− rd1
A(G1)AT (G1)X1

= µX1 (19)

Assume that the spectra of L(G1) is l(G1) =
{µ1(G1), µ2(G1), · · · , µn1

(G1)}. Based on Eq.(20),
one has

µ2−(rd1+µj(G1)+rn2d1)µ+rd1µj(G1)+2r2n2µj(G1)d1

−r2n2µ
2
j (G1) = 0, j = 1, 2, . . . , n1.

Evidently, the above equation yields

λ1,2 =
rd1 + µj(G1) + rn2d1 ±

√
∆1

2
,

where ∆1 = (rd1 + µj(G1) + rn2d1)2 − 4µj(G1)(rd1 +
2r2n2d1 − r2n2µj(G1)), j = 1, 2, . . . , n1.

Case 2 : X1 is zero vector
The similarly consideration of Eq.(17) and Eq.(18), one gets

rn2d1In1
X1 − rA(G1)(X2 +X3 + · · ·Xn2+1) = 0. (20)

r[(L(G2) + d1In2
)⊗ I(n1)][X2X3 · · ·Xn2+1]T

= µ[X2X3 · · ·Xn2+1]T . (21)

Notice that the spectra of L(G2) is l(G2) =
{µ1(G2), µ2(G2), · · · , µn2

(G2)}, then we can
straightforward obtain that

µ = r(µj(G2) + d1), j = 2, 3, · · · , n2.

From Eq.(22), we can easily know that the multiplicity of
µ = r(µj(G2) + d1) is n1. Then the following result is
obtained.

Theorem 3.1 Let G1 be the d1-regular graph with n1

vertices and m1 edges, G2 be any graph with n2 vertices and
m2 edges, respectively. Assume that the Laplacian spectrum
of G1 and G2 are l(G1) = {µ1(G1), µ2(G1), · · · , µn1

(G1)}
and l(G2) = {µ1(G2), µ2(G2), · · · , µn2

(G2)}. Then the
Laplacian eigenvalues of G1 ? G2 are as follows:
(i)

rd1 + µj(G1) + rn2d1 ±
√

∆1

2
∈ l(G1 ? G2),

where ∆1 = (rd1 + µj(G1) + rn2d1)2 − 4µj(G1)(rd1 +
2r2n2d1 − r2n2µj(G1)) with multiplicity 1 for i =
1, 2, · · · , n1

(ii)µj(G2) + d1 ∈ l(G1 ? G2) with multiplicity n1 for j =
2, 3, · · · , n2.

IV. SIGNLESS LAPLACIAN SPECTRA OF THE WEIGHTED
G1 ? G2

A. G2 is a d2-regular graph

The signless Laplacian matrix of G1 ? G2 is as follows.
Q(G1 ? G2) =(

r1n2d1In1
+Q(G1) −rjTn2

⊗A(G1)
−r(jn2

⊗A(G1))T r(Q(G2) + rd1In2
)⊗ I(n1)

)
.

Next we pay attention to determine the signless Laplacian
spectra of G1?G2. Given the eigenvalue δ, its corresponding
eigenvector of Q(G1 ?G2) is X = [X1X2 · · ·Xk+1]T . Next,
we obtain the desired result from the below two cases with
δ 6= r(2d2 + d1).

Case 1 : X1 is nonzero vector
Since the definitions of eigenvalues and eigenvectors, we
obtain

(Q(G1) + rn2d1In1
)X1 + rA(G1)(X2 +X3 + · · ·Xn2+1)

= δX1. (22)

Meanwhile, set Ei = (0, · · · , 0︸ ︷︷ ︸
i-1

, In, 0, · · · , 0︸ ︷︷ ︸
k-i

), it also satisfies



rAT (G1)X1 + rE1[(Q(G2) + d1In2)⊗ I(n1)][X2 · · ·
Xn2+1]

T = δX2,
rAT (G1)X1 + rE2[(Q(G2) + d1In2)⊗ I(n1)][X2 · · ·
Xn2+1]

T = δX3,
...

rAT (G1)X1 + rEn2 [(Q(G2) + d1In2)⊗ I(n1)][X2 · · ·
Xn2+1]

T = δXn2+1.

By the above equation, it gives

rn2A(G1)TX1 + r(2d2 + d1)(X2 +X3 + · · ·Xn2+1)

= δ(X2 +X3 + · · ·Xn2+1), (23)

namely,

(X2 + · · ·Xn2+1) =
rn2

δ − r(2d2 + d1)
AT (G1)X1. (24)

Substituting (24) to (23), we have

[Q(G1) + rn2d1In1 ]X1 +
r2n2

δ − r(2d2 + d1)
A(G1)

AT (G1)X1 = δX1. (25)

Assume that the spectrum of Q(G1) is q(G1) =
{δ1(G1), δ2(G2), · · · , δn2

(G1)}. Based on Eq.(25), we have

δ2− [r(1+n2)d1 +2rd2 +δi(G1)]x+[r(2d2 +d1 +2rn2d1)

δi(G1) + 2r2n2d1d2 − r2n2δ
2
i (G1)] = 0, i = 1, 2, . . . , n1.

Evidently, the above equation yields

δ1,2 =
[r(1 + n2)d1 + 2rd2 + δi(G1)]±

√
∆2

2
,

where ∆2 = [r(1 + n2)d1 + 2rd2 + δi(G1)]2 − 4[r(2d2 +
d1 + 2rn2d1)δi(G1) + 2r2n2d1d2 − r2n2δ

2
i (G1)].

Case 2 : X1 is zero vector
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The similarly consideration of Eqs.(23) and (24), one gets

rA(G1)(X2 +X3 + · · ·Xn2+1) = δX1. (26)

r[(Q(G2) + d1In2
)⊗ I(n1)][X2X3 · · ·Xn2+1]T (27)

= δ[X2X3 · · ·Xn2+1]T .

Notice that the spectra of Q(G2) is q(G2) =
{δ1(G2), δ2(G2), · · · , δn2(G2)}, then we can
straightforward obtain that

µ = r(δj(G2) + d1), j = 2, 3, · · · , n2.

From Eq.(27), we can determine that the multiplicity of µ =
r(µj(G2) + d1) is n1. Then the following result is obtained.

Theorem 4.1 Let G1 be the d1-regular graph with n1

vertices and m1 edges, G2 be the d2-regular graph with n2

vertices ,respectively. Assume that the Laplacian spectra of
G1 and G2 are q(G1) = {µ1(G1), µ2(G1), · · · , µn1(G1)}
and q(G2) = {µ1(G2), µ2(G2), · · · , µn2(G2)}. Then the
signless Laplacian spectra of G1 ? G2 are as follows:

(i) [r(1+n2)d1+2rd2+δi(G1)]±
√

∆
2 ∈ q(G1 ? G2), where ∆ =

[r(1 + n2)d1 + 2rd2 + δi(G1)]2 − 4[r(2d2 + d1 +
2rn2d1)δi(G1)+2r2n2d1d2−r2n2δ

2
i (G1)], with multiplicity

1 for i = 1, 2, · · · , n1.
(ii)µj(G2) + d1 ∈ q(G1 ? G2) with multiplicity n1 for j =
2, 3, · · · , n2.

V. APPLICATIONS

The main purpose of this section is to determine the Kirch-
hoff index and the number of spanning trees of the weighted
neighbourhood corona graphs as applications of Theorem
3.1. First, we gave the definition for the Kirchhoff index
and the number of spanning trees.

Kirchhoff index is an important index. In physics, the
Kirchhoff index characterizes the average power consumed
by a resistance network when current is arbitrarily injected
into it. If the Kirchhoff index is large, the electrical energy
consumed by the resistor network per unit time is large.
The Kirchhoff index [25] is defined as the sum of the
resistance distance rij of G, see [22 − 24] for more detail.
The Kirchhoff index is denoted by the reciprocal of the
Laplacian eigenvalues of G, namely Kf(G) =

∑
i<j rij =

|N(G)|
∏|N(G)|
i=2

1
µi
.

Among the instruction of networks, spanning trees are
one of the most important and fundamental indices. They
are related to diverse aspects of networks, including resistor
networks, self-organized criticality [26], and standard ran-
dom walks [27]. For example, the number of spanning trees
in a network is closely related to the effective resistance
between two nodes in the network. The mean first-passage
time between the two nodes is a fundamental quantity
for random walks, which have wide distinct applications
in various theoretical and applied fields, such as physics,
chemistry, and computer science, among others. The number
of spanning trees [16] of a given graph G can be expressed
by τ(G) = 1

|N(G)|
∏|N(G)|
i=2 µi.

Applying Theorem 3.1, we consider those two parameters
by two cases.

Theorem 5.1 Let G1 be the d1-regula graph with order
n1 and size m1, G2 be any graph with order n2 and size
m2, respectively. Assume that the Laplacian spectrum of G1

and G2 are σ(G1) = {µ1(G1), µ2(G1), · · · , µn1
(G1)} and

σ(G2) = {µ1(G2), µ2(G2), · · · , µn2
(G2)}. Then one has :

(i) τ(G1 ? G2)

=
1

n1 + n1n2

n1∏
i=1

µi(G1)(rd1 + 2r2n2d1 − r2n2µj(G1))

n2∏
j=2

(r(d1 + µj(G2))n2 .

(ii)

Kf(G1 ? G2) = (n1 + n1n2)

[
n2∑
i=2

n2

r(d1 + µj(G2)

+

n1∑
i=1

rd1 + µj(G1) + rn2d1

µj(G1)(rd1 + 2r2n2d1 − r2n2µj(G1))

]
.

Proof The order of the weighted neighbourhood corona
graph G1 ? G2 is N(G1 ? G2) = n1 + n1n2.
Let

x =
√
y,

where y = (rd1 + µj(G1) + rn2d1)2 − 4µj(G1)(rd1 +
2r2n2d1 − r2n2µj(G1)). Then
n1∏
i=1

rd1 + µj(G1) + rn2d1 + x

2

n1∏
i=1

rd1 + µj(G1) + rn2d1 − x
2

=

n1∏
i=1

µj(G1)(rd1 + 2r2n2d1 − r2n2µj(G1)).

This gives

|N(G)|∏
i=1

µi =

n1∏
j=1

µj(G1)(rd1 + 2r2n2d1 − r2n2µj(G1))

n2∏
j=2

(r(d1 + µj(G2))n2 . (28)

Combining Eq.(28) and Eq.(29), we obtain the desired result
of the number of spanning trees as below.

τ(G1 ? G2)

=
1

n1 + n1n2

n1∏
j=1

µj(G1)(rd1 + 2r2n2d1 − r2n2µj(G1))

n2∏
j=2

(r(d1 + µj(G2))n2 .

For the Kirchhoff index, one obtains
n1∑
i=1

2

rd1 + µj(G1) + rn2d1 + x
+

n1∑
i=1

2

rd1 + µj(G1) + rn2d1 − x
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=

n1∑
i=1

rd1 + µj(G1) + rn2d1

µj(G1)(rd1 + 2r2n2d1 − r2n2µj(G1))
.

This leads
|N(G)|∑
i=2

1

µi
=

n1∑
i=1

rd1 + µj(G1) + rn2d1

µj(G1)(rd1 + 2r2n2d1 − r2n2µj(G1))

+

n2∑
i=2

n2

r(d1 + µj(G2)
.

Thus, one gets
Kf(G1 ? G2)

= (n1 + n1n2)

[
n1∑
i=1

rd1 + µj(G1) + rn2d1

µj(G1)(rd1 + 2r2n2d1 − r2n2µj(G1))

+

n2∑
i=2

n2

r(d1 + µj(G2)

]
.

The desired results holds.
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