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Abstract—Verifying the existence of long-memory feature is
a crucial activity performed during the development process of
the autoregressive integrated moving average (ARIMA) model.
The verifying step will determine whether a researcher needs
to use the ARIMA model or the autoregressive fractionally
integrated moving average (ARFIMA) model, which depends on
the estimated value of the fractional difference (d). This study
focuses on analytical techniques for verifying the long-memory
feature (graphs and statistical tests); determines estimation
methods/functions for approximating long-memory parameters
(i.e., d), limitations, extensions, comparisons, applications, and
performs an in-depth review of the recent literature on the
ARFIMA model. The discussion will also include the hybrid
method for forecasting in different fields. Although the val-
idation of the existence of the long-memory feature and its
estimation, limitations, extensions, comparisons, and applica-
tions has been extensively investigated, specific criteria should
be considered to avoid obtaining invalid or wrong ARFIMA
models remain unclear. We examine the literature to validate
these issues and identify effective methods and tests to avoid
these errors. Thus, the results of this study can provide an
initial classification of the literature on long memory and the
ARFIMA model that can be used as a basis for future work
when the value of d is a non-integer number.

Index Terms—Long memory, Autoregressive fractionally in-
tegrated moving average, Individual and Hybrid models, Mod-
eling and forecasting, Time series.

I. INTRODUCTION

T IME series modeling and forecasting are essential meth-
ods used in different fields, especially in economic

and financial trends, because of their ability to manage risk
and increase investment in financial and industrial markets.
Therefore, a nontraditional and accurate statistical technique
called long memory must be used to describe changes in
time series. Long memory is a phenomenon that may be
encountered when investigating a time series dataset, where
the long-term dependence between two points increases the
amount between the points’ distance [1]. Modeling of long-
memory behavior for any time series is usually performed ac-
curately by relying on autoregressive fractionally integrated
moving average (ARFIMA) models because long-memory
models are important in the study of time series data [2].
[3]created the ARFIMA model to capture the long-memory
behavior of time series data. This model was fitted for the
time series data to understand the dataset further or forecast
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future points in the series [4]-[5]. The ARFIMA model is
suitable for linear time series but unsuitable for time series
that contain nonlinear structures [6].

Economic and financial studies have shown the importance
of the ARFIMA model in analyzing time series datasets
[7]. In addition, numerous high-frequency financial time
series data have exhibited the property of long-memory
(i.e., presence of statistically significant correlations between
observations that are considerably distant) [8]. Another dis-
tinguishing feature of many financial time series data is time-
varying volatility or “heteroscedasticity” of datasets through
the emergence of high volatility, followed by low volatility
[8]. Thus, long-memory processes are applicable to economic
and financial data. This attribute is what distinguishes our
selection of this type of data and the ARFIMA models.

This study focuses on analytical techniques for verify-
ing the long-memory feature in terms of graphs and sta-
tistical tests; determines estimation methods/functions for
approximating long-memory parameters (i.e., value of the
fractional difference), limitations, extensions, comparisons,
applications, and performs an in-depth review of the recent
literature on the ARFIMA model, including hybrid methods,
for forecasting in different fields.

The remainder of this paper is organized as follows.
Theoretical explanations of several graphs and statistical
tests used to verify the long-memory feature in time series
as well as some methods and functions used to estimate
the long-memory parameter are provided in second section.
The ARFIMA model and its advantages are also presented
in this section. Limitations, extensions, comparisons with
an overview of developments in the field of the ARFIMA
methodology and its application in different areas are dis-
cussed in third section. Recent studies that have applied
ARFIMA to forecasting time series are presented in fourth
section. Finally, conclusions of this study are drawn in fifth
section.

II. LONG MEMORY

Long memory is a phenomenon that may be observed in
time series data; it is evident when the distance between
two points is further apart [1], [6] and it considerably
affects the financial field [9], [6]. Experimental research on
long memory processes dates back to [10], who studied the
hydrological properties of the Nile Basin. However, interest
in using long memory models for economic data series
was elicited when [3]observed that many such series are
nonstationary in terms of the mean value.

Here, we explain the concept of long memory in a time
series as presented by [11]- [12]. Suppose that ρ(h) is the
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autocovariance function at lag(h) of a stationary process
yt : t ∈ Z. Then, yt exhibits long memory if the autoco-
variance sequence decays extremely slowly such that it is
not absolutely summable, as follows:

∞∑
h=−∞

|ρ(h)| = ∞ , (1)

where
ρ(h) = E(yt, yt+h) (2)

Otherwise, yt exhibits short memory if the following
formula is verified:

∞∑
h=−∞

|ρ(h)| <∞ . (3)

However, several graphs and statistical tests are used to
verify the long memory feature. These graphs and tests are
given below.

A. Verifying the Long Memory Feature by Using Graphs

Many graphs provide an indication of the existence of
the long memory feature. They include the autocorrelation
function (ACF), range over the standard deviation (R/S),
variance, variogram, spectral density function, and Higuchi
plots.

1) Autocorrelation Function Plot: A long memory phe-
nomenon can be specified when ACF decays more slowly
than exponential decay [1], as reported by [11], in accordance
with the following formula:

ρ(h) =
Γ(1− d)Γ(h+ d)

Γ(d)Γ(1 + h− d)
. (4)

It can also be written using another formula, as follows:

ρ(h) ∼ Γ(1− d)

Γ(d)
h2d−1, (5)

where −0.5 < d < 0.5 and h→ ∞.
ACF shows the correlation between observations for dif-

ferent periods. An ACF diagram is frequently used as a
primary diagnostic tool in studying time series applications.
It is considered necessary in highlighting some of the crucial
characteristics of a time series, particularly in verifying the
presence of long memory in a time series.

2) R/S Plot: The R/S graph was described by [13] to have
the following steps.

1) Q = R/S is calculated for all possible values of time
t and lag(k).

2) Log(Q) versus log(k) is plotted.
3) A straight line y = a±b log(k) that corresponds to the

ultimate behavior of the data is drawn. Coefficients
a and b can be estimated, e.g., via the least-squares
method.

The slope of this straight line is considered a measure for
distinguishing between short and long memory processes. In
particular, the slope of this straight line is greater than 0.5
for operations involving long memory and tends to be 0.5
for most short memory operations.

3) Variance Plot: The variance of the sample mean of a
long memory process based on m observations was explained
by [11] by calculating the following formula:

V ar(ȳm) ∼ cm2d−1, (6)

where

V ar(ȳm) =
1

m

2m−1∑
j=1

(
1− j

m

)
γ(j) + γ(0)

 , (7)

and c is a positive constant. Consequently, by dividing a
sample with size n into k blocks with size m, we obtain

log (V ar(ȳj)) ∼ c+ (2d− 1) log(j) (8)

for j = 1, 2, . . . , k and (ȳj) is the mean of the jth block.
That is,

ȳj =
1

m

j×m∑
t=(j−1)×m+1

yt. (9)

Thus, for a long memory process, the slope of the line
described by Equation (8) should be greater than -1. By
contrast, the slope of the line should be -1 for a short memory
process.

4) Variogram Plot: [14] defined the variogram for the lag
distance k formula as follows:

V (k) =
1

2
E
[
(Xt −Xt−k)

2
]
, (10)

where t denotes all possible locations.
Thus, the presence of long memory in data can be inferred

through the behavior of the variogram in terms of the slow
ascent and non-zigzagging of the plot in accordance with
Equation (10), i.e., it is opposite to that in the ACF plot.
Notably, this type of graph requires numerous observations
to present the correct behavior.

5) Spectral Density Function Plot: Another graph used
to distinguish between short and long memory processes is
the spectral density function plot. As [13] and [15] reported,
the spectral density function needs to be formulated before
constructing the plot. The formulation is given as follows:

A covariance stationary process Xt is a long memory
process if its spectral density function f at λ → 0+ is
approximated by

f(λ) ∼ Cf (λ) · |λ|−2d, d ∈ (0,
1

2
) (11)

where

Cf (λ) =
σ2
ϵ |ψ(1)|2

2π|ϕ(1)|2
. (12)

The function in Equation (12) gradually changes to zero at
frequency zero. That is, most of the data are centered around
zero. Meanwhile, ψ(1) and ϕ(1) are the moving average and
autoregression polynomials, respectively, when the backward
shift operator is 1. This phenomenon is explained in detail
in Section II-D.
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6) Higuchi Plot: The Higuchi plot is another method for
verifying the existence of long memory by using graphs.
As reported in [16]-[20], this technique calculates the fractal
dimension (D) of a finite time series at regular intervals j =
1, 2, . . . , N .

X(1), X(2), X(3), . . . , X(N) (13)

From the series in Equation (13), we construct a new time
series for a fixed (k ≤ N

64 ), Xm
k , which is defined as

follows:

Xm
k : X(m), X(m+k), X(m+2k), . . . , X(m+

[
N −m

k

]
∗k), (14)

with m = 1, 2, . . . , k, where m and k are integers
that indicate the initial time value and the interval time
(lag), respectively. Moreover, the symbol [...] denotes Gauss’
notation (i.e., the larger integer). Then, [16] defined the
length of the curve associated with each time series for Xm

k

as follows:

Lm(k) =
1

k


[
N−m

k

]
∑
i=1

|X(m + ik) − X(m + (i − 1) ∗ k)|


 N − 1[

N−m
k

]
∗ k

 .

(15)

The term (
[
N−m

k

]
∗k) represents the normalization factor for

Lm(k). Thereafter, Higuchi calculated the length of all the
curves for the time interval k in Equation (15) as follows:

L(k) =
1

k

(
k∑

m=1

Lm (k)

)
. (16)

Finally, if the expected value for Equation (16) follows a
power law, namely,

E (L (k)) ∼ k−D, (17)

then the time series in Equation (13) achieves long memory
operation with dimension D. We use the log of Equation (17)
to illustrate this phenomenon via plotting. If log(E(L(k)))
is plotted against log(k), then data should fall on a straight
line with a slope −D. Thus, we verify the presence of the
long memory feature in the time series.

B. Verifying the Long memory Feature Using Statistical Tests

Numerous statistical methods are used to verify the ex-
istence of the long memory feature [18]. These methods
include R/S analysis, Higuchi, aggregated variance, and
structural break methods. These methods are explained in
detail in the succeeding sections.

1) R/S Analysis: In particular, the range divided via R/S
analysis is commonly used in these methods. [21] found
that R/S analysis exhibited better properties than ACF and
variance time function analyses. [22] modified R/S analysis
and determined that it is a powerful tool for non-normal
distributions, short-range dependence, and conditional het-
eroscedasticity under a null hypothesis. The formula of R/S
analysis is as follows [21]- [22]:

R(n)

S(n)
=

max
1≤k≤n

k∑
i=1

(
Xi − X̄n

)
− min

1≤k≤n

k∑
i=1

(Xi−X̄n)

( 1
n

n∑
i=1

(Xi − X̄n)2 )

1
2

,

(18)

where

X̄n =
1

n

n∑
i=1

Xi, (19)

and n is the sample size.
2) Higuchi Method: The method proposed by [16] in-

volves calculating the length L or the fractal dimension D
of a fractional Brownian motion path obtained by taking
the cumulative sum of fractional Gaussian noise. The fractal
dimension D is linked to α ∈ (1, 3) in accordance with [16]
and [23] through the following relationship:

D =
5− α

2
, (20)

where α is considered the index of a power law spectrum
[24]. [25] reported that the method involves the creation
of subseries in succeeding iterations with different initial
samples m and time intervals K. Notably, this method can
yield D values, such that 2 < D < 2.1 for α < 1, as men-
tioned by [23]. [16] reported that this method could obtain a
more precise and stable characteristic time scale. Moreover,
this method could be applied to the observational data of
natural phenomena and is useful for analyzing nonperiodic
and irregular time series. In addition, the Higuchi method is
a time-domain method that is useful for nonstationary series
[25]. The aforementioned features represent the advantages
of the Higuchi method over other methods. The mathematical
formula of the Higuchi method is presented in Section II-A6.

3) Aggregated Variance Method: To apply this technique,
the time series Xi must have length N . Thus, the corre-
sponding aggregated series as reported by [13] and [26] can
be defined by

X(m)(k) =
1

m

 km∑
i=m(k−1)+1

X(i)

 , (21)

where k = 1, 2, . . . , Nm for successive values of m.
For a given k, the sample variance of X(k) is used as a

plausible estimator of ̂V ar(X(m)(k)), as follows:

̂V ar(X(m)(k)) =
1

N/m

N/m∑
k=1

(X(m)(k)− ¯X(m) )
2

 ,

(22)
where ¯X(m) denotes the sample mean of X(m). On this
basis,

V ar
(
X(m)

)
∼ σ2mβ , (23)

because m → ∞ and β = 2H − 2 < 0, where H is Hurst
exponent, and σ is the scale parameter. Lastly, Equation (22)
should be asymptotically proportional to m2H−2 = mβ for
large N/m and m, and the resulting points should form a
straight line with slope β, where −1 ≤ β < 0.

4) Structural Breaks: Long memory characteristics and
features are also generated by a nonstationary structural
break or by regime-switching models [27], [6]. Therefore,
these breaks of a time series should be verified because they
determine whether long memory is actually present or merely
imaginary, as pointed out by [27]- [29], [6]. In [30], Chow
introduced the single break test, which had been modified as
the Quandt likelihood ratio (QLR) test as reported by [6].
This test is performed to determine the break between two
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times (t0 and t1), also known as the supremum F-statistic
[31], [6] which is given by the following expression:

Sup F = max {F (t0) , F (t0 + 1) , . . . , F (t1)}, (24)

where Sup F-statistic is the highest among the given values.
In addition, if the P-value of the F-statistic is less than 0.05,
then the test rejects the null hypothesis (see [6]).

C. Estimations

Meanwhile, several methods and functions have been
used to estimate long memory parameters [the value of the
fractional difference (d)]. These methods and functions are
the Hurst exponent, Geweke and Porter–Hudak’s (GPH’s) es-
timator, the smoothed periodogram (Sperio), and fractionally
differenced (Fracdiff), which were presented by [11], [13],
[18], [32]- [34]. These methods and functions are described
in the following sections.

1) Hurst Exponent: This method was proposed by [10]
and then reviewed by [35], as mentioned by [33]. The range
R∗

(n) of the subtotals are used to deviate the values from
their mean in a time series and divided by the standard
deviation S∗

(n). The full formula is denoted by Q(n) and
written as follows:

Q(n) =
R∗

(n)

S∗
(n)

=

max
1≤k≤n

k∑
i=1

(
Xi − X̄

)
− min

1≤k≤n

∑k
i=1(Xi − X̄)(

1
n

n∑
i=1

(Xi − X̄)2
) 1

2

.

(25)

2) Geweke and Porter-Hudak’s (GPH’s) Estimator:
On the basis of the regression equation Yi, Geweke and
Porter–Hudak (1983) proposed the estimation for parameter
d̂n in accordance with the following equation:

d̂n = −

(
n∑

i=1

(
Xi − X̄

)2)−1( n∑
i=1

(
Xi − X̄

) (
Yi − Ȳ

))
,

(26)
where

Yi = α+ βXi + εi, (27)

Ȳ =
1

n

n∑
i=1

Yi. (28)

3) The Smoothed Periodogram (Sperio): The Sperio func-
tion is simply a parameter used in R software. This function
is used to estimate fractional differences d value [33], and
it is denoted by fs(w) by using the Parzen lag window as
follows:

fs(wj) =
1

2π

m∑
−m

k
( s
m

)
R(s) cos (swj), (29)

where

k(u) =

 1− 6u2 + 6|u|3 , |u| ≤ 1/2
2(1− |u|)3 , −1/2 < u ≤ 1
0 , |u| > 1

 (30)

k (u) is called the Parzen lag window generator (i.e., the
Parzen lag window is selected due to its feature of always
yielding positive estimates of the spectral density), m is the

parameter that commonly corresponds to the truncation point,
and

R(s) = 1
n

(
n−s∑
i=1

(Xi − X̄)(Xi+s − X̄ )

)
,

s = 0,±1, . . . ,±(n− 1),
(31)

is the sample autocovariance function.
4) Fractionally-Differenced (Fracdiff): Another function

in R software that is used to estimate the value of d
is the Fracdiff function. This function uses the regression
estimation method to estimate the fractional difference d
of the ARFIMA model [36]. It is well-defined by using a
binomial series as follows:

∇d = (1−B)d (32)

=
∞∑
k=0

(
d

k

)
(−B)k

= 1− dB − 1

2
d(1− d)B2 − 1

6
d(1− d)(2− d)B3 − . . .

D. Autoregressive Fractional Integrated Moving Average
(ARFIMA)

The definition of the autoregressive integrated moving
average (ARIMA) model was suggested by [37]. A stationary
time series xt is called an ARIMA model of order (p, d, q)
and represented by (ARIMA(p, d, q)) if

ϕp(B)∇dxt = θq(B)ϵt, (33)

where

ϕp(B) =
(
1− ϕ1B − ϕ2B

2 − . . .− ϕpB
p
)
, (34)

θq(B) =
(
1 + θ1B + θ2B

2 + . . .+ θqB
q
)
, (35)

∇d = (1−B )d, (36)

where ϕp(B) is a polynomial of the autoregression for the
order p and denoted by AR(p), θq(B) is a polynomial for
the moving average of the order q and denoted by MA(q),
the integer number d is the nonseasonal difference order, B
represents the backward shift operators defined by Bk Xt =
Xt−k, ∇ represents the nonseasonal difference operators,
and ϵt is a white noise process.

From the preceding definitions, the long memory prop-
erty will be represented through the ARFIMA model. The
ARFIMA model is similar to the ARIMA model except for
the value of d. As reported in [13], if d ∈ (0, 0.5), then
the dataset has a long memory; if d ∈ (−0.5, 0), then the
memory is intermediate. Lastly, if d = 0, then the dataset
has a short memory.

1) Advantages of ARFIMA Models: [18] explained the
advantages of the ARFIMA(p, d, q) model in accordance
with the different values of d presented in Section II-D, as
follows.

1) If d > − 1
2 and all the roots of the polynomial θq(B)

lie outside the unit root, then the series xt is invertible
and unbounded.

2) If d < − 1
2 and all the roots of the polynomial ϕp(B)

lie outside the unit root, then the series xt is stationary.
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3) If − 1
2 < d < 0, then the series xt is invertible and

nonpersistent.
4) If 0 < d < 1

2 , then xt is a stationary series.
In special cases, as mentioned by [18], ARFIMA(0, d, 0)

models are stationary and invertible if d ∈ (− 1
2 ,

1
2 ). Mean-

while, if d = 0, then ARFIMA(0, d, 0) is a white noise.

III. LIMITATIONS, EXTENSIONS, COMPARISONS, AND
APPLICATIONS OF ARFIMA

Since its introduction, ARFIMA has been widely used in
many research areas for analyzing time series [38], such as
in crude oil prices by [1] and [31], gold prices by [39],
traded securities by [40], financial markets by [41], air traffic
passengers by [42], climate and financial econometrics by
[43], air quality by [44], and electroencephalography (EEG)
signals by [45].

However, the algorithm of the ARFIMA approach exhibits
several limitations. First, it restricts the value of the fractional
difference d in Equation (36), such that it lies in the station-
ary and invertible range, as detailed in Section II-D1. The
second limitation is associated with the pre-assumed linear
form of the ARFIMA model [46]. The third limitation is
related to dealing with non-normal residual distribution for
the individual ARFIMA model or the heteroscedasticity and
ARCH effects for the model’s residual [5]. To overcome the
second and third limitations, [6] and [46] presented the use of
hybrid methods based on the ARFIMA model by combining
different methods or linear and nonlinear models, such as
ARFIMA and Artificial neural networks (ANNs).

Choosing an appropriate forecasting model is essen-
tial in practical research and its application in differ-
ent fields. Model fitting information criterion is com-
monly used in model selection. Typically applied infor-
mation criteria are Akaike information criterion (AIC),
Schwarz Bayesian information criterion (BIC), Corrected
AIC (AICc), and Hannan–Quinn (HQ) information crite-
rion [37], [47]- [49]. The optimal model demonstrates the
minimum AIC, BIC, AICc, and HQ criterion values. [4]-
[5], [50] utilized the two smallest values for the accuracy
criteria, including AIC, and did not simply rely on a sin-
gle value when choosing the optimal model for ARIMA,
seasonal ARIMA (SARIMA), ARFIMA, ARFIMA with
standard generalized autoregressive conditional heteroscedas-
ticity (ARFIMA-sGARCH), ARFIMA with functional
GARCH (ARFIMA-fGARCH), ARFIMA with exponen-
tial GARCH (ARFIMA-EGARCH), ARFIMA with thresh-
old GARCH (ARFIMA-TGARCH), ARFIMA with inte-
grated GARCH (ARFIMA-IGARCH), ARFIMA with abso-
lute value GARCH (ARFIMA-AVGARCH), ARFIMA with
nonlinear GARCH (ARFIMA-NGARCH), ARFIMA with
nonlinear asymmetric GARCH (ARFIMA-NAGARCH),
ARFIMA with asymmetric power ARCH (ARFIMA-
APARCH), ARFIMA with Glosten, Jagannathan, and Run-
kle GARCH (ARFIMA-GJRGARCH), and ARFIMA with
component standard GARCH (ARFIMA-csGARCH). The
authors explained that the model with the best AIC value
among the frameworks does not produce the most outstand-
ing forecast model for the dataset. Thus, their studies used
three models that demonstrate the minimum value for this
criterion and compared their results to test this hypothesis.

Many studies have developed an extension of the ARFIMA
approach. The autoregressive tempered fractionally inte-
grated moving average (ARTFIMA) model was introduced
by [51] for wind speed data. [52] presented the ARFIMA
with exogenous variables (ARFIMAX) model. [53] proposed
the seasonal ARFIMA (SARFIMA) model.

Furthermore, many studies have compared ARFIMA with
other Box–Jenkins approaches. [42] suggested using ARIMA
and ARFIMA to model the time series dataset of domestic
air passengers in India for the period of January 2012
until to December 2018. The forecast accuracy result of
the ARFIMA(1,-0.347,1) model was better than that of the
ARIMA(1,1,1) model. [45] confirmed that EEG signals could
exhibit long-range dependencies, and ARFIMA models are
more appropriate for capturing temporal correlations com-
pared with conventional ARMA models by using the AIC as
their metric.

[44] applied ARIMA, ARFIMA, and HW smoothing tech-
niques to assess and predict air quality status in Chandigarh
City from 2009 to 2010. The ARFIMA(2,0.3051,2) model
was appropriate and even performed better than the other
models. [39] found that the ARFIMA(1,1.05716,[3]) model
outperforms the other ARFIMA models when applying this
procedure by using gold price data in Indonesia.

While [54] showed that the time-series dataset of news
sentiments exhibited self-similarity as well as a long mem-
ory feature, where the Hurst exponent and the long-range
correlation exponent were greater than 0.55 over four orders
of magnitude in time ranging from several minutes until to
ten days, that when analyzed three-time series of news senti-
ments for companies traded on the London Stock Exchange,
the New York Stock Exchange, and the Stock Exchange of
Hong Kong.

IV. FORECASTING METHODS BASED ON ARFIMA

The individual model is a popular forecasting technique
and a suitable methode used in many previous studies,
such as the ARFIMA model in [6]. Another methode of
obtaining accurate forecasts is using hybridization methods
to determine the future movement of the dataset and over-
come the weaknesses of individual models, such as dealing
with non-normal residuals and with nonlinear structures [6].
Accordingly, these models are known as hybrid models as
mentioned by [6].

Several studies have proposed using hybrid models and
applied ARFIMA to time series forecasting. In these studies,
ARFIMA is used as the primary model for hybridization
or combination with other models and the hybridization of
residual models. The forecasting model is utilized to forecast
each component, and the predicated results are combined to
obtain the final forecasted value of an original time series.

The literature provides several studies that use different
modeling and forecasting methods, ranging from simple
(individual models) to complex ones (hybrid models), to
deal with other components of a time series. This sec-
tion briefly presents some of the models used in previous
studies in sequential order. [55] examined volatility models
and their forecasting capability by using three types of
petroleum future contracts, namely, West Texas Intermediate
(WTI) crude oil, unleaded gasoline, and heating oil #2,
traded in the New York Mercantile Exchange, particularly
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their volatility persistence (or long memory properties). The
chosen models were ARIMA–GARCH, ARFIMA–GARCH,
ARFIMA–IGARCH, and ARFIMA with fractionally in-
tegrated GARCH (ARFIMA–FIGARCH). Although the
ARFIMA–FIGARCH model can capture the long memory
characteristics of returns and volatilities more accurately than
the other models, the out-of-sample analysis showed that no
single model outperformed the others in the three types of
petroleum future contracts. Consequently, investors should
exercise caution when measuring and forecasting volatilities
in petroleum future markets.

[44] used the ARFIMA, ARIMA, and Holt–Winters (HW)
smoothing techniques to assess and predict air quality status
in Chandigarh City. The ARFIMA(2,0.3051,2) model was
appropriate and even performed better than the other models.

[31] examined numerous ARFIMA models to analyze
and forecast crude oil prices using weekly WTI and Brent
series. They reported that the WTI series revealed three
breaks (in 1999, 2004, and 2008), while the Brent series also
exhibited three breaks (in 1999, 2005, and 2009). Moreover,
the ARFIMA(1,0.47,2) model was appropriate for the WTI
series, while the ARFIMA(2,0.09,0) model was suitable for
the Brent series.

[56] compared different techniques, namely, naı̈ve forecast
and neural networks, ARIMA, ARFIMA, Box–Cox trans-
formation, ARMA errors, trend and seasonal components
(BATS) forecast, trigonometric BATS forecast, Box–Cox
forecast, random walk forecast, normal method, and HW.
They were interested in introducing an appropriate model for
forecasting the stock market prices of S&P 500. The ARIMA
technique outperformed the other techniques and was even
more accurate in the forecasted volatilities for the subsequent
10 days based on mean error (ME), root-mean-square error
(RMSE), mean absolute error (MAE), mean percentage error
(MPE), mean absolute percentage error (MAPE), and mean
absolute scaled error (MASE).

Numerous techniques can be utilized to structure a non-
linear combination model (NCM), including the ARFIMA
model with support vector machine (SVM) and the backprop-
agation neural network (BPNN) model. [57] showed that the
forecasting performance evaluation of NCM was suitable and
better compared with single and linear combination models
when using the renminbi exchange rate against the US dollar
(RMB/USD) and the Euro (RMB/EUR).

[58] show that the ARIMA(1,1,1) model was appropri-
ate and performed better than the ARFIMA, ARIMA, and
error correction models to model and forecast the monthly
wholesale prices of mustard in the Sri Ganganagar District
of Rajasthan based on a MAPE value.

[40] found that the ARFIMA(1,0.413,2) model outper-
formed and more accurate in forecasting compared with the
other numerous individual ARFIMA and ARIMA models
for modeling and forecasting the total value of the traded
securities of the Arab Republic of Egypt based on RMSE,
MAE, and MAPE values.

[59] used a state-space (SS) models, ARIMA, ARFIMA,
artificial neural networks (ANN), an adaptive network-based
fuzzy inference system, and their combined versions to study
the sales forecasts of a global furniture retailer operating in
Turkey. The experimental results demonstrated that most of
the combined forecasts could achieve statistically significant

increases, and their accuracy is better than the individual
models.

[1] examined daily WTI data. The result of their study
showed that the price of crude oil exhibits structural breaks.

[60] compared the ARFIMA model with the singular
spectrum analysis (SSA) model to forecast the sales volume
of motorcycles in Indonesia. The results showed that the
second model outperformed the first model based on the
MAPE value.

[61] found that the SVM model outperformed the
feed-forward neural network (FFNN), ARIMA, ARFIMA,
Markov-switching ARFIMA, and random walk models when
using the monthly data of WTI and Brent oil prices.

[62] used cyclic regression with the ARFIMA–GARCH
residual process to model and predict oil prices. Although the
hybrid model can exhibit certain advantages and capture long
memory and conditional heteroscedasticity, it also effectively
captures periodicity. Furthermore, the first lag values of the
squared standardized residuals were correlated.

[63] examined and compared numerous individual
and hybrid models, namely, ARIMA, SARIMA,
ARFIMA, HW, SSA, ARIMA–wavelet, ARFIMA–wavelet,
SARIMA–wavelet, ARIMA with Kalman filter
(ARIMA–KF), ARFIMA with Kalman filter (ARFIMA–KF),
and SARIMA with Kalman filter (SARIMA–KF), for
predicting the future workloads of CPU, RAM, and
network. The SARIMA–KF hybrid model outperformed
the other models and achieved extremely high forecasting
accuracy based on the MAPE value.

[42] demonstrated that the forecast accuracy of
the ARFIMA(1,-0.347,1) model was better than the
ARIMA(1,1,1) model when modeling the data of domestic
air passengers in India based on the RMSE, MAE, and
MAPE values.

[39] found that the ARFIMA(1,1.05716,[3]) model out-
performed the other ARFIMA models when using the gold
price dataset of Indonesia.

[64] proposed a hybrid model that uses an adaptive neuro-
fuzzy inference system, ARFIMA, and Markov switching
models to forecast daily Brent oil prices. The experimental
results showed that the hybrid model outperformed the
individual models, namely, the adaptive network-based fuzzy
inference system, ARFIMA, and Markov switching, based on
RMSE, MAE, MAPE values. The researchers also performed
the Diebold–Mariano test.

[65] suggested a new model based on generalized autore-
gressive score models theory and allowed the long memory
parameter to change dynamically over time.

[66] showed that the proposed AFRIMA–LSTM hybrid
model could minimize the volatility problem and overcome
the overfitting problem of neural networks when compared a
hybrid Pakistan Stock Exchange forecasting model with the
ARIMA, long-short term memory (LSTM), and generalized
regression radial basis neural network (i.e., a GRNN) models
based on RMSE, MSE, and MAPE values.

[67] proposed a class of ARFIMA–GARCH models with
level shift (LS)-type intervention that can capture the long-
range dependence, volatility, and LS in the time series.

[41] applied the moving average cluster entropy ap-
proach to long-range correlated stochastic processes, such
as ARFIMA and fractional Brownian motion. Thus, this
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approach could capture detailed horizon dependence over rel-
atively short horizons, highlighting its relevance in defining
risk analysis indices. Also they proved that the horizon de-
pendence of cluster entropy is related to long-range positive
correlations in financial markets.

[43] found that the capability of the ARFIMA mod-
els achieved better forecasting performance compared with
short-memory alternatives for all long memory generating
mechanisms and forecast horizons, that’s whenever the long
memory of processes exhibits a high degree, regardless of
the generated mechanism.

Recently, many authors have demonstrated their interest
in obtaining and estimating ARFIMA models to choose the
best predictive model. [45] confirmed that EEG signals can
exhibit long-range dependency and that ARFIMA models
are more suitable for capturing temporal correlations than
ARMA models based on AIC value.

[4] determined the modeling and forecasting of
monthly Brent crude oil price and its volatility by
comparing the ARFIMA-sGARCH models versus the
ARFIMA-fGARCH models. The researchers noted
that the ARFIMA(2,0.3589648,2)-sGARCH(1,1) and
ARFIMA(2,0.3589648,2)-fGARCH(1,1) models under
normal distribution with RMSE equal to 0.08808882 and
optimal for these data (i.e., two-hybrid models of long-
memory phenomenon [ARFIMA] were obtained with two
members of the GARCH family [sGARCH and fGARCH]
with the same accuracy in the RMSE value). These
models outperformed several other models in modeling and
forecasting the volatility. Notably, Hurst exponent method
also demonstrated excellent results when constructing an
appropriate hybridization model for predicting.

[5] compared symmetric and asymmetric effects of
GARCH-type models to investigate the volatility of the
ARFIMA model using the monthly Brent crude oil price
series for the period of January 1979–July 2019. The
ARFIMA(2,0.3589648,2)–IGARCH(1,1) model under nor-
mal distribution was selected as the optimal model based
on AIC, BIC, and the minimum value for RMSE. The
optimal model of volatility was determined by comparing 13
hybrid models of GARCH (sGARCH, fGARCH, EGARCH,
TGARCH, IGARCH, AVGARCH, NGARCH, NAGARCH,
APARCH, apARCH, GJRGARCH, gjrGARCH, and cs-
GARCH) in terms of symmetric and asymmetric effects
at the level of (1,1). The Hurst exponent method outper-
formed the other methods when constructing an appropriate
hybridization model for the prediction.

[6] proposed a hybrid methodology that combines the
ARFIMA model with multilayer perceptron (MLP) mod-
els to take the strength of these models in linear and
nonlinear modeling. The researchers used the same pe-
riod time in [5]. The empirical results pointed out the
ARFIMA(1,0.3589648,0)–MLP(1,2,1) hybrid model outper-
forms the other models based on the RMSE and Ljung–Box
test.

The main factor in choosing an appropriate model for any
economic and financial time series is accuracy. Therefore,
the long memory field of the time series has been focused
in order to access accurate forecasting models. While many
review papers focus on the use of long memory versus
Box-Jenkins in a variety of areas, no study is concerned to

focus on analytical techniques for verifying the long-memory
feature as well as determining estimation methods/functions
for approximating long-memory parameters, limitations, ex-
tensions,comparisons, and applications.

Following this gap, the authors found that this study added
distinct importance to the modeling and forecasting research
group by verifying the ARFIMA model’s specific type. They
also observed that this work integrated various traditional
and modern methods of hybrid modeling on the basis of the
ARFIMA models and tested these methods among individual
and hybrid models in terms of performance accuracy. So, the
ARFIMA model can be generalized to other commodities,
not just the economic and financial time series data set. This
is confirmed by the review in this study (e.g., [42], [44]-[45],
[53]).Thus, the results highlight the relevance of verifying the
existence of long-memory features in any time series.

On the other hand, the experimental results in [4-6]
indicated our contributions to these works. First, these works
integrated various traditional and modern methods of hybrid
modeling on the basis of the ARFIMA models and tested
these methods among individual and hybrid models in terms
of performance accuracy. Second, the ARFIMA model with
the best AIC value does not necessarily produce the most
outstanding forecast model for the data set. Finally, the
value of these studies lies in the suggestion to “anticipate
potential obstacles and challenges when implementing steps
to hybridize ARFIMA models the moment they arise or avoid
them altogether”.

Consequently, by advancing our understanding of mod-
ern modeling, researchers’ selection of the long memory
technique can be incentivized to increase both the value
captured by the experimental analysis and the modeling in
this study. Building on this, our paper discusses the value
of the extent to which this technique is worth disseminating
and popularizing.

This study offers several strategic suggestions and rec-
ommendations, including the need for further investigations
in determining effective hybridization methods based on
ARFIMA models, for improving its performance. Thus,
future research directions may involve applying new hy-
bridization methods (e.g., using empirical mode decomposi-
tion), and conducting a comparative study on the methods
mentioned in this work to improve forecasting accuracy.
The overview in this study can also help researchers further
understand the ARFIMA model.

V. CONCLUSION

Analytical techniques for verifying the long-memory fea-
ture (graphs and statistical tests) and estimation meth-
ods/functions for approximating long-memory parameters
(value of the fractional difference [d]) in time series datasets
are comprehensively discussed in this study. Limitations,
extensions, comparisons, and applications of the ARFIMA
model are also presented in detail. A review of the recent
literature discusses the application of ARFIMA, including
hybrid methods, to time series forecasting in different fields.
The results of this study help to clarify all these points.
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