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The K-(2,1)-Total Choosability of 1-Planar Graphs
without Adjacent Short Cycles

Yan Song and Lei Sun®

Abstract—A list assignment of a graph G is a function L :
V(G) U E(G) — 2N, A graph G is k-(2,1)-Total choosable if
and only if for every list assignment L provided that |L(z)| =
k,z € V(G)U E(G), there exists a function c that c(z) € L(x),
and for all z € V(G) U E(Q), |c(u) — c¢(v)| > 1 if uwv € E(G),
|c(e1) — c(e2)| > 1 if the edges e1 and e are adjacent, and
le(u) — c(e)|] > 2 if the vertex u is incident to the edge e.
Denote by C(q;yl) the minimum % such that G is k-(2,1)-Total
choosable. We use (k, k)-cycle to denote that k-cycle is adjacent
to k-cycle. In this paper, we prove that if G is a 1-planar graph
with A(G) > 12 and without (k, k)-cycle, where k € {3,4},
then C, ,)(G) < A +4.

Index Terms—IL-(2,1)-total labeling, k-(2,1)-total choosable,
1-planar graph.

I. INTRODUCTION

N this paper, G is a finite simple graph. By V(G), E(G),

F(G), A(G), 0(G), we denote, respectively, the vertex
set, the edge set, the face set, the maximum degree, and the
minimum degree of G. Call u a k-vertex, a k+-vertex, or a
kT -vertex, if d(u) = k, d(u) > k, or d(u) < k, respectively.
Similarly a k-face, a k™ -face, and a k~-face are also defined.
A k-cycle is a cycle of length k. We say that two cycles (or
faces) are adjacent if they share at least one edge. Especially,
we use (k, k)-cycle to denote that k-cycle is adjacent to k-
cycle.

A graph is I-planar if it can be drawn in the plane so that
each edge is crossed by at most one another edge. Such a
drawing that the number of crossings is as small as possible
is called a 1-plane graph. Undefined notations are referred
to [1].

The (p, 1)-Total labeling problem of graph G was pro-
posed by Havet and Yu[4]. A graph G is said to be k -
(p, 1)-Total labeling if and only if there is a function ¢ from
V(G)UE(G) t0{0,1,2,...,k} so that |c(u) —c(v)] > 1if
wv € E(G), |c(e1) — c(ez2)] > 1 if the edges e; and ez are
adjacent, and |c(u) — c(e)| > p if the vertex u is incident to
the edge e. The (p, 1)-Total labeling number of G, denoted
by AL(G), is the minimum k such that G is k-(p, 1)-Total
labeling. Readers can refer to [3], [6], [7], [9], [10], [14] for
further research.

Suppose a list assignment of a graph G is a function
L:V(G)JE(G) — 2N. We say G is L-(p, 1)-Total label-
ing if there exists a (p, 1)-Total labeling ¢ that ¢(x) € L(x)
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for all z € V(G)JE(G). If L is any list assignment of
G such that |[L(z)| = k for all z € V(G)JE(G), then
the function c is called a k-(p, 1)-Total choosable function
of G with respect to L. The (p,1)-Total choice number of
G, denoted by C’pT7 1(G), is the minimum % such that G
has a k-(p, 1)-Total choosable function c. Clearly, L-(1,1)-
Total labeling problem of graph is the list total coloring
problem of graph. It is known that there is a List Total
Coloring Conjecture X;/ (@) = X" (@), we may conjecture
CrL1(G) = AT(G)+1. Unfortunately, we found some graphs
satisfying C7((G) > AT(G) + 1 in[11]. So, Y. Yu[l1]
proposed the following “Week List (p,1)-Total Labeling
Conjecture”.

Conjecture 1.1 ([11]) If G is a simple graph with
maximum degree A, then C (G) < A + 2p.

Y. Yu[l1] showed the conjecture to be true for tree and
path. Y. Yu[11] also proved the following results. (1) If G is
a star graph K ,, where n > 3 and p > 2, then C;l(G) <
A+2p—1 (2) If G is a outerplanar graph with A(G) > p+3,
then CT' (G) < A+2p—1.(3) If G is a graph embedded
in surface with Euler characteristic £ and A(G) big enough,
then CT'\ (G) < A+ 2p.

Especially, for the (1,1)-Total choice number, J. Hou et
al.[5] proved that if G is a planar graph with A(G) > 9, then
CT,(G) < A+2. 0. Borodin et al.[2] proved that if G is
a planar graph with A(G) > 12, then C7,(G) < A+ 1. X.
Zhang.[12] proved that if G is a 1-planar graph with A(G) >
21, then Cf, (G) < A+1. For the (2, 1)-Total choice number
of a planar graph, Y. Song and L. Sun [8] proved that (1) if G
is a planar graph with A(G) > 7 and 3-cycle is not adjacent
to k-cycle, k € {3,4}, then CF | (G) < A+4. (2) if Gis a
planar graph with A(G) > 8 and i-cycle is not adjacent to
j-cycle, where i,j € {3,4,5}, then CF | (G) < A+ 3.

In this paper, we mainly studies the (2,1)-Total choice
number of 1-planar graph. For Conjecture 1.1, we give some
positive answers. We prove the following theorem.

Theorem 1.2 If G is a 1-planar graph with A(G) > 12
and without (k, k)-cycle, where k € {3,4}, then C7(G) <
A+ 4.

II. PRELIMINARIES

The associated plane graph G* of a 1-plane graph G is
a new plane graph obtained by replacing all crossings of G
with new 4-vertices. A vertex u of G* is a false vertex if
u € V(G*)\ V(G), and a true vertex otherwise. Any face
f € F(G*) is false if it is incident with at least one false
vertex, and true otherwise.

Lemma 2.1[13] Let GG be a 1-plane graph without adjacent
triangles and let G* be its associated plane graph. For every
vertex v € V(G), if dg(v) > 5, then v is incident with at
most | 2d¢(v)] 3-faces in G*.
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Lemma 2.2[13] Let G be a 1-plane graph and let G* be
its associated plane graph. Then the following hold:

(1) For any two false vertices v and v in G*, uv ¢ E(G*).

(2) If there is a 3-face uvwu in G* such that dg(v) = 2,
then w and w are both true vertices.

(3) If dg(u) = 3 and v is a false vertex in G*, then either
wv ¢ E(G*) or uv is not incident with two 3-faces.

(4) If a 3-vertex v in G is incident with two 3-faces and
adjacent to two false vertices in G*, then v must also be
incident with a 5 -face.

(5) For any 4-vertex u in G, u is incident with at most
three false 3-faces.

III. STRUCTURAL PROPERTIES

We will give some properties of G as follows. For con-
venience, let ©(z) € L(x), where x € V(G)J E(G), be a
partially (2, 1)-Total choosable function of graph G, and the
function satisfies the definition of L-(2,1)-Total labeling in
the following sections. We denote the set of available colors
of z for z € V(G)J E(G) under the partially (2, 1)-Total
choosable function O(z) by Ae(x).

Property 3.1: 6(G) > 3.

Proof: Tt is similar to the proof of Property 3.1 of [8].

|

Property 3.2: Every 3-vertex in G is adjacent to 127-
vertex.

Proof: 1t is similar to the proof of Property 3.2 of [8].

|

Property 3.3: Every 4-vertex in G is adjacent to 107 -
vertex.

Proof: Suppose that a 4-vertex v is adjacent to a 97 -
vertex v. By the minimality of G, the graph G — uv has
a A+4-(2,1)-Total choosable function ©. We first erase the
color of the vertex u. Since |Ag(uv)| > A+4—(3+8+
3) > 2 and |Ae(u)] > A+4—(4+3x3) > 3. Let
a € Ao(uv). If Ag(u) # {a—1,a,a+1}, then let O(u) €
Ao(u) \ {o — 1,a,c¢ + 1} and O(uwv) = . If Ag(u) =
{a —1,a,a + 1}, then let O(u) = 8 € Ag(u) \ {a} and
O(uv) € Ao (uv)\{B-1, 8, B+1}. We can recolor the vertex
v and the edge vvy, easily. Therefore, G is A+4-(2, 1)-Total
choosable, a contradiction. [ |

Property 3.4: If a 5-vertex v in G is adjacent to a 5-vertex,
then v is adjacent to four 9 -vertices.

Proof: 1t is similar to the proof of Property 3.3. ]

Property 3.5: If a 5-vertex v in G is adjacent to a 5-vertex
and a 6-vertex, then v is adjacent to three 9™ -vertices.

Proof: 1t is similar to the proof of Property 3.3. ]

IV. PROOF OF THEOREM 1

In this section, we give the proof of our main results by
discharging method.
According to Euler’s formula, we get:

S (dex(w) =4+ Y (dex(f) —4) =-8

veV(GX) fEF(GX)

Then, we define an initial charge w on V(G*)J E(G™)
by setting w(x) = dgx () —4 forall z € V(G*) |J F(G*).
So, we have Zzev(GX)UF(GX)W(I) = —8. Our aim is
to obtain a new nonnegative charge w’(z) for all z €

V(G*)J E(G*) by designing discharging rules and redis-
tributing the charges, then we can get a contradiction:

0<

>

zev(GX) | F(G)

>

eV (GX) | F(G®)

W'(x) = w(z) = -8

This contradiction proves the non-existence of G and
completes the proof. For convenience, let 7(a; — az) be
the charges transferred from a; to as. Let (a1 — a9, a3)
be the charges transferred from element a4 to each of element
as and as. And, 7*(a; — ag,as) be the charges transferred
from element a; through a false vertex v to each of element
a9 and as.

So, we design discharging rules as follows.

R1. If dgx (v) > 8 and f be a face that is incident with
vin G*, then 7(v — f) = %.

R2. 1f dgx (v) = 7 and fi, fy be a 3-face and a 47 -face
that is incident with v in G*, respectively, then 7(v — f1) =
$and 7(v — f2) = 1.

R3.If dgx (v) = 6 and f be a 3-face that is incident with
vin G, then 7(v — f) = 1.

R4. If dgx(v) = 5 and f1 be a (5,91, F)-face that is
incident with v, and f; be the other 3-face that is incident
with v in G*, then 7(v — f1) = § and 7(v — f2) = 3.

R5. If v is a true 4-vertex and f be a 3-face that is incident
with v in G*, then 7(v — f) = 1.

RG6. Let v be a false vertex of G* such that vyvs crossed
vovy in G at v, and let f; with 1 < ¢ < 4 be the face that
is incident with vv; and vv;11 in G* (here v5 is recognized
as vi ).

R6.1 Suppose that min{dgx (v1),dg= (v2)} > 12.

R6.1.1 Let f; be a 3-face. If vous € E(G*), then
T*(fl — fg) = % If vivg € E(GX), then ’T*(fl — f4) = %

R6.1.2 Let f; be a 4*-face. If both vyv3 € E(G*) and
V14 € E(GX), then T*(fl — fg,f4,1}377j4) = % If voug €
E(G*), then 7*(f1 — f2,v3) = 3. If vivy € E(G*), then
T*(f1 = fa,v4) = %

R6.2 Suppose that 10 < min{dgx (v1),dgx (v2)} < 11.

R6.2.1 Let f; be a 3-face. If vovg € E(G*), then
T*(fl — fg) = % If vivg € E(GX),then T*(fl — f4) = %

R6.2.2 Suppose f1 is a 4T-face, then 7*(f; — v3,v4) =
L. Especially, if both vavs € E(G*) and vivy € E(GX),
then T*(fl — fg,f47v3,v4) = % If vovg € E(GX), then
T*(fl — fg,’l)37’04) = % If vivg € E(GX), then T*(fl —
f4, U3,’U4) = %

R6.3 Suppose that min{dgx (v1),dgx (v2)} = 9.

R6.3.1 Let f; be a 3-face. If vovs € E(G*), then
(f1 = f2) = é. If vivg € E(G*), then 7*(f1 — f4) = %.
R6.3.2 Let f; is a 41 -face, then 7*(f] — v3,v4) = %

R6.4 Suppose that min{dgx (v1),dgx (v2)} = 8, and f;
is a 4*-face, then 7*(f; — v3,v4) = 1.

R6.5 Suppose that min{dgx (v1),dgx (v2)} =7, and f1
is a 47 -face. If 7 < max{dgx (v1),dgx (v2)} < 11, then
T(f1 = vs,va) = 5. If maz{dgx(v1),dgx (v2)} > 12
then 7*(f1 — v3,v4) = 53.

R6.6 Let 5 < dgx (’01) < 6,dgx (’02) = 12+,dg>< (1}4) =
3, and fi is a 4T -face, then 7*(f; — v4) = %

R6.7 Let 5 S de (Ul) S 6, dGX (’1)2) Z 10, dGX (’1)4) = 4,
and f; is a 41 -face, then 7*(f1 — vy) = %
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R7 Every 3T -face redistributes its remaining charge after
applying the previous rules equitably to each of its incident
true 5~ -vertices.

Suppose that the vertex v on f € F/(G*) is a false vertex.
Let the false vertex v through which the face f transfers out
charges in R6 be a transitive false vertex of the face f. Then,
a transitive false vertex v on f € F(G*) is a false vertex
such that its two neighbors u,w on f both have degrees of
at least 5. If f sends out charges via a false vertex, then this
false vertex must be transitive by R6. And let v* denote a true
57 -vertex on f. The following will discuss the weight of each
3T -face to the incidented true 5~ -vertices after discharging
rules.

Claim 4.1: If f is a 6" -face and is incident with at least
one 3-vertex in G*, then f sends at least % to each of its
incident true 5~ -vertices.

Proof: Suppose f = vjvg---vgvy and dgx (v1) = 3.
Then vy and v; are neither transitive false vertex nor true
5~ -vertex. Let f be incident with at most s true 5~ -vertices,
and t transitive false vertices, then s + ¢ < dgx(f) — 2.
Suppose v; is a transitive false vertex. Let p*(v;) be the
amount of charges that f gets from v;_; and v;4;. Let
p~(v;) be the amount of charges that f sends out via v;.
By R6, we have p*(v;) — p~(v;) > 0, and the worst case
is min{dgx (v1),dgx(v2)} = 12. Then, 7(f — v*) >
IR s PO EE e  V as ST S
where dGX (f) > 8.

If dgx(f) = 6, then ¢t < 2. Suppose t = 2, then 1 <
s < 2. So v3 and vs are transitive false vertices. By R1, R6
and R7, we have 7(f — v*) > mm{w 6 —
4 -3 x2+ 2x3 > 2 Suppose t < 1, then
s < 3. By R1,R6 and R7, we have 7(f — v*) >
6—4+pt (Ut) P (Ut) 6— 4}> 2

min{ , where v; is a transitive
false vertex. If dax(f) = 7 then the proof is similar to the
dgx (f) =6. [ |
Claim 4.2: If f is a 6" -face and is incident with at least
one true 4-vertex in G*, then f sends at least % to each of
its incident true 5~ -vertices.
Proof: 1t is similar to the proof of Claim 4.1. ]
Claim 4.3: If f is a 7*-face and is incident with at least
one 5-vertex in G*, then f sends at least % to each of its
incident true 5~ -vertices.
Proof: Suppose f = vivg---vgvy and dgx (v1) = 5.
Let f be incident with at most s true 5~ -vertices, and ¢ tran-
sitive false vertices. Case 1: If both vy and vy are transitive
false vertices, then s+t < dgx (f) — 2. By R1, R6 and R,

4(t—2 2(t—3
we have 7(f — v*) > dox (f)=a+(F-§)x2- 2024 200
S
2(d (f) ) dex ()
> dgx (f)—4— =6 _ —
- S S

dgx (f) = 3.

Case 2: If there is only one transitive false vertex in
vy and vy, say vg, then vs is a 10F-vertex and s + ¢
dgx(f) — 1. By R1,R6 and R7, we have 7(f — v*

4(t—1) | 2(t—2 S{d(f)—1—s
dcx(f)_él_%_;'_%_ (t3 )+ (f3 ) > C‘X(f) 11 ( (f)3 1—s)
S - S

_3
3

> 2. where

+

wiro
w

<
>

dox () o

T8 4+2> 2 where dgx (f) > 9.1f 7 < dgx (f) < 8,
then the proof is 51milar to the Claim 4.1 of dgx (f) = 6.
Case 3: If neither vy nor v is transitive false vertex,
then at most one of vy and vy is 5-vertex by Property
3.4. Without loss of generality, we can assume vy is a 5-
vertex. If vs is a transitive false vertex, then v, is a 12%-

vertex and s +t < dgx(f) — 2. By RI,R6 and RT,
GX(f)_4_%+%_4(t3—1)+2(t3—2) >
S -

we have 7(f — v )
2—

g (1= dox () 4
dox (f) =5 -——=C _ -2
- +2 >

~ % where
dax (f) > 7. Otherwise, vz is neither transitive false vertex
nor true 5~ -vertex and s +t < dgx (f) — 2. Then, by claim
4.1, 7(f »v*) > 2.

Case 4: If v5 and v}, are neither transitive false vertex nor
true 5 -vertex, then s + ¢ < dgx(f) — 2. By claim 4.1,
T(f > v*) > 2. |

Claim 4.4: If f is a 6-face and is incident with at least
one 5-vertex in G*, then f sends at least % to each of its
incident true 5 -vertices.

Proof: Tt is similar to the proof of Claim 4.3. ]

Claim 4.5: If f is a 5-face and is incident with at least
one true 3-vertex(or 4-vertex ) in G*, then f sends at least
% to each of its incident true 5~ -vertices. Especially, if f is
incident with at least two 12%-vertex in G*, then f sends
at least % to each of its incident true 5~ -vertices.

Proof: 1t is similar to the proof of Claim 4.3. ]

Claim 4.6: If f = vjvovzvav5v1 is a b-face and is incident
with at least one 5-vertex in G*, then f sends at least % to
each of its incident true 5 -vertices. Especially, if dgx (v1) =
5,dax(v2) = 7T, and vy is a false vertex, then f sends at
least % to each of its incident true 5~ -vertices.

Proof: 1t is similar to the proof of Claim 4.3. ]

Claim 4.7: If f = vivovs---vgv; is a 67 -face in G,
dGX(Ul) = S,de (Ug) = 10+ and dGX(Uk) = 12+, then f
sends at least 1 to each of its incident true 5~ -vertices.

Proof: Suppose that f = vivavs - - - vkv1, dgx (V1) = 3,
dGX (Ug) = 10+ and dGX (’Uk) = 12+ then s+t < dGX (f)—
3.Case 1: If t =0, then s < dGX f)—3.By R1 and R? we
have 7(f — v*) > dgx (1) —4+5+5 > dGX(f)

Case 2: Suppose t = 1, then s <dgx( fﬁ
and R7, we have 7(f — v*) > GX(Sf) > dciég j =1.

Case 3: Suppose t = 2, then s < dgx (f) s, Suppose
that v;,v;, v, and vy, where ¢ < j < k < h, be the
neighbors of two transitive false vertices on the face f,
and £(f) be the residual charge of f after R1-R6. Let
min{dgx (v;), dgx (v;), dgx (vk), dgx (vn)} = ¢. If ¢ > 12,
then {(f) > dgx (f) —4—3 x24+ 2 x3=dgx(f)— X by
R1, R6.1 and R7. Similarly, if 10 < ¢ < 11,¢ =9, q = 8,
¢=Tand5 < ¢ <6, then £(f) > dGX(f)——4 by R1—RT.

So, 7(f = v) > dax = > AN 5,

(H-
Case 4: Suppose that ¢ > 3, then s < dax (f) — 6. By
4t 4 2t
R1,R6 and R7, we have 7(f — v*) > M >

2(dyx (F)—3—5)
dep (f) == 2ax (D7370) L ()6
. > gy T2 1 u

Checking w'(z) > 0 for ;é e VIG)UF(G ) Firstly, we
check all the vertices in V(G). Among the neighbors of true
k-vertex v of (G, the neighbor with the smallest degree is
v1.. Then denote by v1/,vo, - -+, vxs the neighbors of v in
G that lie consecutively around v. Similarly, we denote by
v1, V3, - - -, Uk the neighbors of v in G* that lie consecutively
around v, where dgx (v;) =4 or dgx (v;) = dg(vy) for i =
1,2,---,k. And denote by f; the face that is incident with
vv; and vv;4q in G*. If f; is a false 3-face that is incident
with v;v;41, then the face adjacent to v;v;41 in G* that is
different from f; is denoted by h;.(the subscript is taken by
modular k). These notations will be used in the proof of the
next propositions without explaining their meanings again.

4. By R1, R6
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(l)dgx (U) =3.

By Lemma 2.2, v is incident with at most two 3-faces.

Case 1: Suppose that v is not incident with any 3-faces.

Case 1.1: Suppose v is incident with at least one 6™ -face
and one 5"-face in G, then w'(v) > —1+ % + 3 =0 by
claim 4.1 and claim 4.5.

Let v be incident with one 67 -face, say fi, and two 4-
faces fo = vvougvs and f3 = vvzugvy. If vy or vy is true,
say vy, then 7(fs — v) > min{3 + 3 — 2,3} = } by
R1, R6 and R7. If v is true vertex, then 7(fo — v) > %
and 7(fs — v) > 1 by RI, R6 and R7. Thus, w'(v) >
—1+3+42 = 0. Otherwise, vy, vz and v3 are all false vertices.
If up or us is a true 8T -vertex, say us, 7(fz — v) > % by
R1 and R7. Thus, w'(v) > =1+ 3 4+ % > 0. Otherwise,
5 < dgx(u2),dgx (ug) < 7 by property 3.1, property 3.2
and property 3.3. The face incident to vous(usvs) in G* that
is different from f5 is denoted by k1(k2). The face incident
to viuz(ugvs) in G* that is different from f5 is denoted by
ks(ky). Since G doesn’t have (4,4)-cycle, so at least one
of ki, ko, ks and k4 is a 41-face. We can assume k1 is
a 4% -face. If dgx (uz) = 7, then 7*(ky — v) > 2 by
R6.5, and T(f2 — v) > 1 by R2 and R7. Thus, w( )

—1+2+51+2>0. Ifde(UQ) 7é7 then 7% (k1 — v) > %
by R6.6. Thus, w( )>—-1+++2=0.

Case 1.2: Suppose v is not 1ncrdent with 67 -face and is
at least incident with one 5-face.

Case 1.2.1: If v is incident with three 5-faces, then
w'(v) > =14 % x 3 =0 by claim 4.5.

Case 1.2.2: If v is incident with two 5-faces, then we can
assume f; = vviwiwavov, fo = vvsuiugvzv are H-faces
and f3 = vwvszgvv is a 4-face. Suppose there is at least
one true vertex in vy, vo and ws. If vy or wsz is true, then
by the symmetry, assume that v; is true. Since G doesn’t

have (4,4)-cycle, so 7(fs = v) > min{2+2—2,3} =1
By Claim 4.5, 7(f; — v) > % and T(fg —v) > 1.

w\w\m

Thus, W' (v )_—1—|—7><3—0 If vy is true, then 7(f; —

_ 1
v) > min{ = g i 8y = B by R, R6 and R7. Similarly,
T(f2 = v) > Thusw() —1+2+2>0.

Otherwise, vl, vy and vz are all false Vertrces Then there
are at most three true 5~ -vertices in w1, wo,u; and us by
Property 3.2, Property 3.3 and Property 3.4. Suppose there
are three true 5~ -vertices in wy, wo, 1 and us, without loss
of generality, then we can assume ws is not a true 5~ -vertex
and both u; and us are 5-vertices. So 23 is a 9t- vertex by
Property 3.4. Then, 7(f; — v) > = and 7(fs = v) > 5 by
R1 and R7. Thus, w'(v) > —1+1 + > (. Suppose there are
at most two true 5~ -vertices in wl, wg, uy and us. We only
consider wi, wa, w1, U1 Or Wi, Uy are true 5 -vertices by the
symmetry. If wy,wo are true 5~ -vertices, then 7(fo — v) >
1 by R7. Thus, w'(v) > =1+ 1 = 0. If wy,uy (or wy,us)
are true 5 -vertices, then 7(f; — v) > #
7(f2 = v) > 5. Thus, w'(v) > =1+ 2 4+ £ = 0.

Case 1.2.3: If v is only incident with one 5-face, then we
can assume f; = vvjwiwevav is a dH-face, fo = vvozovzv
and f3 = vvsgzzviv are 4-faces. Suppose there is at least one
true vertex in v1, Vg and vs. If vg is true, then 7(f3 — v) >
min{3 +7_§>§} =1 7(fo—v)>fand7(f1 »v) > 1
by R1, R6, R7 and Claim 4.5. Thus, w’(v) > —1+43 x3 = 0.

If vy or vy is true, say vy, then f3 is a (3, F,3%,12%)-
face. By R1 and R7, 7(f3 — v) > i. Suppose both w; and

— 2
73and

wo are true 5~ -vertices. By R1 and R7, 7(f; — v) > 1.

If vy is true, then 7(fo — v) > % by R1 and R7. If vg ?i)s
false, then z3 is a 9T -vertex by Property 3.4. By R1 and R7,
7(f2 = v) > 3. Thus, w'(v) > —1 4 & x 3 = 0. Suppose
there is at most one true 5 -vertex in w; and wsy. If f;
is incident with transitive false vertex, then 7(f; — v) >
min{l + 2 x 2— 4 MiZ8} — 2 by R1 R6.2, R6,6 and
R7. If f; is not 1nc1dent with trans1t1ve false vertex, then
T(fi = v) > 3 > 2 by RL,RT. By R1,R6 and R,
T(fs = v) > Thusw() ~1+24+4=0.
Otherwise, vl, vg and wv3 are all false If wy and wo are
true 5~ -vertices, then zo and 23 are 9" -vertices by Property
3.4. By RI and R7 7(f2 = v) > 2, 7(fs = v) > 2. Thus,
w'(v) > =1+2+2 >0.1f wy and w; are 6+-vertlces then
7(f1 = v) > 1 by Rl and R7. Otherwise, we can assume ws
is a 6T -vertices and w is a true 5~ -vertex by the symmetry.
If wy is a G-vertex, then z3 is a 9t-vertices by Property

3.5, then T(fB — 'U) 2 g A dT(fl — ,U) 2 1+% = %

by R1 and R7. Thus, w’(v) > -1+ 2 + 3 > 0. If wy is

a 7t-vertex, then 7(f; — v) > 15 2+4 —4 by R1 and
R7. Since 2923 € E(G), wizz € E(G), and wy is a true
5~ -vertex, then there is at least one 7" -vertex in z and zs.
Thus, w'(v) > =14 22 + 1 > 0 by R1 and R7.

Case 1.3: Suppose f1 = vV ULV, fo = vVUsugv3zv and
f3 = vvsugviv are all 4-faces.

Case 1.3.1: Suppose there is at least two true vertices in
v1, vp and w3, say vy and vo, then 7(f; — v) > 2 and
7(f2 = v) > § by Rl and R7. Thus, w'(v) > -1+ 241 =
0.

Case 1.3.2: If there is only one true vertex in vy, vy and
vs, say vi, then uy, us and ug are all true vertices. Suppose
there is at most one true 5~ -vertex in u1 and us, say ui,
then 7(f3 — v) > 2 and T(f1 —> v) > % by R, R6 and
R7. Thus, w'(v) > 71 +2+Li=0 Suppose there is at
most one true 4~ -vertex in u1 and us, say ui, then us is a
10" -vertex. By R1 and R7, 7(f2 — v) > %, T(fi = v) > %
and 7(f3 — v) > §. Thus, w'(v) > =14+ 2 + 3 x2 > 0.
Otherwise, both u; and us3 are 5-vertices. The face incident
to vouy in G* that is different from f; is denoted by k;.
Since G doesn’t have (4,4)-cycle, so ki is a 4T -face. By
R6.6, 7* (k1 — v) > 3. By Rl and R6, 7(f1 — v) > % and

T(fs > v) > 1 Thus w'(v) > -143x3=0.

Case 1.3.3: Suppose v1, v9 and vg are all false vertices,
then u1, us and ug are all true vertices. If there is at least one
true 4~ -vertex in uy,up and ug, then w'(v) > —14+242 >0
by Property 3.1.2, Property 3.1.3, R1 and R7.

Otherwise, u1, up and us are all 5+-vertices. Suppose that
u1,us and ug are all 5-vertex or 6-vertex. The face incident
to wyuz in G* that is different from fi(f3) is denoted by
k1(ks). The face incident to ugus in G* that is different
from f5(fs) is denoted by ks(k4). The face incident to ujus
in G* that is different from fo(f1) is denoted by ks5(kg).
Since G doesn’t have (3, 3)-cycle, so at least three 4*-faces
in kl, kg, /413, k‘4, k‘5 and kﬁ. By R6.6, T*(/{JZ — U) > ;),
where k; is a 4-face. Then, w’(v) > =14 % x 3 =0.

Suppose there is at least two 7T -vertex in uq,us and us,
say u1 and us, then ug is a 5-vertex or 6-vertex. If u; and
ug are all 12%-vertices, then 7(f; — v) > 2 and 7(f; —

v) > by R1,R2 and R7. If u1 or us is a 121 -vertex,
say ul, then 7(fi = v) > 2 and 7(f; — v) > 1 by
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R1,R2 and R7. Since G doesn’t have (3,3)-cycle, so at
least one 4*-face in k3 and k4, say k3 By R6 2 — R6.6,
(ks = v) > £. Thus, w'(v) > =1+ 2+1+1 >0. If7<
dox (u1) < 11,7 < dgx (uz) <11, then T (k —> v) > £ by
R6.2 — R6.6, where 1 = 1,2,3,4,5,6 and k; is a 47- face
By R1,R2 and R7, 7(f1 = v) > § and 7(fz = v) > 1.
Thus, w'(v) > -1+ 1 x3+1x2>0.

Suppose there is only one 7T -vertex in uj,us and ug, say
u1, then uy and ug are 5-vertices or 6-vertices. If dgx (u1)
> 12, then 7(f1 — v) > 2 by R1 and R7. Since G doesn’t
have (3, 3)-cycle, so at least one 4*-face in k3 and k;4, say ks.
By R6.6, 7* (ks — v) > 1. Thus, w'(v) > -1+ 2+ 1 =0.
If 10 < dgx(u1) < 11, then T(fl — ) >3 by Rl RT.
By R6.2 and R6.6, T (k —H}) > &, where k; 1sa4+ face.
Thus, o'(v) > -1+ 2 +7><3—0 If 7 < dgx(u1) <9,
then 7(f1 — v) > 7 i by R2 and R7. By R6.3 — RG6.6,
(ki = v) > 2, Where i=1,2,5,6 and k; is a 4T -face.
By R6.6, 7*(k; — v) > L, where i = 3,4 and k; is a
4% -face. Thus, w’ > —1 + 2—5)5 X 2+ % + % =0.

Case 2: Suppose v is incident with one 3-face, say fi.

Case 2.1: Suppose that f; is a true 3-face. 7(f; — v) >1
by RLR7. If d (f2) =4, then 7(f2 — v) > min{2+ 2 —

2, 2} = £ by R1, R6 and R7. If dgx (f2) > 5, then T(f2
v) > % f31ss1mllartof2 Thus, w'(v) > =14 % x 3=0.

Case 2.2: Suppose that f; is a false 3-face, then by the
symmetry, assume that v; is false and v is true.

Case 2.2.1: Suppose vs is a true vertex, then 7(fo — v) >
2 and 7(f3 — v) > 1 by Claim 4.1, Claim 4.5, R1, R6 and
R7. Thus, w'(v) > -1+ 2 + 1 =0.

Case 2.2.2: Suppose vs is a false vertex.

(a)Suppose dgx (f2) > 6, then 7(fz — v) > £ by Claim
4.1.1f dg« (f3) > 5, then w’(v) > —14+ 2+ 1 = 0 by Claim
4.1 and Claim 4.5. If dgx (f3) = 4, then let f3 = vuzuzvyv.
Suppose dgx (u3) < 4, then 7(fy — v) > 1 by Claim 4.7.
Suppose 5 < dgx (u3) < 6, then the face incident to vyug in
G that is different from f1(f2) is denoted by hq(k1). Since
G doesn’t have (3, 3)-cycle, so at least one 4*-face in h; and
k1. By R6.1 and R6.6, 7*(hy — v) > % or 7*(k1 — v) > 1.
Thus, w'(v) > —1+ 2 + 1 = 0 by Claim 4.1. Suppose
dgx (us) =7, then 7*(hy — v) > % orT (k1 —v) > 55 by
R6.5 and R6.6. Thus, w'(v) > —1+2+ 2, +1 > 0by Clalm
4.1, R1 and R7. Suppose dgx (u3) > 8, then T(fs > v)>1
by R1 and R7. Thus, w'(v) > -1+ 2 + 1 > 0.

(b)Let fo = vvowiwavgw. If fo is at most 1nc11dent with
two true 5 -vertices, then 7(fo — v) > H‘; 3 = % by
R1, R6 and R7. Thus, w’(v) > 0 by Case 2.2.2(a). If fo
is incident with three true 5 -vertices, then dgx(wy) =
dgx (we) = 5. And f3 is incident with at least one 97 -vertex.

2
3
0

By RI, R6 and R7, 7(f — v) > “ti = 3 and (fs —
g2 148 5y _ 5 5.5
v) >min{3, 52,5} = 5. Thus, w'(v) > =1+ 5 +3 > 0.

(OIf f = vvguguzv is a 4-face, then 7(f — v) > & =
2. If f3 is a 61 -face, then w'(v) > -1+ 2 + 1 = 0. If f3
is a 5-face, then let f3 = vwzzy2zov1v and the face incident
to ugz; in G* that is different from f5 is denoted by ko.
Since G doesn’t have (4, 4)-cycle, so ks is a 4*-face in G*.
Suppose dgx (us) < 4, then d(z;) > 10. By R1, R6 and
R7, 7(fs — v) > 1-;% = 2. Thus, w'(v) > =1+ 2 +
% > 0. Suppose 5 < dgx (u2) < 6, then 7 (kg — ) > 1
by R6.6. By Claim 4.5, R1 and R7, T(fs —v) > 3 and
7(fo = v) > 3. Thus, w'(v) > =1+ £ x 3 = 0. Suppose

dgx(UQ) > 1, then T(f2 —> ’U) > +
W) >-1+32 + + > 0.

If f5is a 4- face then let f3 = vvgugvyv. Similarly, the
face incident to usug in G* that is different from fo(f3) is
denoted by k2(k3). Suppose there is at least one 8+-Vertex in
ug and ug. If dgx (uz) > 8, then w’ ( ) > —14+3+2> 0 If
dgx (ug) > 8, then 7% (hy — v) > & or 7*(ky —> v) > 1 by
R6 where hy or ky is a 4T -face. Thus, w’(v) > —1+ + Ly
£ > 0. Otherwise, 5 < dgx (ug) < 7 and 5 < dGX (ug) < 7.
Ifde(UQ)—7thenLU() —1+ + Z +ﬂ><2>0
Since there are at least two 41 -faces 1n kl, ko, k3 and hq,
then each of 4*-face sends at least 4 to v by R6.1 and
R6.6. If 5 < dGX(u2) < 6 and 5 < dgx(uz) < 6, then

7 by R1 and R7. Thus,

W'w) > -1+ 4 —|—7><2—Olf5<dgx(u2)<6and
dGX(U3)—7thenw() ~1+5+1+2 x2=0by
R6.1 and R6.6.

Case 3: Suppose that v is incident with two 3-faces, then
we can assume f; and fo are 3-faces.

Case 3.1: If f; or f5 is true, say fi, then f5 is false 3-
face and 7(f; — v) > 1 by RI and R7. Since G doesn’t
have (3,3)-cycle, so f3 is a 5T -face and hy is a 4T -face.
By R6.1, Claim 4.1 and Claim 4.5, 7*(hy — v) > % and
7(fs = v) > 5. Thus, w'(v) > =1+ & x 3 =0.

Case 3.2: If both f; and f> are all false, then f3 is a
5 -face and v is incident with two false vertices by Lemma
2.2(3)(4). Without loss of generality, we can assume that vy
and v3 are false. Since G doesn’t have (3, 3)-cycle, so there is
at least one 4T -face in hy and hs. By the symmetry, assume
that hy is a 4*-face. Then, 7*(hy % v) > 1 by R6.1.If f3
is a 6-face, then w'(v) > —1+ 1 +7—ObyC1a1m41
Otherwise, f3 = vv3z129v1v is a 5 face. The face incident
to v3z1(v129) in G* that is different from f3 is denoted
by k1(k2). Since G doesn’t have (4,4)-cycle, so there is at
least one 4"-face in k; and ky. Without loss of generality,
we can assume that k; is a 4T -face. If dgx(21) < 4, then
T(fs — v) > 122 = by RI1, R7 and Property 3.1.3.
Thus, w'(v) > —1 + + > 0. If 5 < dgx(z1) <6, then
T(fs > v) >3 a (kl — v) > % by R6.6 and Claim
4.5. Thus, w'(v) > 1 + £ x3=0. it 7 < de (21) <11,
then 7*(k1 — v) > £ and 7(f3 1;4 = 5 by
R6, R1 and R7. Thus, w(v)Z— %+7>0 If
dgx (z1) > 12, then 7(f5 — v) > ; by RI and R7.
Thus, w'(v) > -1+ 1+ 2 > 0.

(2) dgx (v) = 4.

If v is a false vertex or is not incident with any 3-face,
then w’(v) > 0 by discharging rules. So v is a true vertex
and is incident with at most three 3-faces by Lemma 2.2.

Case 1: Suppose that v is only incident with one 3-face,
say f1. If fy is a true 3-face, then 7(f; — v) > —1 4+
3+24+ 1 =2byRIand R7.If f; is a false 3-face, say
v; is false vertex and vo is true vertex, then 7(fy — v) >

min{3, ;,g x 2 — 3} = % by Claim 4.2, Claim 4.5, R,
R6.2 and R7. Thus, w( )>O+TO—7>ObyR4

Case 2: Suppose that v is incident with two 3-faces.

Case 2.1: If v is incident with at least one true 3-face,
then w'(v) >0+ 2 — 1 x 2 =0 by RI, R5 and R7.

Case 2.2: If v is incident with two false 3-faces.

Case 2.2.1: Suppose the two false 3-faces are adjacent,
say f1 and fo. If vy is false, then both h; and ho are 47-
face. Thus, w'(v) > 0+ 1 x2— 1 x2 =0 by R6.2 and
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R5. If vy is true, then hi or hy is a 4T -face, say h;. By
R6.2, 7*(hy — v) > =. Suppose vy is true. Since GG doesn’t
have (4 4)-cycle, so fg or fy is a 57-face. Thus, w’'(v) >
O—|— —1—7—1 x 2 > 0 by Claim 4.2, Claim 4.5 and RS.
Suppose V4 1s false If f3 or fy is a 5+-face, say fs, then

7(f3 —>v) > 5 by Claim 4.2 and Claim 4.5. Thus, w'(v) >
0+ + z — % x2>0.If both f3 and f; are 4-faces, then
let f3 = U’U3U3’U4’U and f; = vvguqviv. If there is at least
one 7T-vertex in uz and uy, say us, then 7(f3 — v) > i
by R2 and R7. Thus, w'(v) > 0+ 4+ + 1 -1 x2>0.
Otherwise, 5 < d(u3) < 6 and 5 < d(uyg) < 6. The face
incident to v3ug (viuyg) in G* that is different from f3(f4)
is denoted by k3(k4). Since G doesn’t have (4,4)-cycle, so at
least three 4" -faces in k3 and k4. Without loss of generality,
we can assume that k3 is 4T -face, then (ks = v) > £ by
R6.7. Thus, w'(v) > 04+ £ x2—1 x2=0.

Case 2.2.2: Suppose the two false 3-faces are not adjacent,
say f1 and fs. If v; and vs are false, then T(fz - v) >
min{%,%%x?— } =35 and 7(fy —v) > 3 by Clann
4.2, Claim 4.5, R1, R62 and R7. Thus, w’(v) > 0 + = X
2— 1 x2>0.If v; and vy are false, then 7(f; — v) >

min{Z, “3” 145X2-5 — 1 by R1, R6, R7 and Claim

4.2, where f2 1s a 5+ face. If f2 is a 4-face, then 7(f2 —
v) > min{2 £X2 8 9 3} = 2 by RI, R6 and R7. Thus,

w'(v)>2-1x 2 > 0.

Case 3 If v is incident with three false 3-faces, then v is
incident with at most one true 3-face, say f;. Without loss
of generality, we can assume that f; and f; are false 3-faces,
where 4,j € {2,3,4} Since G doesn’t have (4,4)-cycle, so
h; and h; are 4T-faces. Thus, w'(v) > 244+ x2-1x3>0
by R6,R5. Otherwise, v is incident with three false 3-faces,
say f1, fo and f3, then hy, ho and h3 are all 4™ -faces. Thus,
w'(v) > x3—1x3=0DbyR6 and RS.

(3) dgx (v) = 5.

By Lemma 2.2, v is incident with at most four 3-faces.

Case 1: Suppose that v is incident with at most two 3-
faces, then w'(v) > 1— 1 x 2 =0 by R4.

Case 2: Suppose that v is incident with three 3-faces.

Case 2.1: If the neighbors of v in G are 5(6)-vertex and
9%t -vertex, then let dgx (v1/) = 5(6) and dgx (vi)) = 97,
where ¢ = 2, 3,4, 5.

Case 2.1.1: Suppose v is incident with at last one true
3 face, say fi. If fiis a (5,97,9")-face, then w'(v) > 1 —
2 x3+ 15 > 0by RI, R4 and R7. If f; is a (5,5(6),97)-
face then T(fZ — ) > 1—58 and i=1.1f dgx (f2) > 5, then

w'(v )>1—l><3+ + > 0 by Claim 4.3, Claim44
and Claim 4.6. If de(fQ) = 4, then 7(fs —> v) > & by
R4, R6 and R7. Thus, w'(v) > 1— 1 x3+ % +7>0 If
dax (f2) = 3, then f5 is a false 3-face. Since G doesn t have
(3,3)-cycle, so hy is a 4T-face. By R6, 7(hy — v) > 1.
Thus, '(v) >1 -1 x2-2+ 3 +1>0.

Case 2.1.2: If v is incident with three false 3-faces, then
there must be two adjacent false 3-faces. Suppose there are
only two adjacent false 3-faces.

(a) If f1 and f5 are two adjacent false 3-faces, then f3
and f5 are 4*-faces. If vy is a true vertex in G*, then f3 or
f5 is a 5" -face. Thus, w'(v) > 14 1 — 5 x 3 =0 by Claim
4.3, Claim 4.4, Claim 4.6 and R4. If vy is a false vertex in
G*, then hy is a 4% -face. By R6, 7*(hy — v) > +. Suppose
vy is a false vertex in G*. If f3 is a 5T -face, then w'(v) >

1+ % + % —g X2— % > 0 by Claim 4.3, Claim 4.4, Claim 4.6
and R4. If f3 = vvgugvyv is a 4-face, then both v3 and ug
are true vertices. Thus, w/(v) > 1+ & ++ -3 x2-1>0
by R1, R4 and R7. Suppose vs is a false vertex in G*. If f3
or f5isabT-face, then w'(v) > 1+5+1 -2 x2—1 > 0by
Claim 4.3, Claim 4.4, Claim 4.6 and R4. If both f3 and f5
are 4-faces, then f3 is a (5,97, F, 97 )-face. Since G doesn’t
have (4,4)-cycle, so 7(f3 — v) > 2 by RI, R6 and R7.
Thus,a/(v)Zl—i—g—t—%—%><2—§>0.

(b) If fo and f3 are two adjacent false 3-faces, then f;
and f, are 4*-faces. If v3 is a true vertex in G*, then f3 or
f5 is a 5T -face, say f3. By Claim 4.3, Claim 4.4 and Claim
4.6, 7(f3 — v) > £. Since G doesn’t have (3,3)-cycle, so
hy or hg is a 4%-face, say hy. By R6, 7%(hy — v) > 1.
Thus, w'(v) > 1+ 4+ 1 -2 x2—1 >0 If vg is a
false vertex in G, then both hy and hg are 4T -faces. Thus,
w'(v) > 14§ x2—3x2—1%>0by R4 and R6.

(c) If f3 and f, are two adjacent false 3-faces, then by the
symmetry, it is similar to (a).

(d) If f4 and f5 are two adjacent false 3-faces, then by
the symmetry, it is similar to (b).

(e) If f5 and f7 are two adjacent false 3-faces, then fo and
fu are 4" -faces. Suppose vy is a false vertex in G*. If fo
or fy is a 5F-face, then w'(v) > 1+ % — § x 3 = 0. If both
fo and fy are 4-face, then fy or fy is a (5,97, F,9%)-face
or (5,97,3%,9T)-face, say fo. By R6.3.2 and R7, 7(f2 —
v) > 2. Thus, w'(v) > 1+ 2 — 5 x3>0.

Suppose wv; is a true vertex in G*, then fy or f; is a
5T-face, say f2 By Claim 4.3, Claim 4.4 and Claim 46

T(f2 = v) > 5. If hg 1sa3face then 7*(hg — f3) > & by
R63 Then T(fg%v) > & by R7. So, w'(v) > 1,,,%X
2-|— -|- > 0. If hg 1sa4+face thenT (h3—>f3)2%
byR6 Thus Www)>1l-3-3ix2+31+1>0

Case 2.1.3: Suppose there are three adjacent false 3-faces.

(a) If f1, fo and f3 are three adjacent false 3-faces, then
hi, hy and hs are 47 -faces. By R6, 7*(hy — v) > % and
7*(hg = v) > £ Thus, w'(v) > 1+ £ x2—§x2—-1>0.

(b) If f2, f3 and f are three adjacent false 3-faces, then
ho, hg and hy are 4*-faces. So, w'(v) > 1+% XSf% x3 > 0.

(c) If f3, f4 and f5 are three adjacent false 3-faces, then
by the symmetry, it is similar to (a).

(d) If f4, f5 and f1 are three adjacent false 3-faces,
then 7*(hy — v) > #. If fo or f3 is 5t-face, say fo,
then 7(fy — v) > % by Clalm 4.3, Claim 4.4 and Claim
4.6. Thus, w’'(v) >l s+3-5-3x2>01If
both f, and f3 are 4-faces, then fo or f3is (5, F,37,9T)-
face, say fo. By Rl and R6, 7(fo — v) > -%. Thus,
W) >1+i+5—-5—3x2>0.

(e) If f5, f1 and f, are three adjacent false 3-faces, then
by the symmetry, it is similar to (d).

Case 2.2: If the neighbors of v in G are all 7T -vertices.

Case 2.2.1: If v is incident with at last one true 3-face,
then w'(v) > 1+ 3 — 2 x 3 =0 by RI, R2, R4 and R7.

Case 2.2.2: If v is incident with three false 3-faces, then
there must be two adjacent false 3-faces. Suppose there
are only two adjacent false 3-faces, then by the symmetry,
assume that f1, fo and f, are false 3-faces, and v is a false
vertex. If vy is true, then hy or ho is a 4T-face, say h;.
By R6, T (h1 — v) > 1 Suppose f3 is a 5t-face, then

W) >1+5+3— %x3>0 Suppose f3 is a 4-face,
then f5 is a 5+ face By Claim 4.3, Claim 4.4, Claim 4.6,
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R6 and R7, 7(fs — v) > % and 7(f3 — v) >
W) >1+g+5+5—3x3>0

If vq is false, then both h1 and hs are 4T -face. Since v3 and
vy are true, then 7(f3 — v) > & by Claim 4.3, Claim 4.4,
Claim 4.6, R6 and R7. Thus, w'(v) > 14+4x2+1—-1x3 =0.

Case 2.2.3: Suppose there are three adjacent false 3-faces,
then by the symmetry, assume that fi, fo and f; are false
3-faces, and vo and v, are false vertices. By R6, 7*(h; —
v) > L Wherei = 1,2, 3. Since f5 is a 4T -face, then T(fs =
v) > % Claim 4.3, Claim 4.4, Claim 4.6, R6 and R7. Thus,
W) >1+5x3+5—35%x3=0.

Case 3: Suppose that v is incident with four 3-faces, then
they are all false 3-faces.

Case 3.1: If the neighbors of v in G are 5(6)-vertex and
9%t -vertex, then let dgx (vi/) = 5(6) and dgx (vi) = 97,
where ¢ = 2, 3,4, 5.

(a) If f; is a false 3-face, then h; is a 47-face, where
1 =1,2,3,4. By R6, 7*(h; — v) > 5, where i = 2,3,4.
Since G doesn’t have (3, 3)-cycle, so f5 is a 5t-face. Thus,
W) >14+$x3+3—-3x3-3>0.

(b) If f; is a false 3-face, where i = 2, 3,4, 5, then by the
symmetry, it is similar to (a).

(c) If f; is a false 3-face, where i = 1,3,4,5, then
m*(hs = v) > £, 7°(hy = v) > L, and f, is a 5T -face.
If f, is a 67-face, then 7(fo — v) > 3 by Claim 4.3 and
Claim 4.4. If f, is a 5-face, then f, is incident with at most
two true 5~ -vertices by Property 3.4. Then, 7(fy — v) > %
Thus, w'(v) > 1+ 1 x2+1 -2 x2-1x2>0.

(d If f; is a false 3-face, then h; is a 4T-face,
where ¢ = 1,2,4,5. Let min{dgx (var),dax(v3)} = p,
min{dgx (vy), dGX (vs)} = ¢ If p = ¢ = 9, then
7*(hy — v) > 2 and 7%(hy — v) > 2 by R6.3.2. Thus,
W'(v) > 142 ><2+§—7><4_0 If p=9and 10 < ¢ < 11,
thenT(hg—HJ)z% (h4—>v)25, (f4—>v)2425,
and 7(f5 — v) > 2 by R1, R4, R6.2, R6.3 and R7. Thus,
W) >1+2 +%+ +45><2 $x4>0.1fq¢g=9
and 10 < p § 11, then w'(v) > 0, similarly. If 10 < p and
q < 11, then 7(f; — v) > 41, where i = 1,2,4,5. Thus,
W'(v) > 14+ X243+ 2 x4—5x4 > 0.1f p > 12 0r g > 12,
sayp212,thenq210.ByR612 T (h2—>v)zl and
T (hs = v) > L. Thus, w'(v) > 1—§ x4+ 4 x2+1>0.

(e) If f; are four adjacent false 3- faces where =1, 2 3,5,
then by the symmetry, it is similar to (c).

Case 3.2: If the neighbors of v in G are all 77 -vertices,
then by the symmetry, assume that f; is 3-face, where i =
1,2,3,4. Since G doesn’t have (3, 3)-cycle, so f5 is a 57 -
face and h; is a 4*-face, where i = 1,2,3.4. If f5 is a
6T -face or a 5-face that is incident with at most two true
5~ -vertices, then w'(v) > 1+ 4 x4+ 1 —4 x4 =0by
Claim 4.3, Claim 4.4 and Claim 4.6. If f5 is a 5-face that
is incident with three true 5~ -vertices, then vy and v, are
9*-vertices. Thus, w'(v) > 14§ x4+ 1 — 3 x4>0.

4) dgx (v) = 6.

By Lemma 2.2, v is incident with at most four 3-faces.
By R3, we have w'(v) > 6 —4— 4 x4=0.

(5) dgx(v) =T.

By Lemma 2.2, v is incident with at most five 3-faces. By
R2, we have w'(v) > 7—4— 3 x5— 1 x2=0.

(6) dgx (v) > 8.

By R1, w'(v) > dgx (v) — 4 — 462000 s g (v) = 0.

Next, we consider the discharge o? the faces in G.

1
5 Thus,

(1) dg= (f) = 3.

Case 1: Suppose f = vivqus is true, where dgx (v1) >
dGX (UQ) > dGX(US) If dGX(Ul) =3 or 4 then w (f) >
-1 —1— £ x 2 > 0 by property 3.2, property 3.1.3 and RI1. If
dGX(vl) > 5, then w'(f) > -1+ 1 x3>0by R1 — R4.

Case 2: If f = vvqvg is false, where dax (v1) < dgx (v2)
and v be a false vertex of G* such that vivs crossed vouy
in G at v. If dgx (v1) = 3, then dgx (v2),dgx (vs) > 12 by
Property 3.2. By Rl R5 and R6.1, we have T(fz —v) > %
and 7(v2 — v) > 2. Thus, w(f) —1—|— +1=01If
dgx (v1) =4, thenw (fHz-1+2+1+1 —Oby R1,R5
and R6 If dGX(’U1> =5 and dgx (’02) = 9+ then w (f) >
—1+ + 9 = 0 by R1,R2,R3 and R4. If dgx(v1) =5
anddc;x(vg)7é9+ thenw(f) 71+7><2f0by R4.
If dgx (v1) = 6T, then w'(f) > —14 3 x2=0by RI and
R2.

@) dgx (f) = 4.

Case 1: Suppose f is not incident with any transitive false
vertex, then w'(f) > dgx (f) —4 > 0 by R6 and RT.

Case 2: Suppose f = v1v9v3vy is incident with two tran-
sitive false vertices, say vy and vs, then let min{dgx (vs2),
dgx (v4)} = p, and maz{dgx (v2), dgx(v4)} = q. If
5<p<6andq>12 thenw' (f) >0+2—-1x2=0
bleRQandR661f5<p<6and10 g < 11,
then w'(f) > 04+ 2 — 1 x2 > 0 by R1,R2 and R6.7.
If 7 < p <9, then w'(f) > 0 by R1,R6.4.1 and R6.3,
similarly. If 10 < p < 11. Since G doesn’t have (4,4)-
cycle, f sends out at most g x 2 R1 and R6.2. Thus,
w’(f)2073><2+ x2 = 0. If p > 12, then
W(f)=0—-3+2x2 —0 by R1 and R6.1, similarly.

Case 3: Suppose f is only incident with one transitive
false vertex, then it is similar to the proof of Case 2.

(3) dgx(f) =5.

If dgx(f) = 5, then f is incident with at most two
transitive false vertices. Similar to the proof of dgx (f) = 4,
we can get w'(f) > dgx(f) —4 > 0.

@) dgx (f) > 6.

Suppose f is 1nc1dent with at least t transitive false
vertices, then ¢t < | dax f)J The worst case is that the
neighbors of transitive false vertices on f are 127 -vertices,
then &' (f) > dex (f)—4—2+2 > dg (f)—4— et —
2ax ) _ 4> 0 by RI, R6 and R7.

The proof of Theorem 1.2 is complete.
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