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Abstract—A list assignment of a graph G is a function L :
V (G) ∪ E(G) → 2N . A graph G is k-(2,1)-Total choosable if
and only if for every list assignment L provided that |L(x)| =
k, x ∈ V (G)∪E(G), there exists a function c that c(x) ∈ L(x),
and for all x ∈ V (G) ∪ E(G), |c(u)− c(v)| ≥ 1 if uv ∈ E(G),
|c(e1) − c(e2)| ≥ 1 if the edges e1 and e2 are adjacent, and
|c(u) − c(e)| ≥ 2 if the vertex u is incident to the edge e.
Denote by CT

(2,1) the minimum k such that G is k-(2,1)-Total
choosable. We use (k, k)-cycle to denote that k-cycle is adjacent
to k-cycle. In this paper, we prove that if G is a 1-planar graph
with ∆(G) ≥ 12 and without (k, k)-cycle, where k ∈ {3, 4},
then CT

(2,1)(G) ≤ ∆ + 4.

Index Terms—L-(2,1)-total labeling, k-(2,1)-total choosable,
1-planar graph.

I. INTRODUCTION

IN this paper, G is a finite simple graph. By V (G), E(G),
F (G), 4(G), δ(G), we denote, respectively, the vertex

set, the edge set, the face set, the maximum degree, and the
minimum degree of G. Call u a k-vertex, a k+-vertex, or a
k+-vertex, if d(u) = k, d(u) ≥ k, or d(u) ≤ k, respectively.
Similarly a k-face, a k+-face, and a k−-face are also defined.
A k-cycle is a cycle of length k. We say that two cycles (or
faces) are adjacent if they share at least one edge. Especially,
we use (k, k)-cycle to denote that k-cycle is adjacent to k-
cycle.

A graph is 1-planar if it can be drawn in the plane so that
each edge is crossed by at most one another edge. Such a
drawing that the number of crossings is as small as possible
is called a 1-plane graph. Undefined notations are referred
to [1].

The (p, 1)-Total labeling problem of graph G was pro-
posed by Havet and Yu[4]. A graph G is said to be k -
(p, 1)-Total labeling if and only if there is a function c from
V (G)

⋃
E(G) to {0, 1, 2, . . . , k} so that |c(u)− c(v)| ≥ 1 if

uv ∈ E(G), |c(e1) − c(e2)| ≥ 1 if the edges e1 and e2 are
adjacent, and |c(u)− c(e)| ≥ p if the vertex u is incident to
the edge e. The (p, 1)-Total labeling number of G, denoted
by λTp (G), is the minimum k such that G is k-(p, 1)-Total
labeling. Readers can refer to [3], [6], [7], [9], [10], [14] for
further research.

Suppose a list assignment of a graph G is a function
L : V (G)

⋃
E(G)→ 2N . We say G is L-(p, 1)-Total label-

ing if there exists a (p, 1)-Total labeling c that c(x) ∈ L(x)
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for all x ∈ V (G)
⋃
E(G). If L is any list assignment of

G such that |L(x)| = k for all x ∈ V (G)
⋃
E(G), then

the function c is called a k-(p, 1)-Total choosable function
of G with respect to L. The (p, 1)-Total choice number of
G, denoted by CTp,1(G), is the minimum k such that G
has a k-(p, 1)-Total choosable function c. Clearly, L-(1, 1)-
Total labeling problem of graph is the list total coloring
problem of graph. It is known that there is a List Total
Coloring Conjecture χ

′′

l (G) = χ
′′
(G), we may conjecture

CTp,1(G) = λTp (G)+1. Unfortunately, we found some graphs
satisfying CTp,1(G) > λTp (G) + 1 in[11]. So, Y. Yu[11]
proposed the following “Week List (p, 1)-Total Labeling
Conjecture”.

Conjecture 1.1 ([11]) If G is a simple graph with
maximum degree ∆, then CTp,1(G) ≤ ∆ + 2p.

Y. Yu[11] showed the conjecture to be true for tree and
path. Y. Yu[11] also proved the following results. (1) If G is
a star graph K1,n, where n ≥ 3 and p ≥ 2, then CTp,1(G) ≤
∆+2p−1 (2) If G is a outerplanar graph with ∆(G) ≥ p+3,
then CTp,1(G) ≤ ∆ + 2p− 1 . (3) If G is a graph embedded
in surface with Euler characteristic ε and ∆(G) big enough,
then CTp,1(G) ≤ ∆ + 2p.

Especially, for the (1, 1)-Total choice number, J. Hou et
al.[5] proved that if G is a planar graph with ∆(G) ≥ 9, then
CT1,1(G) ≤ ∆ + 2. O. Borodin et al.[2] proved that if G is
a planar graph with ∆(G) ≥ 12, then CT1,1(G) ≤ ∆ + 1. X.
Zhang.[12] proved that if G is a 1-planar graph with ∆(G) ≥
21, then CT1,1(G) ≤ ∆+1. For the (2, 1)-Total choice number
of a planar graph, Y. Song and L. Sun [8] proved that (1) if G
is a planar graph with ∆(G) ≥ 7 and 3-cycle is not adjacent
to k-cycle, k ∈ {3, 4}, then CT2,1(G) ≤ ∆ + 4. (2) if G is a
planar graph with ∆(G) ≥ 8 and i-cycle is not adjacent to
j-cycle, where i, j ∈ {3, 4, 5}, then CT2,1(G) ≤ ∆ + 3.

In this paper, we mainly studies the (2, 1)-Total choice
number of 1-planar graph. For Conjecture 1.1, we give some
positive answers. We prove the following theorem.

Theorem 1.2 If G is a 1-planar graph with ∆(G) ≥ 12
and without (k, k)-cycle, where k ∈ {3, 4}, then CT2,1(G) ≤
∆ + 4.

II. PRELIMINARIES

The associated plane graph G× of a 1-plane graph G is
a new plane graph obtained by replacing all crossings of G
with new 4-vertices. A vertex u of G× is a false vertex if
u ∈ V (G×) \ V (G), and a true vertex otherwise. Any face
f ∈ F (G×) is false if it is incident with at least one false
vertex, and true otherwise.

Lemma 2.1[13] Let G be a 1-plane graph without adjacent
triangles and let G× be its associated plane graph. For every
vertex v ∈ V (G), if dG(v) ≥ 5, then v is incident with at
most b 4

5dG(v)c 3-faces in G×.
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Lemma 2.2[13] Let G be a 1-plane graph and let G× be
its associated plane graph. Then the following hold:

(1) For any two false vertices u and v in G×, uv /∈ E(G×).
(2) If there is a 3-face uvwu in G× such that dG(v) = 2,

then u and w are both true vertices.
(3) If dG(u) = 3 and v is a false vertex in G×, then either

uv /∈ E(G×) or uv is not incident with two 3-faces.
(4) If a 3-vertex v in G is incident with two 3-faces and

adjacent to two false vertices in G×, then v must also be
incident with a 5+-face.

(5) For any 4-vertex u in G, u is incident with at most
three false 3-faces.

III. STRUCTURAL PROPERTIES

We will give some properties of G as follows. For con-
venience, let Θ(x) ∈ L(x), where x ∈ V (G)

⋃
E(G), be a

partially (2, 1)-Total choosable function of graph G, and the
function satisfies the definition of L-(2, 1)-Total labeling in
the following sections. We denote the set of available colors
of x for x ∈ V (G)

⋃
E(G) under the partially (2, 1)-Total

choosable function Θ(x) by AΘ(x).
Property 3.1: δ(G) ≥ 3.

Proof: It is similar to the proof of Property 3.1 of [8].

Property 3.2: Every 3-vertex in G is adjacent to 12+-
vertex.

Proof: It is similar to the proof of Property 3.2 of [8].

Property 3.3: Every 4-vertex in G is adjacent to 10+-
vertex.

Proof: Suppose that a 4-vertex u is adjacent to a 9−-
vertex v. By the minimality of G, the graph G − uv has
a ∆+4-(2, 1)-Total choosable function Θ. We first erase the
color of the vertex u. Since |AΘ(uv)| ≥ ∆ + 4 − (3 + 8 +
3) ≥ 2 and |AΘ(u)| ≥ ∆ + 4 − (4 + 3 × 3) ≥ 3. Let
α ∈ AΘ(uv). If AΘ(u) 6= {α−1, α, α+1}, then let Θ(u) ∈
AΘ(u) \ {α − 1, α, α + 1} and Θ(uv) = α. If AΘ(u) =
{α − 1, α, α + 1}, then let Θ(u) = β ∈ AΘ(u) \ {α} and
Θ(uv) ∈ AΘ(uv)\{β−1, β, β+1}. We can recolor the vertex
v and the edge vv1, easily. Therefore, G is ∆+4-(2, 1)-Total
choosable, a contradiction.

Property 3.4: If a 5-vertex v in G is adjacent to a 5-vertex,
then v is adjacent to four 9+-vertices.

Proof: It is similar to the proof of Property 3.3.
Property 3.5: If a 5-vertex v in G is adjacent to a 5-vertex

and a 6-vertex, then v is adjacent to three 9+-vertices.
Proof: It is similar to the proof of Property 3.3.

IV. PROOF OF THEOREM 1

In this section, we give the proof of our main results by
discharging method.

According to Euler’s formula, we get:∑
v∈V (G×)

(dG×(v)− 4) +
∑

f∈F (G×)

(dG×(f)− 4) = −8

Then, we define an initial charge ω on V (G×)
⋃
E(G×)

by setting ω(x) = dG×(x)−4 for all x ∈ V (G×)
⋃
F (G×).

So, we have
∑
x∈V (G×)

⋃
F (G×) ω(x) = −8. Our aim is

to obtain a new nonnegative charge ω′(x) for all x ∈

V (G×)
⋃
E(G×) by designing discharging rules and redis-

tributing the charges, then we can get a contradiction:

0 ≤
∑

x∈V (G×)
⋃
F (G×)

ω′(x) =
∑

x∈V (G×)
⋃
F (G×)

ω(x) = −8

This contradiction proves the non-existence of G and
completes the proof. For convenience, let τ(a1 → a2) be
the charges transferred from a1 to a2. Let τ(a1 → a2, a3)
be the charges transferred from element a1 to each of element
a2 and a3. And, τ∗(a1 → a2, a3) be the charges transferred
from element a1 through a false vertex v to each of element
a2 and a3.

So, we design discharging rules as follows.
R1. If dG×(v) ≥ 8 and f be a face that is incident with

v in G×, then τ(v → f) =
dG× (v)−4

dG× (v) .
R2. If dG×(v) = 7 and f1, f2 be a 3-face and a 4+-face

that is incident with v in G×, respectively, then τ(v → f1) =
1
2 and τ(v → f2) = 1

4 .
R3. If dG×(v) = 6 and f be a 3-face that is incident with

v in G×, then τ(v → f) = 1
2 .

R4. If dG×(v) = 5 and f1 be a (5, 9+, F )-face that is
incident with v, and f2 be the other 3-face that is incident
with v in G×, then τ(v → f1) = 4

9 and τ(v → f2) = 1
2 .

R5. If v is a true 4-vertex and f be a 3-face that is incident
with v in G×, then τ(v → f) = 1

5 .
R6. Let v be a false vertex of G× such that v1v3 crossed

v2v4 in G at v, and let fi with 1 ≤ i ≤ 4 be the face that
is incident with vvi and vvi+1 in G× (here v5 is recognized
as v1 ).
R6.1 Suppose that min{dG×(v1), dG×(v2)} ≥ 12.
R6.1.1 Let f1 be a 3-face. If v2v3 ∈ E(G×), then

τ∗(f1 → f2) = 1
3 . If v1v4 ∈ E(G×), then τ∗(f1 → f4) = 1

3 .
R6.1.2 Let f1 be a 4+-face. If both v2v3 ∈ E(G×) and

v1v4 ∈ E(G×), then τ∗(f1 → f2, f4, v3, v4) = 1
3 . If v2v3 ∈

E(G×), then τ∗(f1 → f2, v3) = 1
3 . If v1v4 ∈ E(G×), then

τ∗(f1 → f4, v4) = 1
3 .

R6.2 Suppose that 10 ≤ min{dG×(v1), dG×(v2)} ≤ 11.
R6.2.1 Let f1 be a 3-face. If v2v3 ∈ E(G×), then

τ∗(f1 → f2) = 1
5 . If v1v4 ∈ E(G×), then τ∗(f1 → f4) = 1

5 .
R6.2.2 Suppose f1 is a 4+-face, then τ∗(f1 → v3, v4) =

1
5 . Especially, if both v2v3 ∈ E(G×) and v1v4 ∈ E(G×),
then τ∗(f1 → f2, f4, v3, v4) = 1

5 . If v2v3 ∈ E(G×), then
τ∗(f1 → f2, v3, v4) = 1

5 . If v1v4 ∈ E(G×), then τ∗(f1 →
f4, v3, v4) = 1

5 .
R6.3 Suppose that min{dG×(v1), dG×(v2)} = 9.
R6.3.1 Let f1 be a 3-face. If v2v3 ∈ E(G×), then

τ∗(f1 → f2) = 1
9 . If v1v4 ∈ E(G×), then τ∗(f1 → f4) = 1

9 .
R6.3.2 Let f1 is a 4+-face, then τ∗(f1 → v3, v4) = 2

9 .
R6.4 Suppose that min{dG×(v1), dG×(v2)} = 8, and f1

is a 4+-face, then τ∗(f1 → v3, v4) = 1
4 .

R6.5 Suppose that min{dG×(v1), dG×(v2)} = 7, and f1

is a 4+-face. If 7 ≤ max{dG×(v1), dG×(v2)} ≤ 11, then
τ∗(f1 → v3, v4) = 1

8 . If max{dG×(v1), dG×(v2)} ≥ 12
then τ∗(f1 → v3, v4) = 5

24 .
R6.6 Let 5 ≤ dG×(v1) ≤ 6, dG×(v2) = 12+, dG×(v4) =

3, and f1 is a 4+-face, then τ∗(f1 → v4) = 1
3 .

R6.7 Let 5 ≤ dG×(v1) ≤ 6, dG×(v2) ≥ 10, dG×(v4) = 4,
and f1 is a 4+-face, then τ∗(f1 → v4) = 1

5 .
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R7 Every 3+-face redistributes its remaining charge after
applying the previous rules equitably to each of its incident
true 5−-vertices.

Suppose that the vertex v on f ∈ F (G×) is a false vertex.
Let the false vertex v through which the face f transfers out
charges in R6 be a transitive false vertex of the face f . Then,
a transitive false vertex v on f ∈ F (G×) is a false vertex
such that its two neighbors u,w on f both have degrees of
at least 5. If f sends out charges via a false vertex, then this
false vertex must be transitive by R6. And let v∗ denote a true
5−-vertex on f . The following will discuss the weight of each
3+-face to the incidented true 5−-vertices after discharging
rules.

Claim 4.1: If f is a 6+-face and is incident with at least
one 3-vertex in G×, then f sends at least 2

3 to each of its
incident true 5−-vertices.

Proof: Suppose f = v1v2 · · · vkv1 and dG×(v1) = 3.
Then v2 and vk are neither transitive false vertex nor true
5−-vertex. Let f be incident with at most s true 5−-vertices,
and t transitive false vertices, then s + t ≤ dG×(f) − 2.
Suppose vi is a transitive false vertex. Let ρ+(vi) be the
amount of charges that f gets from vi−1 and vi+1. Let
ρ−(vi) be the amount of charges that f sends out via vi.
By R6, we have ρ+(vi) − ρ−(vi) ≥ 0, and the worst case
is min{dG×(v1), dG×(v2)} = 12. Then, τ(f → v∗) ≥
d(f)−4− 4t

3 + 2t
3

s ≥ d(f)−4− 2(d(f)−2−s)
3

s ≥
d(f)
3 −

8
3

s + 2
3 ≥

2
3 ,

where dG×(f) ≥ 8.
If dG×(f) = 6, then t ≤ 2. Suppose t = 2, then 1 ≤

s ≤ 2. So v3 and v5 are transitive false vertices. By R1, R6

and R7, we have τ(f → v∗) ≥ min{ 6−4− 1
3×2+ 2

3×2

2 , 6 −
4 − 4

3 × 2 + 2
3 × 3} > 2

3 . Suppose t ≤ 1, then
s ≤ 3. By R1, R6 and R7, we have τ(f → v∗) ≥
min{ 6−4+ρ+(vt)−ρ−(vt)

3 , 6−4
3 } ≥

2
3 , where vt is a transitive

false vertex. If dG×(f) = 7, then the proof is similar to the
dG×(f) = 6.

Claim 4.2: If f is a 6+-face and is incident with at least
one true 4-vertex in G×, then f sends at least 2

3 to each of
its incident true 5−-vertices.

Proof: It is similar to the proof of Claim 4.1.
Claim 4.3: If f is a 7+-face and is incident with at least

one 5-vertex in G×, then f sends at least 2
3 to each of its

incident true 5−-vertices.
Proof: Suppose f = v1v2 · · · vkv1 and dG×(v1) = 5.

Let f be incident with at most s true 5−-vertices, and t tran-
sitive false vertices. Case 1: If both v2 and vk are transitive
false vertices, then s+ t ≤ dG×(f)− 2. By R1, R6 and R7,

we have τ(f → v∗) ≥ dG× (f)−4+( 2
3−

1
3 )×2− 4(t−2)

3 +
2(t−3)

3

s

≥ dG× (f)−4−
2(d

G× (f)−4−s)

3

s =
d
G× (f)

3 − 3
3

s + 2
3 ≥

2
3 , where

dG×(f) ≥ 3.
Case 2: If there is only one transitive false vertex in

v2 and vk, say v2, then v3 is a 10+-vertex and s + t ≤
dG×(f) − 1. By R1, R6 and R7, we have τ(f → v∗) ≥
dG× (f)−4− 1

3 + 2
3−

4(t−1)
3 +

2(t−2)
3

s ≥ dG× (f)− 11
3 −

2(d(f)−1−s)
3

s =
d
G× (f)

3 − 9
3

s + 2
3 ≥

2
3 , where dG×(f) ≥ 9. If 7 ≤ dG×(f) ≤ 8,

then the proof is similar to the Claim 4.1 of dG×(f) = 6.
Case 3: If neither v2 nor vk is transitive false vertex,

then at most one of v2 and vk is 5-vertex by Property
3.4. Without loss of generality, we can assume v2 is a 5-
vertex. If v3 is a transitive false vertex, then v4 is a 12+-

vertex and s + t ≤ dG×(f) − 2. By R1, R6 and R7,

we have τ(f → v∗) ≥ dG× (f)−4− 1
3 + 2

3−
4(t−1)

3 +
2(t−2)

3

s ≥
dG× (f)− 11

3 −
2(d

G× (f)−2−s)

3

s =
d
G× (f)

3 − 7
3

s + 2
3 ≥

2
3 , where

dG×(f) ≥ 7. Otherwise, v3 is neither transitive false vertex
nor true 5−-vertex and s+ t ≤ dG×(f)− 2. Then, by claim
4.1, τ(f → v∗) ≥ 2

3 .
Case 4: If v2 and vk are neither transitive false vertex nor

true 5−-vertex, then s + t ≤ dG×(f) − 2. By claim 4.1,
τ(f → v∗) ≥ 2

3 .
Claim 4.4: If f is a 6-face and is incident with at least

one 5-vertex in G×, then f sends at least 1
2 to each of its

incident true 5−-vertices.
Proof: It is similar to the proof of Claim 4.3.

Claim 4.5: If f is a 5-face and is incident with at least
one true 3-vertex(or 4-vertex ) in G×, then f sends at least
1
3 to each of its incident true 5−-vertices. Especially, if f is
incident with at least two 12+-vertex in G×, then f sends
at least 2

3 to each of its incident true 5−-vertices.
Proof: It is similar to the proof of Claim 4.3.

Claim 4.6: If f = v1v2v3v4v5v1 is a 5-face and is incident
with at least one 5-vertex in G×, then f sends at least 1

3 to
each of its incident true 5−-vertices. Especially, if dG×(v1) =
5, dG×(v2) = 7+, and v5 is a false vertex, then f sends at
least 1

2 to each of its incident true 5−-vertices.
Proof: It is similar to the proof of Claim 4.3.

Claim 4.7: If f = v1v2v3 · · · vkv1 is a 6+-face in G×,
dG×(v1) = 3, dG×(v3) = 10+ and dG×(vk) = 12+, then f
sends at least 1 to each of its incident true 5−-vertices.

Proof: Suppose that f = v1v2v3 · · · vkv1, dG×(v1) = 3,
dG×(v3) = 10+ and dG×(vk) = 12+, then s+t ≤ dG×(f)−
3. Case 1: If t = 0, then s ≤ dG×(f)−3. By R1 and R7, we
have τ(f → v∗) ≥ dG× (f)−4+ 2

3 + 3
5

s ≥ dG× (f)−4+ 2
3 + 3

5

dG× (f)−3 > 1.
Case 2: Suppose t = 1, then s ≤ dG×(f)− 4. By R1, R6

and R7, we have τ(f → v∗) ≥ dG× (f)−4

s ≥ dG× (f)−4

dG× (f)−4 = 1.
Case 3: Suppose t = 2, then s ≤ dG×(f) − 5. Suppose

that vi, vj , vk and vh, where i ≤ j ≤ k ≤ h, be the
neighbors of two transitive false vertices on the face f ,
and ξ(f) be the residual charge of f after R1-R6. Let
min{dG×(vi), dG×(vj), dG×(vk), dG×(vh)} = q. If q ≥ 12,
then ξ(f) ≥ dG×(f)− 4− 4

3 × 2 + 2
3 × 3 = dG×(f)− 14

3 by
R1, R6.1 and R7. Similarly, if 10 ≤ q ≤ 11, q = 9, q = 8,
q = 7 and 5 ≤ q ≤ 6, then ξ(f) ≥ dG×(f)− 14

3 by R1−R7.
So, τ(f → v∗) ≥ dG× (f)− 14

3

s ≥ d(f)− 14
3

dG× (f)−5 > 1.
Case 4: Suppose that t ≥ 3, then s ≤ dG×(f) − 6. By

R1, R6 and R7, we have τ(f → v∗) ≥ dG× (f)−4− 4t
3 + 2t

3

s ≥
dG× (f)−4−

2(d
G× (f)−3−s)

3

s ≥ dG× (f)−6

3(dG× (f)−6) + 2
3 ≥ 1.

Checking ω′(x) ≥ 0 for x ∈ V (G)
⋃
F (G). Firstly, we

check all the vertices in V (G). Among the neighbors of true
k-vertex v of G, the neighbor with the smallest degree is
v1′ . Then denote by v1′ , v2′ , · · · , vk′ the neighbors of v in
G that lie consecutively around v. Similarly, we denote by
v1, v2, · · · , vk the neighbors of v in G× that lie consecutively
around v, where dG×(vi) = 4 or dG×(vi) = dG(vi′) for i =
1, 2, · · · , k. And denote by fi the face that is incident with
vvi and vvi+1 in G×. If fi is a false 3-face that is incident
with vivi+1, then the face adjacent to vivi+1 in G× that is
different from fi is denoted by hi.(the subscript is taken by
modular k). These notations will be used in the proof of the
next propositions without explaining their meanings again.
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(1)dG×(v) = 3.
By Lemma 2.2, v is incident with at most two 3-faces.
Case 1: Suppose that v is not incident with any 3-faces.
Case 1.1: Suppose v is incident with at least one 6+-face

and one 5+-face in G×, then ω′(v) ≥ −1 + 2
3 + 1

3 = 0 by
claim 4.1 and claim 4.5.

Let v be incident with one 6+-face, say f1, and two 4-
faces f2 = vv2u2v3 and f3 = vv3u3v1. If v1 or v2 is true,
say v1, then τ(f3 → v) ≥ min{ 2

3 + 2
3 −

2
3 ,

2
3

2 } = 1
3 by

R1, R6 and R7. If v3 is true vertex, then τ(f2 → v) ≥ 1
3

and τ(f3 → v) ≥ 1
3 by R1, R6 and R7. Thus, ω′(v) ≥

−1+ 1
3 + 2

3 = 0. Otherwise, v1, v2 and v3 are all false vertices.
If u2 or u3 is a true 8+-vertex, say u2, τ(f2 → v) ≥ 1

2 by
R1 and R7. Thus, ω′(v) ≥ −1 + 1

2 + 2
3 > 0. Otherwise,

5 ≤ dG×(u2), dG×(u3) ≤ 7 by property 3.1, property 3.2
and property 3.3. The face incident to v2u2(u2v3) in G× that
is different from f2 is denoted by k1(k2). The face incident
to v1u3(u3v3) in G× that is different from f3 is denoted by
k3(k4). Since G doesn’t have (4, 4)-cycle, so at least one
of k1, k2, k3 and k4 is a 4+-face. We can assume k1 is
a 4+-face. If dG×(u2) = 7, then τ∗(k1 → v) ≥ 5

24 by
R6.5, and τ(f2 → v) ≥ 1

4 by R2 and R7. Thus, ω′(v) ≥
−1+ 5

24 + 1
4 + 2

3 > 0. If dG×(u2) 6= 7, then τ∗(k1 → v) ≥ 1
3

by R6.6. Thus, ω′(v) ≥ −1 + 1
3 + 2

3 = 0.
Case 1.2: Suppose v is not incident with 6+-face and is

at least incident with one 5-face.
Case 1.2.1: If v is incident with three 5-faces, then

ω′(v) ≥ −1 + 1
3 × 3 = 0 by claim 4.5.

Case 1.2.2: If v is incident with two 5-faces, then we can
assume f1 = vv1w1w2v2v, f2 = vv2u1u2v3v are 5-faces
and f3 = vv3z3v1v is a 4-face. Suppose there is at least
one true vertex in v1, v2 and v3. If v1 or v3 is true, then
by the symmetry, assume that v1 is true. Since G doesn’t
have (4, 4)-cycle, so τ(f3 → v) ≥ min{ 2

3 + 2
3 −

2
3 ,

2
3

2 } = 1
3 .

By Claim 4.5, τ(f2 → v) ≥ 1
3 and τ(f2 → v) ≥ 1

3 .
Thus, ω′(v) ≥ −1 + 1

3 × 3 = 0. If v2 is true, then τ(f1 →
v) ≥ min{ 1+ 2

3−
1
3

2 ,
1+ 2

3

3 } = 5
9 by R1, R6 and R7. Similarly,

τ(f2 → v) ≥ 5
9 . Thus, ω′(v) ≥ −1 + 5

9 + 5
9 > 0.

Otherwise, v1, v2 and v3 are all false vertices. Then there
are at most three true 5−-vertices in w1, w2, u1 and u2 by
Property 3.2, Property 3.3 and Property 3.4. Suppose there
are three true 5−-vertices in w1, w2, u1 and u2, without loss
of generality, then we can assume w2 is not a true 5−-vertex
and both u1 and u2 are 5-vertices. So, z3 is a 9+-vertex by
Property 3.4. Then, τ(f1 → v) ≥ 1

2 and τ(f3 → v) ≥ 5
9 by

R1 and R7. Thus, ω′(v) ≥ −1+ 1
2 + 5

9 > 0. Suppose there are
at most two true 5−-vertices in w1, w2, u1 and u2. We only
consider w1, w2, w1, u1 or w1, u2 are true 5−-vertices by the
symmetry. If w1, w2 are true 5−-vertices, then τ(f2 → v) ≥
1 by R7. Thus, ω′(v) ≥ −1 + 1 = 0. If w1, u1 (or w1, u2)
are true 5−-vertices, then τ(f1 → v) ≥ 1+ 2

3−
1
3

2 = 2
3 and

τ(f2 → v) ≥ 1
3 . Thus, ω′(v) ≥ −1 + 2

3 + 1
3 = 0.

Case 1.2.3: If v is only incident with one 5-face, then we
can assume f1 = vv1w1w2v2v is a 5-face, f2 = vv2z2v3v
and f3 = vv3z3v1v are 4-faces. Suppose there is at least one
true vertex in v1, v2 and v3. If v3 is true, then τ(f3 → v) ≥
min{ 2

3 + 2
3−

2
3 ,

2
3

2 } = 1
3 , τ(f2 → v) ≥ 1

3 and τ(f1 → v) ≥ 1
3

by R1, R6, R7 and Claim 4.5. Thus, ω′(v) ≥ −1+ 1
3×3 = 0.

If v1 or v2 is true, say v1, then f3 is a (3, F, 3+, 12+)-
face. By R1 and R7, τ(f3 → v) ≥ 1

3 . Suppose both w1 and

w2 are true 5−-vertices. By R1 and R7, τ(f1 → v) ≥ 1
3 .

If v2 is true, then τ(f2 → v) ≥ 1
3 by R1 and R7. If v2 is

false, then z2 is a 9+-vertex by Property 3.4. By R1 and R7,
τ(f2 → v) ≥ 5

9 . Thus, ω′(v) ≥ −1 + 1
3 × 3 = 0. Suppose

there is at most one true 5−-vertex in w1 and w2. If f1

is incident with transitive false vertex, then τ(f1 → v) ≥
min{1 + 2

3 × 2 − 4
3 ,

1+ 2
3−

1
3

2 } = 2
3 by R1, R6.2, R6, 6 and

R7. If f1 is not incident with transitive false vertex, then
τ(f1 → v) ≥ 1+ 2

3

2 > 2
3 by R1, R7. By R1, R6 and R7,

τ(f3 → v) ≥ 1
3 . Thus, ω′(v) ≥ −1 + 2

3 + 1
3 = 0.

Otherwise, v1, v2 and v3 are all false. If w1 and w2 are
true 5−-vertices, then z2 and z3 are 9+-vertices by Property
3.4. By R1 and R7, τ(f2 → v) ≥ 5

9 , τ(f3 → v) ≥ 5
9 . Thus,

ω′(v) ≥ −1+ 5
9 + 5

9 > 0. If w1 and w2 are 6+-vertices, then
τ(f1 → v) ≥ 1 by R1 and R7. Otherwise, we can assume w2

is a 6+-vertices and w1 is a true 5−-vertex by the symmetry.
If w2 is a 6-vertex, then z3 is a 9+-vertices by Property
3.5, then τ(f3 → v) ≥ 5

9 . And τ(f1 → v) ≥ 1+ 2
3

2 = 5
6

by R1 and R7. Thus, ω′(v) ≥ −1 + 5
6 + 5

9 > 0. If w2 is
a 7+-vertex, then τ(f1 → v) ≥ 1+ 2

3 + 1
4

2 = 23
24 by R1 and

R7. Since z2z3 ∈ E(G), w1z3 ∈ E(G), and w1 is a true
5−-vertex, then there is at least one 7+-vertex in z2 and z3.
Thus, ω′(v) ≥ −1 + 23

24 + 1
4 > 0 by R1 and R7.

Case 1.3: Suppose f1 = vv1u1v2v, f2 = vv2u2v3v and
f3 = vv3u3v1v are all 4-faces.

Case 1.3.1: Suppose there is at least two true vertices in
v1, v2 and v3, say v1 and v2, then τ(f1 → v) ≥ 2

3 and
τ(f2 → v) ≥ 1

3 by R1 and R7. Thus, ω′(v) ≥ −1+ 2
3 + 1

3 =
0.

Case 1.3.2: If there is only one true vertex in v1, v2 and
v3, say v1, then u1, u2 and u3 are all true vertices. Suppose
there is at most one true 5−-vertex in u1 and u3, say u1,
then τ(f3 → v) ≥ 2

3 and τ(f1 → v) ≥ 1
3 by R1, R6 and

R7. Thus, ω′(v) ≥ −1 + 2
3 + 1

3 = 0. Suppose there is at
most one true 4−-vertex in u1 and u3, say u1, then u2 is a
10+-vertex. By R1 and R7, τ(f2 → v) ≥ 3

5 , τ(f1 → v) ≥ 1
3

and τ(f3 → v) ≥ 1
3 . Thus, ω′(v) ≥ −1 + 3

5 + 1
3 × 2 > 0.

Otherwise, both u1 and u3 are 5-vertices. The face incident
to v2u1 in G× that is different from f1 is denoted by k1.
Since G doesn’t have (4, 4)-cycle, so k1 is a 4+-face. By
R6.6, τ∗(k1 → v) ≥ 1

3 . By R1 and R6, τ(f1 → v) ≥ 1
3 and

τ(f3 → v) ≥ 1
3 . Thus, ω′(v) ≥ −1 + 1

3 × 3 = 0.
Case 1.3.3: Suppose v1, v2 and v3 are all false vertices,

then u1, u2 and u3 are all true vertices. If there is at least one
true 4−-vertex in u1,u2 and u3, then ω′(v) ≥ −1+ 3

5 + 3
5 > 0

by Property 3.1.2, Property 3.1.3, R1 and R7.
Otherwise, u1, u2 and u3 are all 5+-vertices. Suppose that

u1, u2 and u3 are all 5-vertex or 6-vertex. The face incident
to u1u3 in G× that is different from f1(f3) is denoted by
k1(k2). The face incident to u3u2 in G× that is different
from f3(f2) is denoted by k3(k4). The face incident to u1u2

in G× that is different from f2(f1) is denoted by k5(k6).
Since G doesn’t have (3, 3)-cycle, so at least three 4+-faces
in k1, k2, k3, k4, k5 and k6. By R6.6, τ∗(ki → v) ≥ 1

3 ,
where ki is a 4+-face. Then, ω′(v) ≥ −1 + 1

3 × 3 = 0.
Suppose there is at least two 7+-vertex in u1,u2 and u3,

say u1 and u2, then u3 is a 5-vertex or 6-vertex. If u1 and
u2 are all 12+-vertices, then τ(f1 → v) ≥ 2

3 and τ(f2 →
v) ≥ 2

3 by R1, R2 and R7. If u1 or u2 is a 12+-vertex,
say u1, then τ(f1 → v) ≥ 2

3 and τ(f2 → v) ≥ 1
4 by
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R1, R2 and R7. Since G doesn’t have (3, 3)-cycle, so at
least one 4+-face in k3 and k4, say k3. By R6.2 − R6.6,
τ∗(k3 → v) ≥ 1

5 . Thus, ω′(v) ≥ −1+ 2
3 + 1

5 + 1
4 > 0. If 7 ≤

dG×(u1) ≤ 11, 7 ≤ dG×(u2) ≤ 11, then τ∗(ki → v) ≥ 1
5 by

R6.2 − R6.6, where i = 1, 2, 3, 4, 5, 6 and ki is a 4+-face.
By R1, R2 and R7, τ(f1 → v) ≥ 1

4 and τ(f2 → v) ≥ 1
4 .

Thus, ω′(v) ≥ −1 + 1
5 × 3 + 1

4 × 2 > 0.
Suppose there is only one 7+-vertex in u1,u2 and u3, say

u1, then u2 and u3 are 5-vertices or 6-vertices. If dG×(u1)
≥ 12, then τ(f1 → v) ≥ 2

3 by R1 and R7. Since G doesn’t
have (3, 3)-cycle, so at least one 4+-face in k3 and k4, say k3.
By R6.6, τ∗(k3 → v) ≥ 1

3 . Thus, ω′(v) ≥ −1 + 2
3 + 1

3 = 0.
If 10 ≤ dG×(u1) ≤ 11, then τ(f1 → v) ≥ 3

5 by R1, R7.
By R6.2 and R6.6, τ∗(ki → v) ≥ 1

5 , where ki is a 4+-face.
Thus, ω′(v) ≥ −1 + 3

5 + 1
5 × 3 = 0. If 7 ≤ dG×(u1) ≤ 9,

then τ(f1 → v) ≥ 1
4 by R2 and R7. By R6.3 − R6.6,

τ∗(ki → v) ≥ 5
24 , where i = 1, 2, 5, 6 and ki is a 4+-face.

By R6.6, τ∗(ki → v) ≥ 1
3 , where i = 3, 4 and ki is a

4+-face. Thus, ω′ ≥ −1 + 5
25 × 2 + 1

4 + 1
3 = 0.

Case 2: Suppose v is incident with one 3-face, say f1.
Case 2.1: Suppose that f1 is a true 3-face. τ(f1 → v) ≥ 1

3
by R1,R7. If dG×(f2) = 4, then τ(f2 → v) ≥ min{ 2

3 + 2
3 −

2
3 ,

2
3

2 } = 1
3 by R1, R6 and R7. If dG×(f2) ≥ 5, then τ(f2 →

v) ≥ 1
3 . f3 is similar to f2. Thus, ω′(v) ≥ −1 + 1

3 × 3 = 0.
Case 2.2: Suppose that f1 is a false 3-face, then by the

symmetry, assume that v1 is false and v2 is true.
Case 2.2.1: Suppose v3 is a true vertex, then τ(f2 → v) ≥

2
3 and τ(f3 → v) ≥ 1

3 by Claim 4.1, Claim 4.5, R1, R6 and
R7. Thus, ω′(v) ≥ −1 + 2

3 + 1
3 = 0.

Case 2.2.2: Suppose v3 is a false vertex.
(a)Suppose dG×(f2) ≥ 6, then τ(f2 → v) ≥ 2

3 by Claim
4.1. If dG×(f3) ≥ 5, then ω′(v) ≥ −1+ 2

3 + 1
3 = 0 by Claim

4.1 and Claim 4.5. If dG×(f3) = 4, then let f3 = vv3u3v1v.
Suppose dG×(u3) ≤ 4, then τ(f2 → v) ≥ 1 by Claim 4.7.
Suppose 5 ≤ dG×(u3) ≤ 6, then the face incident to v2u3 in
G× that is different from f1(f2) is denoted by h1(k1). Since
G doesn’t have (3, 3)-cycle, so at least one 4+-face in h1 and
k1. By R6.1 and R6.6, τ∗(h1 → v) ≥ 1

3 or τ∗(k1 → v) ≥ 1
3 .

Thus, ω′(v) ≥ −1 + 2
3 + 1

3 = 0 by Claim 4.1. Suppose
dG×(u3) = 7, then τ∗(h1 → v) ≥ 1

3 or τ∗(k1 → v) ≥ 5
24 by

R6.5 and R6.6. Thus, ω′(v) ≥ −1+ 2
3 + 5

24 + 1
4 > 0 by Claim

4.1, R1 and R7. Suppose dG×(u3) ≥ 8, then τ(f3 → v) ≥ 1
2

by R1 and R7. Thus, ω′(v) ≥ −1 + 2
3 + 1

2 > 0.
(b)Let f2 = vv2w1w2v3v. If f2 is at most incident with

two true 5−-vertices, then τ(f2 → v) ≥ 1+ 2
3−

1
3

2 = 2
3 by

R1, R6 and R7. Thus, ω′(v) ≥ 0 by Case 2.2.2(a). If f2

is incident with three true 5−-vertices, then dG×(w1) =
dG×(w2) = 5. And f3 is incident with at least one 9+-vertex.
By R1, R6 and R7, τ(f2 → v) ≥ 1+ 2

3

3 = 5
9 and τ(f3 →

v) ≥ min{ 2
3 ,

1+ 5
9

2 , 5
9} = 5

9 . Thus, ω′(v) ≥ −1 + 5
9 + 5

9 > 0.
(c)If f2 = vv2u2v3v is a 4-face, then τ(f2 → v) ≥

2
3

2 =
1
3 . If f3 is a 6+-face, then ω′(v) ≥ −1 + 2

3 + 1
3 = 0. If f3

is a 5-face, then let f3 = vv3z1z2v1v and the face incident
to u2z1 in G× that is different from f2 is denoted by k2.
Since G doesn’t have (4, 4)-cycle, so k2 is a 4+-face in G×.
Suppose dG×(u2) ≤ 4, then d(z1) ≥ 10. By R1, R6 and
R7, τ(f3 → v) ≥ 1+ 3

5

2 = 4
5 . Thus, ω′(v) ≥ −1 + 4

5 +
1
3 > 0. Suppose 5 ≤ dG×(u2) ≤ 6, then τ∗(k2 → v) ≥ 1

3
by R6.6. By Claim 4.5, R1 and R7, τ(f3 → v) ≥ 1

3 and
τ(f2 → v) ≥ 1

3 . Thus, ω′(v) ≥ −1 + 1
3 × 3 = 0. Suppose

dG×(u2) ≥ 7, then τ(f2 → v) ≥ 2
3 + 1

4 by R1 and R7. Thus,
ω′(v) ≥ −1 + 1

3 + 2
3 + 1

4 > 0.
If f3 is a 4-face, then let f3 = vv3u3v1v. Similarly, the

face incident to u2u3 in G× that is different from f2(f3) is
denoted by k2(k3). Suppose there is at least one 8+-vertex in
u2 and u3. If dG×(u2) ≥ 8, then ω′(v) ≥ −1+ 1

2 + 2
3 > 0. If

dG×(u3) ≥ 8, then τ∗(h1 → v) ≥ 1
3 or τ∗(k1 → v) ≥ 1

5 by
R6, where h1 or k1 is a 4+-face. Thus, ω′(v) ≥ −1+ 1

3 + 1
2 +

1
5 > 0. Otherwise, 5 ≤ dG×(u2) ≤ 7 and 5 ≤ dG×(u3) ≤ 7.
If dG×(u2) = 7, then ω′(v) ≥ −1 + 2

3 + 1
4 + 5

24 × 2 > 0.
Since there are at least two 4+-faces in k1, k2, k3 and h1,
then each of 4+-face sends at least 5

24 to v by R6.1 and
R6.6. If 5 ≤ dG×(u2) ≤ 6 and 5 ≤ dG×(u3) ≤ 6, then
ω′(v) ≥ −1 + 1

3 + 1
3 × 2 = 0. If 5 ≤ dG×(u2) ≤ 6 and

dG×(u3) = 7, then ω′(v) ≥ −1 + 1
3 + 1

4 + 5
24 × 2 = 0 by

R6.1 and R6.6.
Case 3: Suppose that v is incident with two 3-faces, then

we can assume f1 and f2 are 3-faces.
Case 3.1: If f1 or f2 is true, say f1, then f2 is false 3-

face and τ(f1 → v) ≥ 1
3 by R1 and R7. Since G doesn’t

have (3, 3)-cycle, so f3 is a 5+-face and h2 is a 4+-face.
By R6.1, Claim 4.1 and Claim 4.5, τ∗(h2 → v) ≥ 1

3 and
τ(f3 → v) ≥ 1

3 . Thus, ω′(v) ≥ −1 + 1
3 × 3 = 0.

Case 3.2: If both f1 and f2 are all false, then f3 is a
5+-face and v is incident with two false vertices by Lemma
2.2(3)(4). Without loss of generality, we can assume that v1

and v3 are false. Since G doesn’t have (3, 3)-cycle, so there is
at least one 4+-face in h1 and h2. By the symmetry, assume
that h1 is a 4+-face. Then, τ∗(h1 → v) ≥ 1

3 by R6.1. If f3

is a 6+-face, then ω′(v) ≥ −1 + 1
3 + 2

3 = 0 by Claim 4.1.
Otherwise, f3 = vv3z1z2v1v is a 5-face. The face incident
to v3z1(v1z2) in G× that is different from f3 is denoted
by k1(k2). Since G doesn’t have (4, 4)-cycle, so there is at
least one 4+-face in k1 and k2. Without loss of generality,
we can assume that k1 is a 4+-face. If dG×(z1) ≤ 4, then
τ(f3 → v) ≥ 1+ 3

5

2 = 4
5 by R1, R7 and Property 3.1.3.

Thus, ω′(v) ≥ −1 + 1
3 + 4

5 > 0. If 5 ≤ dG×(z1) ≤ 6, then
τ(f3 → v) ≥ 1

3 and τ∗(k1 → v) ≥ 1
3 by R6.6 and Claim

4.5. Thus, ω′(v) ≥ −1 + 1
3 × 3 = 0. If 7 ≤ dG×(z1) ≤ 11,

then τ∗(k1 → v) ≥ 1
5 and τ(f3 → v) ≥ 1+ 1

4

2 = 5
8 by

R6, R1 and R7. Thus, ω′(v) ≥ −1 + 1
3 + 1

5 + 5
8 > 0. If

dG×(z1) ≥ 12, then τ(f3 → v) ≥ 1+ 2
3

2 = 5
6 by R1 and R7.

Thus, ω′(v) ≥ −1 + 1
3 + 5

6 > 0.
(2) dG×(v) = 4.
If v is a false vertex or is not incident with any 3-face,

then ω′(v) ≥ 0 by discharging rules. So v is a true vertex
and is incident with at most three 3-faces by Lemma 2.2.

Case 1: Suppose that v is only incident with one 3-face,
say f1. If f1 is a true 3-face, then τ(f1 → v) ≥ −1 +
3
5 + 3

5 + 1
5 = 2

5 by R1 and R7. If f1 is a false 3-face, say
v1 is false vertex and v2 is true vertex, then τ(f2 → v) ≥
min{ 1

3 ,
3
5

2 ,
3
5 × 2 − 3

5} = 3
10 by Claim 4.2, Claim 4.5, R1,

R6.2 and R7. Thus, ω′(v) ≥ 0 + 3
10 −

1
5 > 0 by R4.

Case 2: Suppose that v is incident with two 3-faces.
Case 2.1: If v is incident with at least one true 3-face,

then ω′(v) ≥ 0 + 2
5 −

1
5 × 2 = 0 by R1, R5 and R7.

Case 2.2: If v is incident with two false 3-faces.
Case 2.2.1: Suppose the two false 3-faces are adjacent,

say f1 and f2. If v2 is false, then both h1 and h2 are 4+-
face. Thus, ω′(v) ≥ 0 + 1

5 × 2 − 1
5 × 2 = 0 by R6.2 and
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R5. If v2 is true, then h1 or h2 is a 4+-face, say h1. By
R6.2, τ∗(h1 → v) ≥ 1

5 . Suppose v4 is true. Since G doesn’t
have (4, 4)-cycle, so f3 or f4 is a 5+-face. Thus, ω′(v) ≥
0 + 1

5 + 1
3 −

1
5 × 2 > 0 by Claim 4.2, Claim 4.5 and R5.

Suppose v4 is false. If f3 or f4 is a 5+-face, say f3, then
τ(f3 → v) ≥ 1

3 by Claim 4.2 and Claim 4.5. Thus, ω′(v) ≥
0 + 1

5 + 1
3 −

1
5 × 2 > 0. If both f3 and f4 are 4-faces, then

let f3 = vv3u3v4v and f4 = vv4u4v1v. If there is at least
one 7+-vertex in u3 and u4, say u3, then τ(f3 → v) ≥ 1

4
by R2 and R7. Thus, ω′(v) ≥ 0 + 1

5 + 1
4 −

1
5 × 2 > 0.

Otherwise, 5 ≤ d(u3) ≤ 6 and 5 ≤ d(u4) ≤ 6. The face
incident to v3u3 (v1u4) in G× that is different from f3(f4)
is denoted by k3(k4). Since G doesn’t have (4, 4)-cycle, so at
least three 4+-faces in k3 and k4. Without loss of generality,
we can assume that k3 is 4+-face, then τ∗(k3 → v) ≥ 1

5 by
R6.7. Thus, ω′(v) ≥ 0 + 1

5 × 2− 1
5 × 2 = 0.

Case 2.2.2: Suppose the two false 3-faces are not adjacent,
say f1 and f3. If v1 and v3 are false, then τ(f2 → v) ≥
min{ 1

3 ,
3
5

2 ,
3
5 × 2− 3

5} = 3
10 and τ(f4 → v) ≥ 3

10 by Claim
4.2, Claim 4.5, R1, R6.2 and R7. Thus, ω′(v) ≥ 0 + 3

10 ×
2 − 1

5 × 2 > 0. If v1 and v4 are false, then τ(f2 → v) ≥
min{ 2

3 ,
1+ 3

5×2

3 ,
1+ 3

5×2− 1
5

2 } = 11
15 by R1, R6, R7 and Claim

4.2, where f2 is a 5+-face. If f2 is a 4-face, then τ(f2 →
v) ≥ min{

3
5×2

2 , 3
5 × 2 − 3

5} = 3
5 by R1, R6 and R7. Thus,

ω′(v) ≥ 3
5 −

1
5 × 2 > 0.

Case 3: If v is incident with three false 3-faces, then v is
incident with at most one true 3-face, say f1. Without loss
of generality, we can assume that fi and fj are false 3-faces,
where i, j ∈ {2, 3, 4} Since G doesn’t have (4, 4)-cycle, so
hi and hj are 4+-faces. Thus, ω′(v) ≥ 2

5 + 1
5×2− 1

5×3 > 0
by R6,R5. Otherwise, v is incident with three false 3-faces,
say f1, f2 and f3, then h1, h2 and h3 are all 4+-faces. Thus,
ω′(v) ≥ 1

5 × 3− 1
5 × 3 = 0 by R6 and R5.

(3) dG×(v) = 5.
By Lemma 2.2, v is incident with at most four 3-faces.
Case 1: Suppose that v is incident with at most two 3-

faces, then ω′(v) ≥ 1− 1
2 × 2 = 0 by R4.

Case 2: Suppose that v is incident with three 3-faces.
Case 2.1: If the neighbors of v in G are 5(6)-vertex and

9+-vertex, then let dG×(v1′) = 5(6) and dG×(vi′) = 9+,
where i = 2, 3, 4, 5.

Case 2.1.1: Suppose v is incident with at last one true
3-face, say fi. If fi is a (5, 9+, 9+)-face, then ω′(v) ≥ 1−
1
2 × 3 + 11

18 > 0 by R1, R4 and R7. If fi is a (5, 5(6), 9+)-
face, then τ(fi → v) ≥ 5

18 and i = 1. If dG×(f2) ≥ 5, then
ω′(v) ≥ 1 − 1

2 × 3 + 5
18 + 1

3 > 0 by Claim 4.3, Claim 4.4
and Claim 4.6. If dG×(f2) = 4, then τ(f2 → v) ≥ 5

18 by
R4, R6 and R7. Thus, ω′(v) ≥ 1− 1

2 × 3 + 5
18 + 5

18 > 0. If
dG×(f2) = 3, then f2 is a false 3-face. Since G doesn’t have
(3, 3)-cycle, so h2 is a 4+-face. By R6, τ(h2 → v) ≥ 1

5 .
Thus, ω′(v) ≥ 1− 1

2 × 2− 4
9 + 5

18 + 1
5 > 0.

Case 2.1.2: If v is incident with three false 3-faces, then
there must be two adjacent false 3-faces. Suppose there are
only two adjacent false 3-faces.

(a) If f1 and f2 are two adjacent false 3-faces, then f3

and f5 are 4+-faces. If v2 is a true vertex in G×, then f3 or
f5 is a 5+-face. Thus, ω′(v) ≥ 1 + 1

3 −
4
9 × 3 = 0 by Claim

4.3, Claim 4.4, Claim 4.6 and R4. If v2 is a false vertex in
G×, then h2 is a 4+-face. By R6, τ∗(h2 → v) ≥ 1

5 . Suppose
v4 is a false vertex in G×. If f3 is a 5+-face, then ω′(v) ≥

1+ 1
3 + 1

5−
4
9×2− 1

2 > 0 by Claim 4.3, Claim 4.4, Claim 4.6
and R4. If f3 = vv3u3v4v is a 4-face, then both v3 and u3

are true vertices. Thus, ω′(v) ≥ 1 + 5
18 + 1

5 −
4
9 × 2− 1

2 > 0
by R1, R4 and R7. Suppose v5 is a false vertex in G×. If f3

or f5 is a 5+-face, then ω′(v) ≥ 1+ 1
3 + 1

5−
4
9×2− 1

2 > 0 by
Claim 4.3, Claim 4.4, Claim 4.6 and R4. If both f3 and f5

are 4-faces, then f3 is a (5, 9+, F, 9+)-face. Since G doesn’t
have (4, 4)-cycle, so τ(f3 → v) ≥ 5

9 by R1, R6 and R7.
Thus, ω′(v) ≥ 1 + 5

9 + 1
5 −

4
9 × 2− 1

2 > 0.
(b) If f2 and f3 are two adjacent false 3-faces, then f1

and f4 are 4+-faces. If v3 is a true vertex in G×, then f3 or
f5 is a 5+-face, say f3. By Claim 4.3, Claim 4.4 and Claim
4.6, τ(f3 → v) ≥ 1

3 . Since G doesn’t have (3, 3)-cycle, so
h2 or h3 is a 4+-face, say h2. By R6, τ∗(h2 → v) ≥ 1

5 .
Thus, ω′(v) ≥ 1 + 1

3 + 1
5 −

4
9 × 2 − 1

2 > 0. If v3 is a
false vertex in G×, then both h2 and h3 are 4+-faces. Thus,
ω′(v) ≥ 1 + 1

5 × 2− 4
9 × 2− 1

2 > 0 by R4 and R6.
(c) If f3 and f4 are two adjacent false 3-faces, then by the

symmetry, it is similar to (a).
(d) If f4 and f5 are two adjacent false 3-faces, then by

the symmetry, it is similar to (b).
(e) If f5 and f1 are two adjacent false 3-faces, then f2 and

f4 are 4+-faces. Suppose v1 is a false vertex in G×. If f2

or f4 is a 5+-face, then ω′(v) ≥ 1 + 1
3 −

4
9 × 3 = 0. If both

f2 and f4 are 4-face, then f2 or f4 is a (5, 9+, F, 9+)-face
or (5, 9+, 3+, 9+)-face, say f2. By R6.3.2 and R7, τ(f2 →
v) ≥ 5

9 . Thus, ω′(v) ≥ 1 + 5
9 −

4
9 × 3 > 0.

Suppose v1 is a true vertex in G×, then f2 or f4 is a
5+-face, say f2. By Claim 4.3, Claim 4.4 and Claim 4.6,
τ(f2 → v) ≥ 1

3 . If h3 is a 3-face, then τ∗(h3 → f3) ≥ 1
9 by

R6.3. Then, τ(f3 → v) ≥ 1
9 by R7. So, ω′(v) ≥ 1− 4

9 −
1
2 ×

2 + 1
3 + 1

9 > 0. If h3 is a 4+-face, then τ∗(h3 → f3) ≥ 1
5

by R6. Thus, ω′(v) ≥ 1− 4
9 −

1
2 × 2 + 1

3 + 1
5 > 0.

Case 2.1.3: Suppose there are three adjacent false 3-faces.
(a) If f1, f2 and f3 are three adjacent false 3-faces, then

h1, h2 and h3 are 4+-faces. By R6, τ∗(h2 → v) ≥ 1
5 and

τ∗(h3 → v) ≥ 1
5 . Thus, ω′(v) ≥ 1 + 1

5 × 2− 4
9 × 2− 1

2 > 0.
(b) If f2, f3 and f4 are three adjacent false 3-faces, then

h2, h3 and h4 are 4+-faces. So, ω′(v) ≥ 1+ 1
5×3− 4

9×3 > 0.
(c) If f3, f4 and f5 are three adjacent false 3-faces, then

by the symmetry, it is similar to (a).
(d) If f4, f5 and f1 are three adjacent false 3-faces,

then τ∗(h4 → v) ≥ 1
5 . If f2 or f3 is 5+-face, say f2,

then τ(f2 → v) ≥ 1
3 by Claim 4.3, Claim 4.4 and Claim

4.6. Thus, ω′(v) ≥ 1 + 1
5 + 1

3 −
4
9 −

1
2 × 2 > 0. If

both f2 and f3 are 4-faces, then f2 or f3 is (5, F, 3+, 9+)-
face, say f2. By R1 and R6, τ(f2 → v) ≥ 5

18 . Thus,
ω′(v) ≥ 1 + 1

5 + 1
18 −

4
9 −

1
2 × 2 > 0.

(e) If f5, f1 and f2 are three adjacent false 3-faces, then
by the symmetry, it is similar to (d).

Case 2.2: If the neighbors of v in G are all 7+-vertices.
Case 2.2.1: If v is incident with at last one true 3-face,

then ω′(v) ≥ 1 + 1
2 −

1
2 × 3 = 0 by R1, R2, R4 and R7.

Case 2.2.2: If v is incident with three false 3-faces, then
there must be two adjacent false 3-faces. Suppose there
are only two adjacent false 3-faces, then by the symmetry,
assume that f1, f2 and f4 are false 3-faces, and v5 is a false
vertex. If v2 is true, then h1 or h2 is a 4+-face, say h1.
By R6, τ∗(h1 → v) ≥ 1

8 . Suppose f3 is a 5+-face, then
ω′(v) ≥ 1 + 1

8 + 1
2 −

1
2 × 3 > 0. Suppose f3 is a 4-face,

then f5 is a 5+-face. By Claim 4.3, Claim 4.4, Claim 4.6,
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R6 and R7, τ(f5 → v) ≥ 1
3 and τ(f3 → v) ≥ 1

8 . Thus,
ω′(v) ≥ 1 + 1

8 + 1
8 + 1

3 −
1
2 × 3 > 0.

If v2 is false, then both h1 and h2 are 4+-face. Since v3 and
v4 are true, then τ(f3 → v) ≥ 1

4 by Claim 4.3, Claim 4.4,
Claim 4.6, R6 and R7. Thus, ω′(v) ≥ 1+ 1

8×2+ 1
4−

1
2×3 = 0.

Case 2.2.3: Suppose there are three adjacent false 3-faces,
then by the symmetry, assume that f1, f2 and f3 are false
3-faces, and v2 and v4 are false vertices. By R6, τ∗(hi →
v) ≥ 1

8 , where i = 1, 2, 3. Since f5 is a 4+-face, then τ(f5 →
v) ≥ 1

8 Claim 4.3, Claim 4.4, Claim 4.6, R6 and R7. Thus,
ω′(v) ≥ 1 + 1

8 × 3 + 1
8 −

1
2 × 3 = 0.

Case 3: Suppose that v is incident with four 3-faces, then
they are all false 3-faces.

Case 3.1: If the neighbors of v in G are 5(6)-vertex and
9+-vertex, then let dG×(v1′) = 5(6) and dG×(vi′) = 9+,
where i = 2, 3, 4, 5.

(a) If fi is a false 3-face, then hi is a 4+-face, where
i = 1, 2, 3, 4. By R6, τ∗(hi → v) ≥ 1

5 , where i = 2, 3, 4.
Since G doesn’t have (3, 3)-cycle, so f5 is a 5+-face. Thus,
ω′(v) ≥ 1 + 1

5 × 3 + 1
3 −

4
9 × 3− 1

2 > 0.
(b) If fi is a false 3-face, where i = 2, 3, 4, 5, then by the

symmetry, it is similar to (a).
(c) If fi is a false 3-face, where i = 1, 3, 4, 5, then

τ∗(h3 → v) ≥ 1
5 , τ∗(h4 → v) ≥ 1

5 , and f2 is a 5+-face.
If f2 is a 6+-face, then τ(f2 → v) ≥ 1

2 by Claim 4.3 and
Claim 4.4. If f2 is a 5-face, then f2 is incident with at most
two true 5−-vertices by Property 3.4. Then, τ(f2 → v) ≥ 1

2 .
Thus, ω′(v) ≥ 1 + 1

5 × 2 + 1
2 −

4
9 × 2− 1

2 × 2 > 0.
(d) If fi is a false 3-face, then hi is a 4+-face,

where i = 1, 2, 4, 5. Let min{dG×(v2′), dG×(v3′)} = p,
min{dG×(v4′), dG×(v5′)} = q. If p = q = 9, then
τ∗(h2 → v) ≥ 2

9 and τ∗(h4 → v) ≥ 2
9 by R6.3.2. Thus,

ω′(v) ≥ 1+ 2
9×2+ 1

3−
4
9×4 = 0. If p = 9 and 10 ≤ q ≤ 11,

then τ∗(h2 → v) ≥ 2
9 , τ∗(h4 → v) ≥ 1

5 , τ(f4 → v) ≥ 2
45 ,

and τ(f5 → v) ≥ 2
45 by R1, R4, R6.2, R6.3 and R7. Thus,

ω′(v) ≥ 1 + 2
9 + 1

5 + 1
3 + 2

45 × 2 − 4
9 × 4 > 0. If q = 9

and 10 ≤ p ≤ 11, then ω′(v) ≥ 0, similarly. If 10 ≤ p and
q ≤ 11, then τ(fi → v) ≥ 2

45 , where i = 1, 2, 4, 5. Thus,
ω′(v) ≥ 1+ 1

5×2+ 1
3 + 2

45×4− 4
9×4 > 0. If p ≥ 12 or q ≥ 12,

say p ≥ 12, then q ≥ 10. By R6.1.2, τ∗(h2 → v) ≥ 1
3 and

τ∗(h4 → v) ≥ 1
5 . Thus, ω′(v) ≥ 1− 4

9 × 4 + 1
3 × 2 + 1

5 > 0.
(e) If fi are four adjacent false 3-faces, where i = 1, 2, 3, 5,

then by the symmetry, it is similar to (c).
Case 3.2: If the neighbors of v in G are all 7+-vertices,

then by the symmetry, assume that fi is 3-face, where i =
1, 2, 3, 4. Since G doesn’t have (3, 3)-cycle, so f5 is a 5+-
face and hi is a 4+-face, where i = 1, 2, 3, 4. If f5 is a
6+-face or a 5-face that is incident with at most two true
5−-vertices, then ω′(v) ≥ 1 + 1

8 × 4 + 1
2 −

1
2 × 4 = 0 by

Claim 4.3, Claim 4.4 and Claim 4.6. If f5 is a 5-face that
is incident with three true 5−-vertices, then v2 and v4 are
9+-vertices. Thus, ω′(v) ≥ 1 + 1

8 × 4 + 1
3 −

4
9 × 4 > 0.

(4) dG×(v) = 6.
By Lemma 2.2, v is incident with at most four 3-faces.

By R3, we have ω′(v) ≥ 6− 4− 1
2 × 4 = 0.

(5) dG×(v) = 7.
By Lemma 2.2, v is incident with at most five 3-faces. By

R2, we have ω′(v) ≥ 7− 4− 1
2 × 5− 1

4 × 2 = 0.
(6) dG×(v) ≥ 8.
By R1, ω′(v) ≥ dG×(v)− 4− dG× (v)−4

dG× (v) × dG×(v) = 0.
Next, we consider the discharge of the faces in G.

(1) dG×(f) = 3.
Case 1: Suppose f = v1v2v3 is true, where dG×(v1) ≥

dG×(v2) ≥ dG×(v3). If dG×(v1) = 3 or 4, then ω′(f) ≥
−1 + 3

5 × 2 > 0 by property 3.2, property 3.1.3 and R1. If
dG×(v1) ≥ 5, then ω′(f) ≥ −1 + 1

2 × 3 > 0 by R1−R4.
Case 2: If f = vv1v2 is false, where dG×(v1) ≤ dG×(v2)

and v be a false vertex of G× such that v1v3 crossed v2v4

in G at v. If dG×(v1) = 3, then dG×(v2), dG×(v3) ≥ 12 by
Property 3.2. By R1, R5 and R6.1, we have τ(f2 → v) ≥ 1

3
and τ(v2 → v) ≥ 2

3 . Thus, ω′(f) ≥ −1 + 2
3 + 1

3 = 0. If
dG×(v1) = 4, then ω′(f) ≥ −1 + 3

5 + 1
5 + 1

5 = 0 by R1, R5
and R6. If dG×(v1) = 5 and dG×(v2) = 9+, then ω′(f) ≥
−1 + 4

9 + 5
9 = 0 by R1, R2, R3 and R4. If dG×(v1) = 5

and dG×(v2) 6= 9+, then ω′(f) ≥ −1 + 1
2 × 2 = 0 by R4.

If dG×(v1) = 6+, then ω′(f) ≥ −1 + 1
2 × 2 = 0 by R1 and

R2.
(2) dG×(f) = 4.
Case 1: Suppose f is not incident with any transitive false

vertex, then ω′(f) ≥ dG×(f)− 4 ≥ 0 by R6 and R7.
Case 2: Suppose f = v1v2v3v4 is incident with two tran-

sitive false vertices, say v1 and v3, then let min{dG×(v2),
dG×(v4)} = p, and max{dG×(v2), dG×(v4)} = q. If
5 ≤ p ≤ 6 and q ≥ 12, then ω′(f) ≥ 0 + 2

3 −
1
3 × 2 = 0

by R1, R2 and R6.6. If 5 ≤ p ≤ 6 and 10 ≤ q ≤ 11,
then ω′(f) ≥ 0 + 3

5 −
1
5 × 2 > 0 by R1, R2 and R6.7.

If 7 ≤ p ≤ 9, then ω′(f) ≥ 0 by R1, R6.4.1 and R6.3,
similarly. If 10 ≤ p ≤ 11. Since G doesn’t have (4, 4)-
cycle, f sends out at most 3

5 × 2 R1 and R6.2. Thus,
ω′(f) ≥ 0 − 3

5 × 2 + 3
5 × 2 = 0. If p ≥ 12, then

ω′(f) ≥ 0− 4
3 + 2

3 × 2 = 0 by R1 and R6.1, similarly.
Case 3: Suppose f is only incident with one transitive

false vertex, then it is similar to the proof of Case 2.
(3) dG×(f) = 5.
If dG×(f) = 5, then f is incident with at most two

transitive false vertices. Similar to the proof of dG×(f) = 4,
we can get ω′(f) ≥ dG×(f)− 4 ≥ 0.

(4) dG×(f) ≥ 6.
Suppose f is incident with at least t transitive false

vertices, then t ≤ bdG× (f)

2 c. The worst case is that the
neighbors of transitive false vertices on f are 12+-vertices,
then ω′(f) ≥ dG×(f)−4− 4t

3 + 2t
3 ≥ dG×(f)−4− dG× (f)

3 =
2dG× (f)

3 − 4 ≥ 0 by R1, R6 and R7.
The proof of Theorem 1.2 is complete.
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