The K-(2,1)-Total Choosability of 1-Planar Graphs without Adjacent Short Cycles

Yan Song and Lei Sun*

Abstract

A list assignment of a graph G is a function L : $V(G) \cup E(G) \rightarrow 2^{N}$. A graph G is k-($\mathbf{(2 , 1) - T o t a l}$ choosable if and only if for every list assignment L provided that $|L(x)|=$ $k, x \in V(G) \cup E(G)$, there exists a function c that $c(x) \in L(x)$, and for all $x \in V(G) \cup E(G),|c(u)-c(v)| \geq 1$ if $u v \in E(G)$, $\left|c\left(e_{1}\right)-c\left(e_{2}\right)\right| \geq 1$ if the edges e_{1} and e_{2} are adjacent, and $|c(u)-c(e)| \geq 2$ if the vertex u is incident to the edge e. Denote by $C_{(2,1)}^{T}$ the minimum k such that G is k-(2,1)-Total choosable. We use (k, k)-cycle to denote that k-cycle is adjacent to k-cycle. In this paper, we prove that if G is a 1-planar graph with $\Delta(G) \geq 12$ and without (k, k)-cycle, where $k \in\{3,4\}$, then $C_{(2,1)}^{T}(\bar{G}) \leq \Delta+4$.

Index Terms- L-(2,1)-total labeling, k-(2,1)-total choosable, 1-planar graph.

I. Introduction

IN this paper, G is a finite simple graph. By $V(G), E(G)$, $F(G), \triangle(G), \delta(G)$, we denote, respectively, the vertex set, the edge set, the face set, the maximum degree, and the minimum degree of G. Call u a k-vertex, a k^{+}-vertex, or a k^{+}-vertex, if $d(u)=k, d(u) \geq k$, or $d(u) \leq k$, respectively. Similarly a k-face, a k^{+}-face, and a k^{-}-face are also defined. A k-cycle is a cycle of length k. We say that two cycles (or faces) are adjacent if they share at least one edge. Especially, we use (k, k)-cycle to denote that k-cycle is adjacent to k cycle.
A graph is 1-planar if it can be drawn in the plane so that each edge is crossed by at most one another edge. Such a drawing that the number of crossings is as small as possible is called a 1-plane graph. Undefined notations are referred to [1].
The $(p, 1)$-Total labeling problem of graph G was proposed by Havet and $\mathrm{Yu}[4]$. A graph G is said to be $k-$ $(p, 1)$-Total labeling if and only if there is a function c from $V(G) \bigcup E(G)$ to $\{0,1,2, \ldots, k\}$ so that $|c(u)-c(v)| \geq 1$ if $u v \in E(G),\left|c\left(e_{1}\right)-c\left(e_{2}\right)\right| \geq 1$ if the edges e_{1} and e_{2} are adjacent, and $|c(u)-c(e)| \geq p$ if the vertex u is incident to the edge e. The $(p, 1)$-Total labeling number of G, denoted by $\lambda_{p}^{T}(G)$, is the minimum k such that G is $k-(p, 1)$-Total labeling. Readers can refer to [3], [6], [7], [9], [10], [14] for further research.
Suppose a list assignment of a graph G is a function $L: V(G) \bigcup E(G) \rightarrow 2^{N}$. We say G is $L-(p, 1)$-Total labeling if there exists a $(p, 1)$-Total labeling c that $c(x) \in L(x)$

[^0]for all $x \in V(G) \bigcup E(G)$. If L is any list assignment of G such that $|L(x)|=k$ for all $x \in V(G) \bigcup E(G)$, then the function c is called a $k-(p, 1)$-Total choosable function of G with respect to L. The $(p, 1)$-Total choice number of G, denoted by $C_{p, 1}^{T}(G)$, is the minimum k such that G has a k - $(p, 1)$-Total choosable function c. Clearly, $L-(1,1)$ Total labeling problem of graph is the list total coloring problem of graph. It is known that there is a List Total Coloring Conjecture $\chi_{l}^{\prime \prime}(G)=\chi^{\prime \prime}(G)$, we may conjecture $C_{p, 1}^{T}(G)=\lambda_{p}^{T}(G)+1$. Unfortunately, we found some graphs satisfying $C_{p, 1}^{T}(G)>\lambda_{p}^{T}(G)+1$ in[11]. So, Y. Yu[11] proposed the following "Week List ($p, 1$)-Total Labeling Conjecture".
Conjecture 1.1 ([11]) If G is a simple graph with maximum degree Δ, then $C_{p, 1}^{T}(G) \leq \Delta+2 p$.
$\mathrm{Y} . \mathrm{Yu}[11]$ showed the conjecture to be true for tree and path. $\mathrm{Y} . \mathrm{Yu}[11]$ also proved the following results. (1) If G is a star graph $K_{1, n}$, where $n \geq 3$ and $p \geq 2$, then $C_{p, 1}^{T}(G) \leq$ $\Delta+2 p-1$ (2) If G is a outerplanar graph with $\Delta(G) \geq p+3$, then $C_{p, 1}^{T}(G) \leq \Delta+2 p-1$. (3) If G is a graph embedded in surface with Euler characteristic ε and $\Delta(G)$ big enough, then $C_{p, 1}^{T}(G) \leq \Delta+2 p$.

Especially, for the $(1,1)$-Total choice number, J. Hou et al.[5] proved that if G is a planar graph with $\Delta(G) \geq 9$, then $C_{1,1}^{T}(G) \leq \Delta+2$. O. Borodin et al.[2] proved that if G is a planar graph with $\Delta(G) \geq 12$, then $C_{1,1}^{T}(G) \leq \Delta+1$. X. Zhang.[12] proved that if G is a 1-planar graph with $\Delta(G) \geq$ 21 , then $C_{1,1}^{T}(G) \leq \Delta+1$. For the $(2,1)$-Total choice number of a planar graph, Y. Song and L. Sun [8] proved that (1) if G is a planar graph with $\Delta(G) \geq 7$ and 3-cycle is not adjacent to k-cycle, $k \in\{3,4\}$, then $C_{2,1}^{T}(G) \leq \Delta+4$. (2) if G is a planar graph with $\Delta(G) \geq 8$ and i-cycle is not adjacent to j-cycle, where $i, j \in\{3,4,5\}$, then $C_{2,1}^{T}(G) \leq \Delta+3$.
In this paper, we mainly studies the $(2,1)$-Total choice number of 1-planar graph. For Conjecture 1.1, we give some positive answers. We prove the following theorem.

Theorem 1.2 If G is a 1-planar graph with $\Delta(G) \geq 12$ and without (k, k)-cycle, where $k \in\{3,4\}$, then $C_{2,1}^{T}(\bar{G}) \leq$ $\Delta+4$.

II. Preliminaries

The associated plane graph G^{\times}of a 1-plane graph G is a new plane graph obtained by replacing all crossings of G with new 4 -vertices. A vertex u of G^{\times}is a false vertex if $u \in V\left(G^{\times}\right) \backslash V(G)$, and a true vertex otherwise. Any face $f \in F\left(G^{\times}\right)$is false if it is incident with at least one false vertex, and true otherwise.

Lemma 2.1[13] Let G be a 1-plane graph without adjacent triangles and let G^{\times}be its associated plane graph. For every vertex $v \in V(G)$, if $d_{G}(v) \geq 5$, then v is incident with at most $\left\lfloor\frac{4}{5} d_{G}(v)\right\rfloor 3$-faces in G^{\times}.

Lemma 2.2[13] Let G be a 1-plane graph and let G^{\times}be its associated plane graph. Then the following hold:
(1) For any two false vertices u and v in $G^{\times}, u v \notin E\left(G^{\times}\right)$.
(2) If there is a 3 -face $u v w u$ in G^{\times}such that $d_{G}(v)=2$, then u and w are both true vertices.
(3) If $d_{G}(u)=3$ and v is a false vertex in G^{\times}, then either $u v \notin E\left(G^{\times}\right)$or $u v$ is not incident with two 3-faces.
(4) If a 3 -vertex v in G is incident with two 3-faces and adjacent to two false vertices in G^{\times}, then v must also be incident with a 5^{+}-face.
(5) For any 4 -vertex u in G, u is incident with at most three false 3 -faces.

III. Structural Properties

We will give some properties of G as follows. For convenience, let $\Theta(x) \in L(x)$, where $x \in V(G) \bigcup E(G)$, be a partially $(2,1)$-Total choosable function of graph G, and the function satisfies the definition of $L-(2,1)$-Total labeling in the following sections. We denote the set of available colors of x for $x \in V(G) \bigcup E(G)$ under the partially (2,1)-Total choosable function $\Theta(x)$ by $A_{\Theta}(x)$.

Property 3.1: $\delta(G) \geq 3$.
Proof: It is similar to the proof of Property 3.1 of [8].
Property 3.2: Every 3 -vertex in G is adjacent to 12^{+}vertex.

Proof: It is similar to the proof of Property 3.2 of [8].
Property 3.3: Every 4 -vertex in G is adjacent to 10^{+}vertex.

Proof: Suppose that a 4 -vertex u is adjacent to a 9^{-}vertex v. By the minimality of G, the graph $G-u v$ has a $\Delta+4-(2,1)$-Total choosable function Θ. We first erase the color of the vertex u. Since $\left|A_{\Theta}(u v)\right| \geq \Delta+4-(3+8+$ $3) \geq 2$ and $\left|A_{\Theta}(u)\right| \geq \Delta+4-(4+3 \times 3) \geq 3$. Let $\alpha \in A_{\Theta}(u v)$. If $A_{\Theta}(u) \neq\{\alpha-1, \alpha, \alpha+1\}$, then let $\Theta(u) \in$ $A_{\Theta}(u) \backslash\{\alpha-1, \alpha, \alpha+1\}$ and $\Theta(u v)=\alpha$. If $A_{\Theta}(u)=$ $\{\alpha-1, \alpha, \alpha+1\}$, then let $\Theta(u)=\beta \in A_{\Theta}(u) \backslash\{\alpha\}$ and $\Theta(u v) \in A_{\Theta}(u v) \backslash\{\beta-1, \beta, \beta+1\}$. We can recolor the vertex v and the edge $v v_{1}$, easily. Therefore, G is $\Delta+4-(2,1)$-Total choosable, a contradiction.

Property 3.4: If a 5 -vertex v in G is adjacent to a 5 -vertex, then v is adjacent to four 9^{+}-vertices.

Proof: It is similar to the proof of Property 3.3.
Property 3.5: If a 5 -vertex v in G is adjacent to a 5 -vertex and a 6 -vertex, then v is adjacent to three 9^{+}-vertices.

Proof: It is similar to the proof of Property 3.3.

IV. Proof of Theorem 1

In this section, we give the proof of our main results by discharging method.

According to Euler's formula, we get:

$$
\sum_{v \in V\left(G^{\times}\right)}\left(d_{G^{\times}}(v)-4\right)+\sum_{f \in F\left(G^{\times}\right)}\left(d_{G^{\times}}(f)-4\right)=-8
$$

Then, we define an initial charge ω on $V\left(G^{\times}\right) \bigcup E\left(G^{\times}\right)$ by setting $\omega(x)=d_{G^{\times}}(x)-4$ for all $x \in V\left(G^{\times}\right) \bigcup F\left(G^{\times}\right)$. So, we have $\sum_{x \in V\left(G^{\times}\right) \bigcup F\left(G^{\times}\right)} \omega(x)=-8$. Our aim is to obtain a new nonnegative charge $\omega^{\prime}(x)$ for all $x \in$
$V\left(G^{\times}\right) \bigcup E\left(G^{\times}\right)$by designing discharging rules and redistributing the charges, then we can get a contradiction:
$0 \leq \sum_{x \in V\left(G^{\times}\right) \bigcup F\left(G^{\times}\right)} \omega^{\prime}(x)=\sum_{x \in V\left(G^{\times}\right) \bigcup F\left(G^{\times}\right)} \omega(x)=-8$
This contradiction proves the non-existence of G and completes the proof. For convenience, let $\tau\left(a_{1} \rightarrow a_{2}\right)$ be the charges transferred from a_{1} to a_{2}. Let $\tau\left(a_{1} \rightarrow a_{2}, a_{3}\right)$ be the charges transferred from element a_{1} to each of element a_{2} and a_{3}. And, $\tau^{*}\left(a_{1} \rightarrow a_{2}, a_{3}\right)$ be the charges transferred from element a_{1} through a false vertex v to each of element a_{2} and a_{3}.

So, we design discharging rules as follows.
$R 1$. If $d_{G^{\times}}(v) \geq 8$ and f be a face that is incident with v in G^{\times}, then $\tau(v \rightarrow f)=\frac{d_{G \times(v)-4}}{d_{G} \times(v)}$.
$R 2$. If $d_{G^{\times}}(v)=7$ and f_{1}, f_{2} be a 3 -face and a 4^{+}-face that is incident with v in G^{\times}, respectively, then $\tau\left(v \rightarrow f_{1}\right)=$ $\frac{1}{2}$ and $\tau\left(v \rightarrow f_{2}\right)=\frac{1}{4}$.
$R 3$. If $d_{G^{\times}}(v)=6$ and f be a 3 -face that is incident with v in G^{\times}, then $\tau(v \rightarrow f)=\frac{1}{2}$.
$R 4$. If $d_{G^{\times}}(v)=5$ and f_{1} be a $\left(5,9^{+}, F\right)$-face that is incident with v, and f_{2} be the other 3 -face that is incident with v in G^{\times}, then $\tau\left(v \rightarrow f_{1}\right)=\frac{4}{9}$ and $\tau\left(v \rightarrow f_{2}\right)=\frac{1}{2}$.
$R 5$. If v is a true 4 -vertex and f be a 3 -face that is incident with v in G^{\times}, then $\tau(v \rightarrow f)=\frac{1}{5}$.
$R 6$. Let v be a false vertex of G^{\times}such that $v_{1} v_{3}$ crossed $v_{2} v_{4}$ in G at v, and let f_{i} with $1 \leq i \leq 4$ be the face that is incident with $v v_{i}$ and $v v_{i+1}$ in G^{\times}(here v_{5} is recognized as v_{1}).

R6.1 Suppose that $\min \left\{d_{G^{\times}}\left(v_{1}\right), d_{G^{\times}}\left(v_{2}\right)\right\} \geq 12$.
R6.1.1 Let f_{1} be a 3-face. If $v_{2} v_{3} \in E\left(G^{\times}\right)$, then $\tau^{*}\left(f_{1} \rightarrow f_{2}\right)=\frac{1}{3}$. If $v_{1} v_{4} \in E\left(G^{\times}\right)$, then $\tau^{*}\left(f_{1} \rightarrow f_{4}\right)=\frac{1}{3}$.

R6.1.2 Let f_{1} be a 4^{+}-face. If both $v_{2} v_{3} \in E\left(G^{\times}\right)$and $v_{1} v_{4} \in E\left(G^{\times}\right)$, then $\tau^{*}\left(f_{1} \rightarrow f_{2}, f_{4}, v_{3}, v_{4}\right)=\frac{1}{3}$. If $v_{2} v_{3} \in$ $E\left(G^{\times}\right)$, then $\tau^{*}\left(f_{1} \rightarrow f_{2}, v_{3}\right)=\frac{1}{3}$. If $v_{1} v_{4} \in E\left(G^{\times}\right)$, then $\tau^{*}\left(f_{1} \rightarrow f_{4}, v_{4}\right)=\frac{1}{3}$.
$R 6.2$ Suppose that $10 \leq \min \left\{d_{G^{\times}}\left(v_{1}\right), d_{G^{\times}}\left(v_{2}\right)\right\} \leq 11$.
$R 6.2 .1$ Let f_{1} be a 3 -face. If $v_{2} v_{3} \in E\left(G^{\times}\right)$, then $\tau^{*}\left(f_{1} \rightarrow f_{2}\right)=\frac{1}{5}$. If $v_{1} v_{4} \in E\left(G^{\times}\right)$, then $\tau^{*}\left(f_{1} \rightarrow f_{4}\right)=\frac{1}{5}$.
$R 6.2 .2$ Suppose f_{1} is a 4^{+}-face, then $\tau^{*}\left(f_{1} \rightarrow v_{3}, v_{4}\right)=$ $\frac{1}{5}$. Especially, if both $v_{2} v_{3} \in E\left(G^{\times}\right)$and $v_{1} v_{4} \in E\left(G^{\times}\right)$, then $\tau^{*}\left(f_{1} \rightarrow f_{2}, f_{4}, v_{3}, v_{4}\right)=\frac{1}{5}$. If $v_{2} v_{3} \in E\left(G^{\times}\right)$, then $\tau^{*}\left(f_{1} \rightarrow f_{2}, v_{3}, v_{4}\right)=\frac{1}{5}$. If $v_{1} v_{4} \in E\left(G^{\times}\right)$, then $\tau^{*}\left(f_{1} \rightarrow\right.$ $\left.f_{4}, v_{3}, v_{4}\right)=\frac{1}{5}$.
$R 6.3$ Suppose that $\min \left\{d_{G^{\times}}\left(v_{1}\right), d_{G^{\times}}\left(v_{2}\right)\right\}=9$.
R6.3.1 Let f_{1} be a 3-face. If $v_{2} v_{3} \in E\left(G^{\times}\right)$, then $\tau^{*}\left(f_{1} \rightarrow f_{2}\right)=\frac{1}{9}$. If $v_{1} v_{4} \in E\left(G^{\times}\right)$, then $\tau^{*}\left(f_{1} \rightarrow f_{4}\right)=\frac{1}{9}$.
$R 6.3 .2$ Let f_{1} is a 4^{+}-face, then $\tau^{*}\left(f_{1} \rightarrow v_{3}, v_{4}\right)=\frac{2}{9}$.
$R 6.4$ Suppose that $\min \left\{d_{G^{\times}}\left(v_{1}\right), d_{G^{\times}}\left(v_{2}\right)\right\}=8$, and f_{1} is a 4^{+}-face, then $\tau^{*}\left(f_{1} \rightarrow v_{3}, v_{4}\right)=\frac{1}{4}$.

R6.5 Suppose that $\min \left\{d_{G^{\times}}\left(v_{1}\right), d_{G^{\times}}\left(v_{2}\right)\right\}=7$, and f_{1} is a 4^{+}-face. If $7 \leq \max \left\{d_{G \times} \times\left(v_{1}\right), d_{G \times} \times\left(v_{2}\right)\right\} \leq 11$, then $\tau^{*}\left(f_{1} \rightarrow v_{3}, v_{4}\right)=\frac{1}{8}$. If $\max \left\{d_{G^{\times}}\left(v_{1}\right), d_{G \times}\left(v_{2}\right)\right\} \geq 12$ then $\tau^{*}\left(f_{1} \rightarrow v_{3}, v_{4}\right)=\frac{5}{24}$.
$R 6.6$ Let $5 \leq d_{G^{\times}}\left(v_{1}\right) \leq 6, d_{G^{\times}}\left(v_{2}\right)=12^{+}, d_{G^{\times}}\left(v_{4}\right)=$ 3 , and f_{1} is a 4^{+}-face, then $\tau^{*}\left(f_{1} \rightarrow v_{4}\right)=\frac{1}{3}$.
$R 6.7$ Let $5 \leq d_{G^{\times}}\left(v_{1}\right) \leq 6, d_{G \times}\left(v_{2}\right) \geq 10, d_{G \times}\left(v_{4}\right)=4$, and f_{1} is a 4^{+}-face, then $\tau^{*}\left(f_{1} \rightarrow v_{4}\right)=\frac{1}{5}$.
$R 7$ Every 3^{+}-face redistributes its remaining charge after applying the previous rules equitably to each of its incident true 5^{-}-vertices.
Suppose that the vertex v on $f \in F\left(G^{\times}\right)$is a false vertex. Let the false vertex v through which the face f transfers out charges in $R 6$ be a transitive false vertex of the face f. Then, a transitive false vertex v on $f \in F\left(G^{\times}\right)$is a false vertex such that its two neighbors u, w on f both have degrees of at least 5. If f sends out charges via a false vertex, then this false vertex must be transitive by R6. And let v^{*} denote a true 5^{-}-vertex on f. The following will discuss the weight of each 3^{+}-face to the incidented true 5^{-}-vertices after discharging rules.

Claim 4.1: If f is a 6^{+}-face and is incident with at least one 3 -vertex in G^{\times}, then f sends at least $\frac{2}{3}$ to each of its incident true 5^{-}-vertices.

Proof: Suppose $f=v_{1} v_{2} \cdots v_{k} v_{1}$ and $d_{G^{\times}}\left(v_{1}\right)=3$. Then v_{2} and v_{k} are neither transitive false vertex nor true 5^{-}-vertex. Let f be incident with at most s true 5^{-}-vertices, and t transitive false vertices, then $s+t \leq d_{G \times}(f)-2$. Suppose v_{i} is a transitive false vertex. Let $\rho^{+}\left(v_{i}\right)$ be the amount of charges that f gets from v_{i-1} and v_{i+1}. Let $\rho^{-}\left(v_{i}\right)$ be the amount of charges that f sends out via v_{i}. By $R 6$, we have $\rho^{+}\left(v_{i}\right)-\rho^{-}\left(v_{i}\right) \geq 0$, and the worst case is $\min \left\{d_{G^{\times}}\left(v_{1}\right), d_{G^{\times}}\left(v_{2}\right)\right\}=12$. Then, $\tau\left(f \rightarrow v^{*}\right) \geq$ $\frac{d(f)-4-\frac{4 t}{3}+\frac{2 t}{3}}{s} \geq \frac{d(f)-4-\frac{2(d(f)-2-s)}{3}}{s} \geq \frac{\frac{d(f)}{3}-\frac{8}{3}}{s}+\frac{2}{3} \geq \frac{2}{3}$, where $d_{G^{\times}}(f) \geq 8$.
If $d_{G} \times(f)=6$, then $t \leq 2$. Suppose $t=2$, then $1 \leq$ $s \leq 2$. So v_{3} and v_{5} are transitive false vertices. By $R 1, R 6$ and $R 7$, we have $\tau\left(f \rightarrow v^{*}\right) \geq \min \left\{\frac{6-4-\frac{1}{3} \times 2+\frac{2}{3} \times 2}{2}, 6-\right.$ $\left.4-\frac{4}{3} \times 2+\frac{2}{3} \times 3\right\}>\frac{2}{3}$. Suppose $t^{2} \leq 1$, then $s \leq 3$. By $R 1, R 6$ and $R 7$, we have $\tau\left(f \rightarrow v^{*}\right) \geq$ $\min \left\{\frac{6-4+\rho^{+}\left(v_{t}\right)-\rho^{-}\left(v_{t}\right)}{3}, \frac{6-4}{3}\right\} \geq \frac{2}{3}$, where v_{t} is a transitive false vertex. If $d_{G} \times(f)=7$, then the proof is similar to the $d_{G^{\times}}(f)=6$.
Claim 4.2: If f is a 6^{+}-face and is incident with at least one true 4 -vertex in G^{\times}, then f sends at least $\frac{2}{3}$ to each of its incident true 5^{-}-vertices.

Proof: It is similar to the proof of Claim 4.1.
Claim 4.3: If f is a 7^{+}-face and is incident with at least one 5 -vertex in G^{\times}, then f sends at least $\frac{2}{3}$ to each of its incident true 5^{-}-vertices.

Proof: Suppose $f=v_{1} v_{2} \cdots v_{k} v_{1}$ and $d_{G^{\times}}\left(v_{1}\right)=5$. Let f be incident with at most s true 5^{-}-vertices, and t transitive false vertices. Case 1 : If both v_{2} and v_{k} are transitive false vertices, then $s+t \leq d_{G} \times(f)-2$. By $R 1, R 6$ and $R 7$, we have $\tau\left(f \rightarrow v^{*}\right) \geq \frac{d_{G} \times(f)-4+\left(\frac{2}{3}-\frac{1}{3}\right) \times 2-\frac{4(t-2)}{3}+\frac{2(t-3)}{3}}{s}$ $\geq \frac{d_{G} \times(f)-4-\frac{2\left(d_{G} \times(f)-4-s\right)}{3}}{s}=\frac{\frac{d_{G} \times(f)}{3}-\frac{3}{3}}{s}+\frac{2}{3} \geq \frac{2}{3}$, where $d_{G^{\times}}(f) \geq 3$.

Case 2: If there is only one transitive false vertex in v_{2} and v_{k}, say v_{2}, then v_{3} is a 10^{+}-vertex and $s+t \leq$ $d_{G^{\times}}(f)-1$. By $R 1, R 6$ and $R 7$, we have $\tau\left(f \rightarrow v^{*}\right) \geq$ $\frac{d_{G} \times(f)-4-\frac{1}{3}+\frac{2}{3}-\frac{4(t-1)}{3}+\frac{2(t-2)}{3}}{s} \geq \frac{d_{G} \times(f)-\frac{11}{3}-\frac{2(d(f)-1-s)}{3}}{s}=$ $\frac{{ }^{d_{G} \times(f)}}{3}-\frac{9}{3}+\frac{2}{3} \geq \frac{2}{3}$, where $d_{G \times}(f) \geq 9$. If $7 \leq d_{G \times}(f) \leq 8$, then the proof is similar to the Claim 4.1 of $d_{G^{\times}}(f)=6$.

Case 3: If neither v_{2} nor v_{k} is transitive false vertex, then at most one of v_{2} and v_{k} is 5 -vertex by Property 3.4. Without loss of generality, we can assume v_{2} is a 5 vertex. If v_{3} is a transitive false vertex, then v_{4} is a 12^{+}-
vertex and $s+t \leq d_{G} \times(f)-2$. By $R 1, R 6$ and $R 7$, we have $\tau\left(f \rightarrow v^{*}\right) \geq \frac{d_{G} \times(f)-4-\frac{1}{3}+\frac{2}{3}-\frac{4(t-1)}{3}+\frac{2(t-2)}{3}}{d_{G \times(f)}} \geq$ $\frac{d_{G \times}(f)-\frac{11}{3}-\frac{2\left(d_{G} \times(f)-2-s\right)}{3}}{s}=\frac{\frac{d_{G} \times(f)}{3}-\frac{7}{3}}{s}+\frac{2}{3} \geq \frac{2}{3}$, where $d_{G \times} \times(f) \geq 7$. Otherwise, v_{3} is neither transitive false vertex nor true 5^{-}-vertex and $s+t \leq d_{G} \times(f)-2$. Then, by claim 4.1, $\tau\left(f \rightarrow v^{*}\right) \geq \frac{2}{3}$.

Case 4: If v_{2} and v_{k} are neither transitive false vertex nor true 5^{-}-vertex, then $s+t \leq d_{G^{\times}}(f)-2$. By claim 4.1, $\tau\left(f \rightarrow v^{*}\right) \geq \frac{2}{3}$.
Claim 4.4: If f is a 6 -face and is incident with at least one 5 -vertex in G^{\times}, then f sends at least $\frac{1}{2}$ to each of its incident true 5^{-}-vertices.

Proof: It is similar to the proof of Claim 4.3.
Claim 4.5: If f is a 5 -face and is incident with at least one true 3 -vertex (or 4 -vertex) in G^{\times}, then f sends at least $\frac{1}{3}$ to each of its incident true 5^{-}-vertices. Especially, if f is incident with at least two 12^{+}-vertex in G^{\times}, then f sends at least $\frac{2}{3}$ to each of its incident true 5^{-}-vertices.

Proof: It is similar to the proof of Claim 4.3.
Claim 4.6: If $f=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ is a 5 -face and is incident with at least one 5 -vertex in G^{\times}, then f sends at least $\frac{1}{3}$ to each of its incident true 5^{-}-vertices. Especially, if $d_{G^{\times}}\left(v_{1}\right)=$ $5, d_{G \times}\left(v_{2}\right)=7^{+}$, and v_{5} is a false vertex, then f sends at least $\frac{1}{2}$ to each of its incident true 5^{-}-vertices.

Proof: It is similar to the proof of Claim 4.3.
Claim 4.7: If $f=v_{1} v_{2} v_{3} \cdots v_{k} v_{1}$ is a 6^{+}-face in G^{\times}, $d_{G^{\times}}\left(v_{1}\right)=3, d_{G^{\times}}\left(v_{3}\right)=10^{+}$and $d_{G^{\times}}\left(v_{k}\right)=12^{+}$, then f sends at least 1 to each of its incident true 5^{-}-vertices.

Proof: Suppose that $f=v_{1} v_{2} v_{3} \cdots v_{k} v_{1}, d_{G \times}\left(v_{1}\right)=3$, $d_{G \times}\left(v_{3}\right)=10^{+}$and $d_{G} \times\left(v_{k}\right)=12^{+}$, then $s+t \leq d_{G} \times(f)-$ 3. Case 1: If $t=0$, then $s \leq d_{G^{\times}}(f)-3$. By $R 1$ and $R 7$, we have $\tau\left(f \rightarrow v^{*}\right) \geq \frac{d_{G} \times(f)-4+\frac{2}{3}+\frac{3}{5}}{s} \geq \frac{d_{G} \times(f)-4+\frac{2}{3}+\frac{3}{5}}{d_{G} \times(f)-3}>1$.
Case 2: Suppose $t=1$, then $s \leq d_{G \times}(f)-4$. By $R 1, R 6$ and $R 7$, we have $\tau\left(f \rightarrow v^{*}\right) \geq \frac{d_{G} \times(f)-4}{s} \geq \frac{d_{G} \times(f)-4}{d_{G} \times(f)-4}=1$.

Case 3: Suppose $t=2$, then $s \leq d_{G \times}(f)-5$. Suppose that v_{i}, v_{j}, v_{k} and v_{h}, where $i \leq j \leq k \leq h$, be the neighbors of two transitive false vertices on the face f, and $\xi(f)$ be the residual charge of f after R1-R6. Let $\min \left\{d_{G^{\times}}\left(v_{i}\right), d_{G^{\times}}\left(v_{j}\right), d_{G^{\times}}\left(v_{k}\right), d_{G^{\times}}\left(v_{h}\right)\right\}=q$. If $q \geq 12$, then $\xi(f) \geq d_{G} \times(f)-4-\frac{4}{3} \times 2+\frac{2}{3} \times 3=d_{G \times} \times(f)-\frac{14}{3}$ by $R 1, R 6.1$ and $R 7$. Similarly, if $10 \leq q \leq 11, q=9, q=8$, $q=7$ and $5 \leq q \leq 6$, then $\xi(f) \geq d_{G \times}(f)-\frac{14}{3}$ by $R 1-R 7$. So, $\tau\left(f \rightarrow v^{*}\right) \geq \frac{d_{G} \times(f)-\frac{14}{3}}{s} \geq \frac{d(f)-\frac{14}{3}}{d_{G} \times(f)-5}>1$.
Case 4: Suppose that $t \geq 3$, then $s \leq d_{G \times}(f)-6$. By $R 1, R 6$ and $R 7$, we have $\tau\left(f \rightarrow v^{*}\right) \geq \frac{\bar{d}_{G} \times(f)-4-\frac{4 t}{3}+\frac{2 t}{3}}{s} \geq$ $\frac{d_{G} \times(f)-4-\frac{2\left(d_{G} \times(f)-3-s\right)}{3}}{s} \geq \frac{d_{G \times(f)-6}}{3\left(d_{G} \times(f)-6\right)}+\frac{2}{3} \geq 1$.

Checking $\omega^{\prime}(x) \geq 0$ for $x \in V(G) \bigcup F(G)$. Firstly, we check all the vertices in $V(G)$. Among the neighbors of true k-vertex v of G, the neighbor with the smallest degree is $v_{1^{\prime}}$. Then denote by $v_{1^{\prime}}, v_{2^{\prime}}, \cdots, v_{k^{\prime}}$ the neighbors of v in G that lie consecutively around v. Similarly, we denote by $v_{1}, v_{2}, \cdots, v_{k}$ the neighbors of v in G^{\times}that lie consecutively around v, where $d_{G^{\times}}\left(v_{i}\right)=4$ or $d_{G^{\times}}\left(v_{i}\right)=d_{G}\left(v_{i^{\prime}}\right)$ for $i=$ $1,2, \cdots, k$. And denote by f_{i} the face that is incident with $v v_{i}$ and $v v_{i+1}$ in G^{\times}. If f_{i} is a false 3 -face that is incident with $v_{i} v_{i+1}$, then the face adjacent to $v_{i} v_{i+1}$ in G^{\times}that is different from f_{i} is denoted by h_{i}. (the subscript is taken by modular k). These notations will be used in the proof of the next propositions without explaining their meanings again.
(1) $d_{G^{\times}}(v)=3$.

By Lemma 2.2, v is incident with at most two 3-faces.
Case 1: Suppose that v is not incident with any 3 -faces.
Case 1.1: Suppose v is incident with at least one 6^{+}-face and one 5^{+}-face in G^{\times}, then $\omega^{\prime}(v) \geq-1+\frac{2}{3}+\frac{1}{3}=0$ by claim 4.1 and claim 4.5.
Let v be incident with one 6^{+}-face, say f_{1}, and two 4 faces $f_{2}=v v_{2} u_{2} v_{3}$ and $f_{3}=v v_{3} u_{3} v_{1}$. If v_{1} or v_{2} is true, say v_{1}, then $\tau\left(f_{3} \rightarrow v\right) \geq \min \left\{\frac{2}{3}+\frac{2}{3}-\frac{2}{3}, \frac{2}{3}\right\}=\frac{1}{3}$ by R1, R6 and R7. If v_{3} is true vertex, then $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{3}$ and $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{3}$ by R1, R6 and R7. Thus, $\omega^{\prime}(v) \geq$ $-1+\frac{1}{3}+\frac{2}{3}=0$. Otherwise, v_{1}, v_{2} and v_{3} are all false vertices. If u_{2} or u_{3} is a true 8^{+}-vertex, say $u_{2}, \tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{2}$ by R1 and R7. Thus, $\omega^{\prime}(v) \geq-1+\frac{1}{2}+\frac{2}{3}>0$. Otherwise, $5 \leq d_{G^{\times}}\left(u_{2}\right), d_{G^{\times}}\left(u_{3}\right) \leq 7$ by property 3.1 , property 3.2 and property 3.3. The face incident to $v_{2} u_{2}\left(u_{2} v_{3}\right)$ in G^{\times}that is different from f_{2} is denoted by $k_{1}\left(k_{2}\right)$. The face incident to $v_{1} u_{3}\left(u_{3} v_{3}\right)$ in G^{\times}that is different from f_{3} is denoted by $k_{3}\left(k_{4}\right)$. Since G doesn't have $(4,4)$-cycle, so at least one of k_{1}, k_{2}, k_{3} and k_{4} is a 4^{+}-face. We can assume k_{1} is a 4^{+}-face. If $d_{G \times}\left(u_{2}\right)=7$, then $\tau^{*}\left(k_{1} \rightarrow v\right) \geq \frac{5}{24}$ by R6.5, and $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{4}$ by R2 and R7. Thus, $\omega^{\prime}(v) \geq$ $-1+\frac{5}{24}+\frac{1}{4}+\frac{2}{3}>0$. If $d_{G^{\times}}\left(u_{2}\right) \neq 7$, then $\tau^{*}\left(k_{1} \rightarrow v\right) \geq \frac{1}{3}$ by R6.6. Thus, $\omega^{\prime}(v) \geq-1+\frac{1}{3}+\frac{2}{3}=0$.

Case 1.2: Suppose v is not incident with 6^{+}-face and is at least incident with one 5 -face.

Case 1.2.1: If v is incident with three 5 -faces, then $\omega^{\prime}(v) \geq-1+\frac{1}{3} \times 3=0$ by claim 4.5 .
Case 1.2.2: If v is incident with two 5 -faces, then we can assume $f_{1}=v v_{1} w_{1} w_{2} v_{2} v, f_{2}=v v_{2} u_{1} u_{2} v_{3} v$ are 5 -faces and $f_{3}=v v_{3} z_{3} v_{1} v$ is a 4 -face. Suppose there is at least one true vertex in v_{1}, v_{2} and v_{3}. If v_{1} or v_{3} is true, then by the symmetry, assume that v_{1} is true. Since G doesn't have $(4,4)$-cycle, so $\tau\left(f_{3} \rightarrow v\right) \geq \min \left\{\frac{2}{3}+\frac{2}{3}-\frac{2}{3}, \frac{2}{2}\right\}=\frac{1}{3}$. By Claim 4.5, $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{3}$ and $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{3}$. Thus, $\omega^{\prime}(v) \geq-1+\frac{1}{3} \times 3=0$. If v_{2} is true, then $\tau\left(f_{1} \rightarrow\right.$ $v) \geq \min \left\{\frac{1+\frac{2}{3}-\frac{1}{3}}{2}, \frac{1+\frac{2}{3}}{3}\right\}=\frac{5}{9}$ by R1, R6 and R7. Similarly, $\tau\left(f_{2} \rightarrow v\right) \geq \frac{5}{9}$. Thus, $\omega^{\prime}(v) \geq-1+\frac{5}{9}+\frac{5}{9}>0$.

Otherwise, v_{1}, v_{2} and v_{3} are all false vertices. Then there are at most three true 5^{-}-vertices in w_{1}, w_{2}, u_{1} and u_{2} by Property 3.2, Property 3.3 and Property 3.4. Suppose there are three true 5^{-}-vertices in w_{1}, w_{2}, u_{1} and u_{2}, without loss of generality, then we can assume w_{2} is not a true 5^{-}-vertex and both u_{1} and u_{2} are 5 -vertices. So, z_{3} is a 9^{+}-vertex by Property 3.4. Then, $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{2}$ and $\tau\left(f_{3} \rightarrow v\right) \geq \frac{5}{9}$ by R1 and R7. Thus, $\omega^{\prime}(v) \geq-1+\frac{1}{2}+\frac{5}{9}>0$. Suppose there are at most two true 5^{-}-vertices in w_{1}, w_{2}, u_{1} and u_{2}. We only consider $w_{1}, w_{2}, w_{1}, u_{1}$ or w_{1}, u_{2} are true 5^{-}-vertices by the symmetry. If w_{1}, w_{2} are true 5^{-}-vertices, then $\tau\left(f_{2} \rightarrow v\right) \geq$ 1 by R7. Thus, $\omega^{\prime}(v) \geq-1+1=0$. If w_{1}, u_{1} (or w_{1}, u_{2}) are true 5^{-}-vertices, then $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1+\frac{2}{3}-\frac{1}{3}}{2}=\frac{2}{3}$ and $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{3}$. Thus, $\omega^{\prime}(v) \geq-1+\frac{2}{3}+\frac{1}{3}=0$.

Case 1.2.3: If v is only incident with one 5 -face, then we can assume $f_{1}=v v_{1} w_{1} w_{2} v_{2} v$ is a 5 -face, $f_{2}=v v_{2} z_{2} v_{3} v$ and $f_{3}=v v_{3} z_{3} v_{1} v$ are 4 -faces. Suppose there is at least one true vertex in v_{1}, v_{2} and v_{3}. If v_{3} is true, then $\tau\left(f_{3} \rightarrow v\right) \geq$ $\min \left\{\frac{2}{3}+\frac{2}{3}-\frac{2}{3}, \frac{2}{3}\right\}=\frac{1}{3}, \tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{3}$ and $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{3}$ by R1, R6, R7 and Claim 4.5. Thus, $\omega^{\prime}(v) \geq-1+\frac{1}{3} \times 3=0$.
If v_{1} or v_{2} is true, say v_{1}, then f_{3} is a $\left(3, F, 3^{+}, 12^{+}\right)$face. By $R 1$ and $R 7, \tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{3}$. Suppose both w_{1} and
w_{2} are true 5^{-}-vertices. By $R 1$ and $R 7, \tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{3}$. If v_{2} is true, then $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{3}$ by $R 1$ and $R 7$. If v_{2} is false, then z_{2} is a 9^{+}-vertex by Property 3.4. By $R 1$ and $R 7$, $\tau\left(f_{2} \rightarrow v\right) \geq \frac{5}{9}$. Thus, $\omega^{\prime}(v) \geq-1+\frac{1}{3} \times 3=0$. Suppose there is at most one true 5^{-}-vertex in w_{1} and w_{2}. If f_{1} is incident with transitive false vertex, then $\tau\left(f_{1} \rightarrow v\right) \geq$ $\min \left\{1+\frac{2}{3} \times 2-\frac{4}{3}, \frac{1+\frac{2}{3}-\frac{1}{3}}{2}\right\}=\frac{2}{3}$ by $R 1, R 6.2, R 6,6$ and $R 7$. If f_{1} is not incident with transitive false vertex, then $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1+\frac{2}{3}}{2}>\frac{2}{3}$ by $R 1, R 7$. By $R 1, R 6$ and $R 7$, $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{3}$. Thus, $\omega^{\prime}(v) \geq-1+\frac{2}{3}+\frac{1}{3}=0$.

Otherwise, v_{1}, v_{2} and v_{3} are all false. If w_{1} and w_{2} are true 5^{-}-vertices, then z_{2} and z_{3} are 9^{+}-vertices by Property 3.4. By R1 and R7, $\tau\left(f_{2} \rightarrow v\right) \geq \frac{5}{9}, \tau\left(f_{3} \rightarrow v\right) \geq \frac{5}{9}$. Thus, $\omega^{\prime}(v) \geq-1+\frac{5}{9}+\frac{5}{9}>0$. If w_{1} and w_{2} are 6^{+}-vertices, then $\tau\left(f_{1} \rightarrow v\right) \geq 1$ by R1 and R7. Otherwise, we can assume w_{2} is a 6^{+}-vertices and w_{1} is a true 5^{-}-vertex by the symmetry. If w_{2} is a 6 -vertex, then z_{3} is a 9^{+}-vertices by Property 3.5, then $\tau\left(f_{3} \rightarrow v\right) \geq \frac{5}{9}$. And $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1+\frac{2}{3}}{2}=\frac{5}{6}$ by R1 and R7. Thus, $\omega^{\prime}(v) \geq-1+\frac{5}{6}+\frac{5}{9}>0$. If w_{2} is a 7^{+}-vertex, then $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1+\frac{2}{3}+\frac{1}{4}}{2}=\frac{23}{24}$ by R1 and R7. Since $z_{2} z_{3} \in E(G), w_{1} z_{3} \in E(G)$, and w_{1} is a true 5^{-}-vertex, then there is at least one 7^{+}-vertex in z_{2} and z_{3}. Thus, $\omega^{\prime}(v) \geq-1+\frac{23}{24}+\frac{1}{4}>0$ by R1 and R7.

Case 1.3: Suppose $f_{1}=v v_{1} u_{1} v_{2} v, f_{2}=v v_{2} u_{2} v_{3} v$ and $f_{3}=v v_{3} u_{3} v_{1} v$ are all 4-faces.

Case 1.3.1: Suppose there is at least two true vertices in v_{1}, v_{2} and v_{3}, say v_{1} and v_{2}, then $\tau\left(f_{1} \rightarrow v\right) \geq \frac{2}{3}$ and $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{3}$ by R1 and R7. Thus, $\omega^{\prime}(v) \geq-1+\frac{2}{3}+\frac{1}{3}=$ 0 .

Case 1.3.2: If there is only one true vertex in v_{1}, v_{2} and v_{3}, say v_{1}, then u_{1}, u_{2} and u_{3} are all true vertices. Suppose there is at most one true 5^{-}-vertex in u_{1} and u_{3}, say u_{1}, then $\tau\left(f_{3} \rightarrow v\right) \geq \frac{2}{3}$ and $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{3}$ by R1, R6 and R7. Thus, $\omega^{\prime}(v) \geq-1+\frac{2}{3}+\frac{1}{3}=0$. Suppose there is at most one true 4^{-}-vertex in u_{1} and u_{3}, say u_{1}, then u_{2} is a 10^{+}-vertex. By $R 1$ and $R 7, \tau\left(f_{2} \rightarrow v\right) \geq \frac{3}{5}, \tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{3}$ and $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{3}$. Thus, $\omega^{\prime}(v) \geq-1+\frac{3}{5}+\frac{1}{3} \times 2>0$. Otherwise, both u_{1} and u_{3} are 5 -vertices. The face incident to $v_{2} u_{1}$ in G^{\times}that is different from f_{1} is denoted by k_{1}. Since G doesn't have $(4,4)$-cycle, so k_{1} is a 4^{+}-face. By $R 6.6, \tau^{*}\left(k_{1} \rightarrow v\right) \geq \frac{1}{3}$. By $R 1$ and $R 6, \tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{3}$ and $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{3}$. Thus, $\omega^{\prime}(v) \geq-1+\frac{1}{3} \times 3=0$.

Case 1.3.3: Suppose v_{1}, v_{2} and v_{3} are all false vertices, then u_{1}, u_{2} and u_{3} are all true vertices. If there is at least one true 4^{-}-vertex in u_{1}, u_{2} and u_{3}, then $\omega^{\prime}(v) \geq-1+\frac{3}{5}+\frac{3}{5}>0$ by Property 3.1.2, Property 3.1.3, R1 and R7.

Otherwise, u_{1}, u_{2} and u_{3} are all 5^{+}-vertices. Suppose that u_{1}, u_{2} and u_{3} are all 5 -vertex or 6 -vertex. The face incident to $u_{1} u_{3}$ in G^{\times}that is different from $f_{1}\left(f_{3}\right)$ is denoted by $k_{1}\left(k_{2}\right)$. The face incident to $u_{3} u_{2}$ in G^{\times}that is different from $f_{3}\left(f_{2}\right)$ is denoted by $k_{3}\left(k_{4}\right)$. The face incident to $u_{1} u_{2}$ in G^{\times}that is different from $f_{2}\left(f_{1}\right)$ is denoted by $k_{5}\left(k_{6}\right)$. Since G doesn't have $(3,3)$-cycle, so at least three 4^{+}-faces in $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$ and k_{6}. By R6.6, $\tau^{*}\left(k_{i} \rightarrow v\right) \geq \frac{1}{3}$, where k_{i} is a 4^{+}-face. Then, $\omega^{\prime}(v) \geq-1+\frac{1}{3} \times 3=0$.

Suppose there is at least two 7^{+}-vertex in u_{1}, u_{2} and u_{3}, say u_{1} and u_{2}, then u_{3} is a 5 -vertex or 6 -vertex. If u_{1} and u_{2} are all 12^{+}-vertices, then $\tau\left(f_{1} \rightarrow v\right) \geq \frac{2}{3}$ and $\tau\left(f_{2} \rightarrow\right.$ $v) \geq \frac{2}{3}$ by $R 1, R 2$ and $R 7$. If u_{1} or u_{2} is a 12^{+}-vertex, say u_{1}, then $\tau\left(f_{1} \rightarrow v\right) \geq \frac{2}{3}$ and $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{4}$ by
$R 1, R 2$ and $R 7$. Since G doesn't have (3,3)-cycle, so at least one 4^{+}-face in k_{3} and k_{4}, say k_{3}. By $R 6.2-R 6.6$, $\tau^{*}\left(k_{3} \rightarrow v\right) \geq \frac{1}{5}$. Thus, $\omega^{\prime}(v) \geq-1+\frac{2}{3}+\frac{1}{5}+\frac{1}{4}>0$. If $7 \leq$ $d_{G} \times\left(u_{1}\right) \leq 11,7 \leq d_{G^{\times}}\left(u_{2}\right) \leq 11$, then $\tau^{*}\left(k_{i} \rightarrow v\right) \geq \frac{1}{5}$ by $R 6.2-R 6.6$, where $i=1,2,3,4,5,6$ and k_{i} is a 4^{+}-face. By $R 1, R 2$ and $R 7, \tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{4}$ and $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{4}$. Thus, $\omega^{\prime}(v) \geq-1+\frac{1}{5} \times 3+\frac{1}{4} \times 2>0$.
Suppose there is only one 7^{+}-vertex in u_{1}, u_{2} and u_{3}, say u_{1}, then u_{2} and u_{3} are 5 -vertices or 6 -vertices. If $d_{G} \times\left(u_{1}\right)$ ≥ 12, then $\tau\left(f_{1} \rightarrow v\right) \geq \frac{2}{3}$ by $R 1$ and $R 7$. Since G doesn't have $(3,3)$-cycle, so at least one 4^{+}-face in k_{3} and k_{4}, say k_{3}. By $R 6.6, \tau^{*}\left(k_{3} \rightarrow v\right) \geq \frac{1}{3}$. Thus, $\omega^{\prime}(v) \geq-1+\frac{2}{3}+\frac{1}{3}=0$. If $10 \leq d_{G^{\times}}\left(u_{1}\right) \leq 11$, then $\tau\left(f_{1} \rightarrow v\right) \geq \frac{3}{5}$ by $R 1, R 7$. By $R 6.2$ and $R 6.6, \tau^{*}\left(k_{i} \rightarrow v\right) \geq \frac{1}{5}$, where k_{i} is a 4^{+}-face. Thus, $\omega^{\prime}(v) \geq-1+\frac{3}{5}+\frac{1}{5} \times 3=0$. If $7 \leq d_{G} \times\left(u_{1}\right) \leq 9$, then $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{4}$ by $R 2$ and $R 7$. By $R 6.3-R 6.6$, $\tau^{*}\left(k_{i} \rightarrow v\right) \geq \frac{5}{24}$, where $i=1,2,5,6$ and k_{i} is a 4^{+}-face. By $R 6.6, \tau^{*}\left(k_{i} \rightarrow v\right) \geq \frac{1}{3}$, where $i=3,4$ and k_{i} is a 4^{+}-face. Thus, $\omega^{\prime} \geq-1+\frac{5}{25} \times 2+\frac{1}{4}+\frac{1}{3}=0$.

Case 2: Suppose v is incident with one 3 -face, say f_{1}.
Case 2.1: Suppose that f_{1} is a true 3 -face. $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{3}$ by R1,R7. If $d_{G} \times\left(f_{2}\right)=4$, then $\tau\left(f_{2} \rightarrow v\right) \geq \min \left\{\frac{2}{3}+\frac{2}{3}-\right.$ $\left.\frac{2}{3}, \frac{2}{3}\right\}^{2}=\frac{1}{3}$ by R1, R6 and R7. If $d_{G} \times\left(f_{2}\right) \geq 5$, then $\tau\left(f_{2} \rightarrow\right.$ $v) \geq \frac{1}{3}$. f_{3} is similar to f_{2}. Thus, $\omega^{\prime}(v) \geq-1+\frac{1}{3} \times 3=0$.

Case 2.2: Suppose that f_{1} is a false 3 -face, then by the symmetry, assume that v_{1} is false and v_{2} is true.
Case 2.2.1: Suppose v_{3} is a true vertex, then $\tau\left(f_{2} \rightarrow v\right) \geq$ $\frac{2}{3}$ and $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{3}$ by Claim 4.1, Claim 4.5, R1, R6 and R7. Thus, $\omega^{\prime}(v) \geq-1+\frac{2}{3}+\frac{1}{3}=0$.

Case 2.2.2: Suppose v_{3} is a false vertex.
(a)Suppose $d_{G \times} \times\left(f_{2}\right) \geq 6$, then $\tau\left(f_{2} \rightarrow v\right) \geq \frac{2}{3}$ by Claim 4.1. If $d_{G \times}\left(f_{3}\right) \geq 5$, then $\omega^{\prime}(v) \geq-1+\frac{2}{3}+\frac{1}{3}=0$ by Claim 4.1 and Claim 4.5. If $d_{G^{\times}}\left(f_{3}\right)=4$, then let $f_{3}=v v_{3} u_{3} v_{1} v$. Suppose $d_{G^{\times}}\left(u_{3}\right) \leq 4$, then $\tau\left(f_{2} \rightarrow v\right) \geq 1$ by Claim 4.7. Suppose $5 \leq d_{G \times}\left(u_{3}\right) \leq 6$, then the face incident to $v_{2} u_{3}$ in G^{\times}that is different from $f_{1}\left(f_{2}\right)$ is denoted by $h_{1}\left(k_{1}\right)$. Since G doesn't have (3,3)-cycle, so at least one 4^{+}-face in h_{1} and k_{1}. By R6.1 and R6.6, $\tau^{*}\left(h_{1} \rightarrow v\right) \geq \frac{1}{3}$ or $\tau^{*}\left(k_{1} \rightarrow v\right) \geq \frac{1}{3}$. Thus, $\omega^{\prime}(v) \geq-1+\frac{2}{3}+\frac{1}{3}=0$ by Claim 4.1. Suppose $d_{G} \times\left(u_{3}\right)=7$, then $\tau^{*}\left(h_{1} \rightarrow v\right) \geq \frac{1}{3}$ or $\tau^{*}\left(k_{1} \rightarrow v\right) \geq \frac{5}{24}$ by R6.5 and R6.6. Thus, $\omega^{\prime}(v) \geq-1+\frac{2}{3}+\frac{5}{24}+\frac{1}{4}>0$ by Claim 4.1, R1 and R7. Suppose $d_{G \times}\left(u_{3}\right) \geq 8$, then $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{2}$ by R1 and R7. Thus, $\omega^{\prime}(v) \geq-1+\frac{2}{3}+\frac{1}{2}>0$.
(b)Let $f_{2}=v v_{2} w_{1} w_{2} v_{3} v$. If f_{2} is at most incident with two true 5^{-}-vertices, then $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1+\frac{2}{3}-\frac{1}{3}}{2}=\frac{2}{3}$ by R1, R6 and R7. Thus, $\omega^{\prime}(v) \geq 0$ by Case 2.2.2(a). If f_{2} is incident with three true 5^{-}-vertices, then $d_{G^{\times}}\left(w_{1}\right)=$ $d_{G^{\times}}\left(w_{2}\right)=5$. And f_{3} is incident with at least one 9^{+}-vertex. By R1, R6 and R7, $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1+\frac{2}{3}}{3}=\frac{5}{9}$ and $\tau\left(f_{3} \rightarrow\right.$ $v) \geq \min \left\{\frac{2}{3}, \frac{1+\frac{5}{9}}{2}, \frac{5}{9}\right\}=\frac{5}{9}$. Thus, $\omega^{\prime}(v) \geq-1+\frac{5}{9}+\frac{5}{9}>0$.
(c)If $f_{2}=v v_{2} u_{2} v_{3} v$ is a 4-face, then $\tau\left(f_{2} \rightarrow v\right) \geq \frac{\frac{2}{3}}{2}=$ $\frac{1}{3}$. If f_{3} is a 6^{+}-face, then $\omega^{\prime}(v) \geq-1+\frac{2}{3}+\frac{1}{3}=0$. If f_{3} is a 5 -face, then let $f_{3}=v v_{3} z_{1} z_{2} v_{1} v$ and the face incident to $u_{2} z_{1}$ in G^{\times}that is different from f_{2} is denoted by k_{2}. Since G doesn't have $(4,4)$-cycle, so k_{2} is a 4^{+}-face in G^{\times}. Suppose $d_{G^{\times}}\left(u_{2}\right) \leq 4$, then $d\left(z_{1}\right) \geq 10$. By R1, R6 and R7, $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1+\frac{3}{5}}{2}=\frac{4}{5}$. Thus, $\omega^{\prime}(v) \geq-1+\frac{4}{5}+$ $\frac{1}{3}>0$. Suppose $5 \leq d_{G^{\times}}\left(u_{2}\right) \leq 6$, then $\tau^{*}\left(\bar{k}_{2} \rightarrow v\right) \geq \frac{1}{3}$ by R6.6. By Claim 4.5, R1 and R7, $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{3}$ and $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{3}$. Thus, $\omega^{\prime}(v) \geq-1+\frac{1}{3} \times 3=0$. Suppose
$d_{G} \times\left(u_{2}\right) \geq 7$, then $\tau\left(f_{2} \rightarrow v\right) \geq \frac{2}{3}+\frac{1}{4}$ by R1 and R7. Thus, $\omega^{\prime}(v) \geq-1+\frac{1}{3}+\frac{2}{3}+\frac{1}{4}>0$.
If f_{3} is a 4 -face, then let $f_{3}=v v_{3} u_{3} v_{1} v$. Similarly, the face incident to $u_{2} u_{3}$ in G^{\times}that is different from $f_{2}\left(f_{3}\right)$ is denoted by $k_{2}\left(k_{3}\right)$. Suppose there is at least one 8^{+}-vertex in u_{2} and u_{3}. If $d_{G^{\times}}\left(u_{2}\right) \geq 8$, then $\omega^{\prime}(v) \geq-1+\frac{1}{2}+\frac{2}{3}>0$. If $d_{G} \times\left(u_{3}\right) \geq 8$, then $\tau^{*}\left(h_{1} \rightarrow v\right) \geq \frac{1}{3}$ or $\tau^{*}\left(k_{1} \rightarrow v\right) \geq \frac{1}{5}$ by R6, where h_{1} or k_{1} is a 4^{+}-face. Thus, $\omega^{\prime}(v) \geq-1+\frac{1}{3}+\frac{1}{2}+$ $\frac{1}{5}>0$. Otherwise, $5 \leq d_{G^{\times}}\left(u_{2}\right) \leq 7$ and $5 \leq d_{G^{\times}}\left(u_{3}\right) \leq 7$. If $d_{G \times}\left(u_{2}\right)=7$, then $\omega^{\prime}(v) \geq-1+\frac{2}{3}+\frac{1}{4}+\frac{5}{24} \times 2>0$. Since there are at least two 4^{+}-faces in k_{1}, k_{2}, k_{3} and h_{1}, then each of 4^{+}-face sends at least $\frac{5}{24}$ to v by R6.1 and R6.6. If $5 \leq d_{G \times}\left(u_{2}\right) \leq 6$ and $5 \leq d_{G \times}\left(u_{3}\right) \leq 6$, then $\omega^{\prime}(v) \geq-1+\frac{1}{3}+\frac{1}{3} \times 2=0$. If $5 \leq d_{G} \times\left(u_{2}\right) \leq 6$ and $d_{G} \times\left(u_{3}\right)=7$, then $\omega^{\prime}(v) \geq-1+\frac{1}{3}+\frac{1}{4}+\frac{5}{24} \times 2=0$ by R6.1 and R6.6.

Case 3: Suppose that v is incident with two 3 -faces, then we can assume f_{1} and f_{2} are 3 -faces.
Case 3.1: If f_{1} or f_{2} is true, say f_{1}, then f_{2} is false 3face and $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{3}$ by R1 and R7. Since G doesn't have $(3,3)$-cycle, so f_{3} is a 5^{+}-face and h_{2} is a 4^{+}-face. By R6.1, Claim 4.1 and Claim 4.5, $\tau^{*}\left(h_{2} \rightarrow v\right) \geq \frac{1}{3}$ and $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{3}$. Thus, $\omega^{\prime}(v) \geq-1+\frac{1}{3} \times 3=0$.

Case 3.2: If both f_{1} and f_{2} are all false, then f_{3} is a 5^{+}-face and v is incident with two false vertices by Lemma 2.2(3)(4). Without loss of generality, we can assume that v_{1} and v_{3} are false. Since G doesn't have $(3,3)$-cycle, so there is at least one 4^{+}-face in h_{1} and h_{2}. By the symmetry, assume that h_{1} is a 4^{+}-face. Then, $\tau^{*}\left(h_{1} \rightarrow v\right) \geq \frac{1}{3}$ by R6.1. If f_{3} is a 6^{+}-face, then $\omega^{\prime}(v) \geq-1+\frac{1}{3}+\frac{2}{3}=0$ by Claim 4.1. Otherwise, $f_{3}=v v_{3} z_{1} z_{2} v_{1} v$ is a 5 -face. The face incident to $v_{3} z_{1}\left(v_{1} z_{2}\right)$ in G^{\times}that is different from f_{3} is denoted by $k_{1}\left(k_{2}\right)$. Since G doesn't have $(4,4)$-cycle, so there is at least one 4^{+}-face in k_{1} and k_{2}. Without loss of generality, we can assume that k_{1} is a 4^{+}-face. If $d_{G^{\times}}\left(z_{1}\right) \leq 4$, then $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1+\frac{3}{5}}{2}=\frac{4}{5}$ by R1, R7 and Property 3.1.3. Thus, $\omega^{\prime}(v) \geq-1+\frac{1}{3}+\frac{4}{5}>0$. If $5 \leq d_{G^{\times}}\left(z_{1}\right) \leq 6$, then $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{3}$ and $\tau^{*}\left(k_{1} \rightarrow v\right) \geq \frac{1}{3}$ by R6.6 and Claim 4.5. Thus, $\omega^{\prime}(v) \geq-1+\frac{1}{3} \times 3=0$. If $7 \leq d_{G \times}\left(z_{1}\right) \leq 11$, then $\tau^{*}\left(k_{1} \rightarrow v\right) \geq \frac{1}{5}$ and $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1+\frac{1}{4}}{2}=\frac{5}{8}$ by R6, R1 and R7. Thus, $\omega^{\prime}(v) \geq-1+\frac{1}{3}+\frac{1}{5}+\frac{5}{8}>0$. If $d_{G} \times\left(z_{1}\right) \geq 12$, then $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1+\frac{2}{3}}{2}=\frac{5}{6}$ by R1 and R7. Thus, $\omega^{\prime}(v) \geq-1+\frac{1}{3}+\frac{5}{6}>0$.
(2) $d_{G^{\times}}(v)=4$.

If v is a false vertex or is not incident with any 3 -face, then $\omega^{\prime}(v) \geq 0$ by discharging rules. So v is a true vertex and is incident with at most three 3 -faces by Lemma 2.2.

Case 1: Suppose that v is only incident with one 3 -face, say f_{1}. If f_{1} is a true 3 -face, then $\tau\left(f_{1} \rightarrow v\right) \geq-1+$ $\frac{3}{5}+\frac{3}{5}+\frac{1}{5}=\frac{2}{5}$ by R1 and R7. If f_{1} is a false 3 -face, say v_{1} is false vertex and v_{2} is true vertex, then $\tau\left(f_{2} \rightarrow v\right) \geq$ $\min \left\{\frac{1}{3}, \frac{3}{5}, \frac{3}{5} \times 2-\frac{3}{5}\right\}=\frac{3}{10}$ by Claim 4.2, Claim 4.5, R1, R6.2 and R7. Thus, $\omega^{\prime}(v) \geq 0+\frac{3}{10}-\frac{1}{5}>0$ by R4.

Case 2: Suppose that v is incident with two 3 -faces.
Case 2.1: If v is incident with at least one true 3 -face, then $\omega^{\prime}(v) \geq 0+\frac{2}{5}-\frac{1}{5} \times 2=0$ by R1, R5 and R7.

Case 2.2: If v is incident with two false 3 -faces.
Case 2.2.1: Suppose the two false 3 -faces are adjacent, say f_{1} and f_{2}. If v_{2} is false, then both h_{1} and h_{2} are $4^{+}{ }_{-}$ face. Thus, $\omega^{\prime}(v) \geq 0+\frac{1}{5} \times 2-\frac{1}{5} \times 2=0$ by R6.2 and

R5. If v_{2} is true, then h_{1} or h_{2} is a 4^{+}-face, say h_{1}. By R6.2, $\tau^{*}\left(h_{1} \rightarrow v\right) \geq \frac{1}{5}$. Suppose v_{4} is true. Since G doesn't have $(4,4)$-cycle, so f_{3} or f_{4} is a 5^{+}-face. Thus, $\omega^{\prime}(v) \geq$ $0+\frac{1}{5}+\frac{1}{3}-\frac{1}{5} \times 2>0$ by Claim 4.2, Claim 4.5 and R5. Suppose v_{4} is false. If f_{3} or f_{4} is a 5^{+}-face, say f_{3}, then $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{3}$ by Claim 4.2 and Claim 4.5. Thus, $\omega^{\prime}(v) \geq$ $0+\frac{1}{5}+\frac{1}{3}-\frac{1}{5} \times 2>0$. If both f_{3} and f_{4} are 4 -faces, then let $f_{3}=v v_{3} u_{3} v_{4} v$ and $f_{4}=v v_{4} u_{4} v_{1} v$. If there is at least one 7^{+}-vertex in u_{3} and u_{4}, say u_{3}, then $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{4}$ by R2 and R7. Thus, $\omega^{\prime}(v) \geq 0+\frac{1}{5}+\frac{1}{4}-\frac{1}{5} \times 2>0$. Otherwise, $5 \leq d\left(u_{3}\right) \leq 6$ and $5 \leq d\left(u_{4}\right) \leq 6$. The face incident to $v_{3} u_{3}\left(v_{1} u_{4}\right)$ in G^{\times}that is different from $f_{3}\left(f_{4}\right)$ is denoted by $k_{3}\left(k_{4}\right)$. Since G doesn't have (4,4$)$-cycle, so at least three 4^{+}-faces in k_{3} and k_{4}. Without loss of generality, we can assume that k_{3} is 4^{+}-face, then $\tau^{*}\left(k_{3} \rightarrow v\right) \geq \frac{1}{5}$ by R6.7. Thus, $\omega^{\prime}(v) \geq 0+\frac{1}{5} \times 2-\frac{1}{5} \times 2=0$.

Case 2.2.2: Suppose the two false 3 -faces are not adjacent, say f_{1} and f_{3}. If v_{1} and v_{3} are false, then $\tau\left(f_{2} \rightarrow v\right) \geq$ $\min \left\{\frac{1}{3}, \frac{3}{2}, \frac{3}{5} \times 2-\frac{3}{5}\right\}=\frac{3}{10}$ and $\tau\left(f_{4} \rightarrow v\right) \geq \frac{3}{10}$ by Claim 4.2, Claim 4.5, R1, R6.2 and R7. Thus, $\omega^{\prime}(v) \geq 0+\frac{3}{10} \times$ $2-\frac{1}{5} \times 2>0$. If v_{1} and v_{4} are false, then $\tau\left(f_{2} \rightarrow v\right) \geq$ $\min \left\{\frac{2}{3}, \frac{1+\frac{3}{5} \times 2}{3}, \frac{1+\frac{3}{5} \times 2-\frac{1}{5}}{2}\right\}=\frac{11}{15}$ by R1, R6, R7 and Claim 4.2, where f_{2} is a 5^{+}-face. If f_{2} is a 4 -face, then $\tau\left(f_{2} \rightarrow\right.$ $v) \geq \min \left\{\frac{\frac{3}{5} \times 2}{2}, \frac{3}{5} \times 2-\frac{3}{5}\right\}=\frac{3}{5}$ by R1, R6 and R7. Thus, $\omega^{\prime}(v) \geq \frac{3}{5}-\frac{1}{5} \times 2>0$.

Case 3: If v is incident with three false 3 -faces, then v is incident with at most one true 3 -face, say f_{1}. Without loss of generality, we can assume that f_{i} and f_{j} are false 3 -faces, where $i, j \in\{2,3,4\}$ Since G doesn't have (4,4)-cycle, so h_{i} and h_{j} are 4^{+}-faces. Thus, $\omega^{\prime}(v) \geq \frac{2}{5}+\frac{1}{5} \times 2-\frac{1}{5} \times 3>0$ by R6,R5. Otherwise, v is incident with three false 3 -faces, say f_{1}, f_{2} and f_{3}, then h_{1}, h_{2} and h_{3} are all 4^{+}-faces. Thus, $\omega^{\prime}(v) \geq \frac{1}{5} \times 3-\frac{1}{5} \times 3=0$ by R6 and R5.
(3) $d_{G \times} \times(v)=5$.

By Lemma 2.2, v is incident with at most four 3-faces.
Case 1: Suppose that v is incident with at most two 3 faces, then $\omega^{\prime}(v) \geq 1-\frac{1}{2} \times 2=0$ by R4.

Case 2: Suppose that v is incident with three 3 -faces.
Case 2.1: If the neighbors of v in G are $5(6)$-vertex and 9^{+}-vertex, then let $d_{G^{\times}}\left(v_{1^{\prime}}\right)=5(6)$ and $d_{G^{\times}}\left(v_{i^{\prime}}\right)=9^{+}$, where $i=2,3,4,5$.

Case 2.1.1: Suppose v is incident with at last one true 3 -face, say f_{i}. If f_{i} is a $\left(5,9^{+}, 9^{+}\right)$-face, then $\omega^{\prime}(v) \geq 1$ $\frac{1}{2} \times 3+\frac{11}{18}>0$ by R1, R4 and R7. If f_{i} is a $\left(5,5(6), 9^{+}\right)$face, then $\tau\left(f_{i} \rightarrow v\right) \geq \frac{5}{18}$ and $i=1$. If $d_{G^{\times}}\left(f_{2}\right) \geq 5$, then $\omega^{\prime}(v) \geq 1-\frac{1}{2} \times 3+\frac{5}{18}+\frac{1}{3}>0$ by Claim 4.3, Claim 4.4 and Claim 4.6. If $d_{G^{\times}}\left(f_{2}\right)=4$, then $\tau\left(f_{2} \rightarrow v\right) \geq \frac{5}{18}$ by $R 4, R 6$ and $R 7$. Thus, $\omega^{\prime}(v) \geq 1-\frac{1}{2} \times 3+\frac{5}{18}+\frac{5}{18}>0$. If $d_{G} \times\left(f_{2}\right)=3$, then f_{2} is a false 3 -face. Since G doesn't have $(3,3)$-cycle, so h_{2} is a 4^{+}-face. By $R 6, \tau\left(h_{2} \rightarrow v\right) \geq \frac{1}{5}$. Thus, $\omega^{\prime}(v) \geq 1-\frac{1}{2} \times 2-\frac{4}{9}+\frac{5}{18}+\frac{1}{5}>0$.

Case 2.1.2: If v is incident with three false 3 -faces, then there must be two adjacent false 3 -faces. Suppose there are only two adjacent false 3 -faces.
(a) If f_{1} and f_{2} are two adjacent false 3 -faces, then f_{3} and f_{5} are 4^{+}-faces. If v_{2} is a true vertex in G^{\times}, then f_{3} or f_{5} is a 5^{+}-face. Thus, $\omega^{\prime}(v) \geq 1+\frac{1}{3}-\frac{4}{9} \times 3=0$ by Claim 4.3, Claim 4.4, Claim 4.6 and R4. If v_{2} is a false vertex in G^{\times}, then h_{2} is a 4^{+}-face. By R6, $\tau^{*}\left(h_{2} \rightarrow v\right) \geq \frac{1}{5}$. Suppose v_{4} is a false vertex in G^{\times}. If f_{3} is a 5^{+}-face, then $\omega^{\prime}(v) \geq$
$1+\frac{1}{3}+\frac{1}{5}-\frac{4}{9} \times 2-\frac{1}{2}>0$ by Claim 4.3, Claim 4.4, Claim 4.6 and R4. If $f_{3}=v v_{3} u_{3} v_{4} v$ is a 4 -face, then both v_{3} and u_{3} are true vertices. Thus, $\omega^{\prime}(v) \geq 1+\frac{5}{18}+\frac{1}{5}-\frac{4}{9} \times 2-\frac{1}{2}>0$ by R1, R4 and R7. Suppose v_{5} is a false vertex in G^{\times}. If f_{3} or f_{5} is a 5^{+}-face, then $\omega^{\prime}(v) \geq 1+\frac{1}{3}+\frac{1}{5}-\frac{4}{9} \times 2-\frac{1}{2}>0$ by Claim 4.3, Claim 4.4, Claim 4.6 and R4. If both f_{3} and f_{5} are 4 -faces, then f_{3} is a $\left(5,9^{+}, F, 9^{+}\right)$-face. Since G doesn't have $(4,4)$-cycle, so $\tau\left(f_{3} \rightarrow v\right) \geq \frac{5}{9}$ by R1, R6 and R7. Thus, $\omega^{\prime}(v) \geq 1+\frac{5}{9}+\frac{1}{5}-\frac{4}{9} \times 2-\frac{1}{2}>0$.
(b) If f_{2} and f_{3} are two adjacent false 3 -faces, then f_{1} and f_{4} are 4^{+}-faces. If v_{3} is a true vertex in G^{\times}, then f_{3} or f_{5} is a 5^{+}-face, say f_{3}. By Claim 4.3, Claim 4.4 and Claim 4.6, $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{3}$. Since G doesn't have $(3,3)$-cycle, so h_{2} or h_{3} is a 4^{+}-face, say h_{2}. By R6, $\tau^{*}\left(h_{2} \rightarrow v\right) \geq \frac{1}{5}$. Thus, $\omega^{\prime}(v) \geq 1+\frac{1}{3}+\frac{1}{5}-\frac{4}{9} \times 2-\frac{1}{2}>0$. If v_{3} is a false vertex in G^{\times}, then both h_{2} and h_{3} are 4^{+}-faces. Thus, $\omega^{\prime}(v) \geq 1+\frac{1}{5} \times 2-\frac{4}{9} \times 2-\frac{1}{2}>0$ by R4 and R6.
(c) If f_{3} and f_{4} are two adjacent false 3 -faces, then by the symmetry, it is similar to (a).
(d) If f_{4} and f_{5} are two adjacent false 3 -faces, then by the symmetry, it is similar to (b).
(e) If f_{5} and f_{1} are two adjacent false 3 -faces, then f_{2} and f_{4} are 4^{+}-faces. Suppose v_{1} is a false vertex in G^{\times}. If f_{2} or f_{4} is a 5^{+}-face, then $\omega^{\prime}(v) \geq 1+\frac{1}{3}-\frac{4}{9} \times 3=0$. If both f_{2} and f_{4} are 4 -face, then f_{2} or f_{4} is a ($5,9^{+}, F, 9^{+}$)-face or $\left(5,9^{+}, 3^{+}, 9^{+}\right)$-face, say f_{2}. By R6.3.2 and R7, $\tau\left(f_{2} \rightarrow\right.$ $v) \geq \frac{5}{9}$. Thus, $\omega^{\prime}(v) \geq 1+\frac{5}{9}-\frac{4}{9} \times 3>0$.

Suppose v_{1} is a true vertex in G^{\times}, then f_{2} or f_{4} is a 5^{+}-face, say f_{2}. By Claim 4.3, Claim 4.4 and Claim 4.6, $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{3}$. If h_{3} is a 3 -face, then $\tau^{*}\left(h_{3} \rightarrow f_{3}\right) \geq \frac{1}{9}$ by R6.3. Then, $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{9}$ by R7. So, $\omega^{\prime}(v) \geq 1-\frac{4}{9}-\frac{1}{2} \times$ $2+\frac{1}{3}+\frac{1}{9}>0$. If h_{3} is a 4^{+}-face, then $\tau^{*}\left(h_{3} \rightarrow f_{3}\right) \geq \frac{1}{5}$ by R6. Thus, $\omega^{\prime}(v) \geq 1-\frac{4}{9}-\frac{1}{2} \times 2+\frac{1}{3}+\frac{1}{5}>0$.

Case 2.1.3: Suppose there are three adjacent false 3 -faces.
(a) If f_{1}, f_{2} and f_{3} are three adjacent false 3 -faces, then h_{1}, h_{2} and h_{3} are 4^{+}-faces. By R6, $\tau^{*}\left(h_{2} \rightarrow v\right) \geq \frac{1}{5}$ and $\tau^{*}\left(h_{3} \rightarrow v\right) \geq \frac{1}{5}$. Thus, $\omega^{\prime}(v) \geq 1+\frac{1}{5} \times 2-\frac{4}{9} \times 2-\frac{1}{2}>0$.
(b) If f_{2}, f_{3} and f_{4} are three adjacent false 3 -faces, then h_{2}, h_{3} and h_{4} are 4^{+}-faces. So, $\omega^{\prime}(v) \geq 1+\frac{1}{5} \times 3-\frac{4}{9} \times 3>0$.
(c) If f_{3}, f_{4} and f_{5} are three adjacent false 3 -faces, then by the symmetry, it is similar to (a).
(d) If f_{4}, f_{5} and f_{1} are three adjacent false 3 -faces, then $\tau^{*}\left(h_{4} \rightarrow v\right) \geq \frac{1}{5}$. If f_{2} or f_{3} is 5^{+}-face, say f_{2}, then $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{3}$ by Claim 4.3, Claim 4.4 and Claim 4.6. Thus, $\omega^{\prime}(v) \geq 1+\frac{1}{5}+\frac{1}{3}-\frac{4}{9}-\frac{1}{2} \times 2>0$. If both f_{2} and f_{3} are 4 -faces, then f_{2} or f_{3} is $\left(5, F, 3^{+}, 9^{+}\right)$face, say f_{2}. By R1 and R6, $\tau\left(f_{2} \rightarrow v\right) \geq \frac{5}{18}$. Thus, $\omega^{\prime}(v) \geq 1+\frac{1}{5}+\frac{1}{18}-\frac{4}{9}-\frac{1}{2} \times 2>0$.
(e) If f_{5}, f_{1} and f_{2} are three adjacent false 3 -faces, then by the symmetry, it is similar to (d).

Case 2.2: If the neighbors of v in G are all 7^{+}-vertices.
Case 2.2.1: If v is incident with at last one true 3 -face, then $\omega^{\prime}(v) \geq 1+\frac{1}{2}-\frac{1}{2} \times 3=0$ by R1, R2, R4 and R7.
Case 2.2.2: If v is incident with three false 3 -faces, then there must be two adjacent false 3 -faces. Suppose there are only two adjacent false 3 -faces, then by the symmetry, assume that f_{1}, f_{2} and f_{4} are false 3 -faces, and v_{5} is a false vertex. If v_{2} is true, then h_{1} or h_{2} is a 4^{+}-face, say h_{1}. By R6, $\tau^{*}\left(h_{1} \rightarrow v\right) \geq \frac{1}{8}$. Suppose f_{3} is a 5^{+}-face, then $\omega^{\prime}(v) \geq 1+\frac{1}{8}+\frac{1}{2}-\frac{1}{2} \times 3>0$. Suppose f_{3} is a 4 -face, then f_{5} is a 5^{+}-face. By Claim 4.3, Claim 4.4, Claim 4.6,

R6 and R7, $\tau\left(f_{5} \rightarrow v\right) \geq \frac{1}{3}$ and $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{8}$. Thus, $\omega^{\prime}(v) \geq 1+\frac{1}{8}+\frac{1}{8}+\frac{1}{3}-\frac{1}{2} \times 3>0$.

If v_{2} is false, then both h_{1} and h_{2} are 4^{+}-face. Since v_{3} and v_{4} are true, then $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{4}$ by Claim 4.3, Claim 4.4, Claim 4.6, R6 and R7. Thus, $\omega^{\prime}(v) \geq 1+\frac{1}{8} \times 2+\frac{1}{4}-\frac{1}{2} \times 3=0$.

Case 2.2.3: Suppose there are three adjacent false 3 -faces, then by the symmetry, assume that f_{1}, f_{2} and f_{3} are false 3 -faces, and v_{2} and v_{4} are false vertices. By R6, $\tau^{*}\left(h_{i} \rightarrow\right.$ $v) \geq \frac{1}{8}$, where $i=1,2,3$. Since f_{5} is a 4^{+}-face, then $\tau\left(f_{5} \rightarrow\right.$ $v) \geq \frac{1}{8}$ Claim 4.3, Claim 4.4, Claim 4.6, R6 and R7. Thus, $\omega^{\prime}(v) \geq 1+\frac{1}{8} \times 3+\frac{1}{8}-\frac{1}{2} \times 3=0$.

Case 3: Suppose that v is incident with four 3 -faces, then they are all false 3 -faces.

Case 3.1: If the neighbors of v in G are $5(6)$-vertex and 9^{+}-vertex, then let $d_{G^{\times}}\left(v_{1^{\prime}}\right)=5(6)$ and $d_{G^{\times}}\left(v_{i^{\prime}}\right)=9^{+}$, where $i=2,3,4,5$.
(a) If f_{i} is a false 3 -face, then h_{i} is a 4^{+}-face, where $i=1,2,3,4$. By R6, $\tau^{*}\left(h_{i} \rightarrow v\right) \geq \frac{1}{5}$, where $i=2,3,4$. Since G doesn't have $(3,3)$-cycle, so f_{5} is a 5^{+}-face. Thus, $\omega^{\prime}(v) \geq 1+\frac{1}{5} \times 3+\frac{1}{3}-\frac{4}{9} \times 3-\frac{1}{2}>0$.
(b) If f_{i} is a false 3 -face, where $i=2,3,4,5$, then by the symmetry, it is similar to (a).
(c) If f_{i} is a false 3 -face, where $i=1,3,4,5$, then $\tau^{*}\left(h_{3} \rightarrow v\right) \geq \frac{1}{5}, \tau^{*}\left(h_{4} \rightarrow v\right) \geq \frac{1}{5}$, and f_{2} is a 5^{+}-face. If f_{2} is a 6^{+}-face, then $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{2}$ by Claim 4.3 and Claim 4.4. If f_{2} is a 5 -face, then f_{2} is incident with at most two true 5^{-}-vertices by Property 3.4. Then, $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{2}$. Thus, $\omega^{\prime}(v) \geq 1+\frac{1}{5} \times 2+\frac{1}{2}-\frac{4}{9} \times 2-\frac{1}{2} \times 2>0$.
(d) If f_{i} is a false 3 -face, then h_{i} is a 4^{+}-face, where $i=1,2,4,5$. Let $\min \left\{d_{G^{\times}}\left(v_{2^{\prime}}\right), d_{G^{\times}}\left(v_{3^{\prime}}\right)\right\}=p$, $\min \left\{d_{G^{\times}}\left(v_{4^{\prime}}\right), d_{G^{\times}}\left(v_{5^{\prime}}\right)\right\}=q$. If $p=q=9$, then $\tau^{*}\left(h_{2} \rightarrow v\right) \geq \frac{2}{9}$ and $\tau^{*}\left(h_{4} \rightarrow v\right) \geq \frac{2}{9}$ by R6.3.2. Thus, $\omega^{\prime}(v) \geq 1+\frac{2}{9} \times 2+\frac{1}{3}-\frac{4}{9} \times 4=0$. If $p=9$ and $10 \leq q \leq 11$, then $\tau^{*}\left(h_{2} \rightarrow v\right) \geq \frac{2}{9}, \tau^{*}\left(h_{4} \rightarrow v\right) \geq \frac{1}{5}, \tau\left(f_{4} \rightarrow v\right) \geq \frac{2}{45}$, and $\tau\left(f_{5} \rightarrow v\right) \geq \frac{2}{45}$ by R1, R4, R6.2, R6.3 and R7. Thus, $\omega^{\prime}(v) \geq 1+\frac{2}{9}+\frac{1}{5}+\frac{1}{3}+\frac{2}{45} \times 2-\frac{4}{9} \times 4>0$. If $q=9$ and $10 \leq p \leq 11$, then $\omega^{\prime}(v) \geq 0$, similarly. If $10 \leq p$ and $q \leq 11$, then $\tau\left(f_{i} \rightarrow v\right) \geq \frac{2}{45}$, where $i=1,2,4,5$. Thus, $\omega^{\prime}(v) \geq 1+\frac{1}{5} \times 2+\frac{1}{3}+\frac{2}{45} \times 4-\frac{4}{9} \times 4>0$. If $p \geq 12$ or $q \geq 12$, say $p \geq 12$, then $q \geq 10$. By $R 6.1 .2, \tau^{*}\left(h_{2} \rightarrow v\right) \geq \frac{1}{3}$ and $\tau^{*}\left(h_{4} \rightarrow v\right) \geq \frac{1}{5}$. Thus, $\omega^{\prime}(v) \geq 1-\frac{4}{9} \times 4+\frac{1}{3} \times 2+\frac{1}{5}>0$.
(e) If f_{i} are four adjacent false 3 -faces, where $i=1,2,3,5$, then by the symmetry, it is similar to (c).

Case 3.2: If the neighbors of v in G are all 7^{+}-vertices, then by the symmetry, assume that f_{i} is 3 -face, where $i=$ $1,2,3,4$. Since G doesn't have $(3,3)$-cycle, so f_{5} is a 5^{+}face and h_{i} is a 4^{+}-face, where $i=1,2,3,4$. If f_{5} is a 6^{+}-face or a 5 -face that is incident with at most two true 5^{-}-vertices, then $\omega^{\prime}(v) \geq 1+\frac{1}{8} \times 4+\frac{1}{2}-\frac{1}{2} \times 4=0$ by Claim 4.3, Claim 4.4 and Claim 4.6. If f_{5} is a 5 -face that is incident with three true 5^{-}-vertices, then v_{2} and v_{4} are 9^{+}-vertices. Thus, $\omega^{\prime}(v) \geq 1+\frac{1}{8} \times 4+\frac{1}{3}-\frac{4}{9} \times 4>0$.
(4) $d_{G^{\times}}(v)=6$.

By Lemma 2.2, v is incident with at most four 3-faces. By $R 3$, we have $\omega^{\prime}(v) \geq 6-4-\frac{1}{2} \times 4=0$.
(5) $d_{G \times}(v)=7$.

By Lemma 2.2, v is incident with at most five 3-faces. By $R 2$, we have $\omega^{\prime}(v) \geq 7-4-\frac{1}{2} \times 5-\frac{1}{4} \times 2=0$.
(6) $d_{G^{\times}}(v) \geq 8$.

By $R 1, \omega^{\prime}(v) \geq d_{G} \times(v)-4-\frac{d_{G \times}(v)-4}{d_{G} \times(v)} \times d_{G^{\times}}(v)=0$. Next, we consider the discharge of the faces in G.
(1) $d_{G \times}(f)=3$.

Case 1: Suppose $f=v_{1} v_{2} v_{3}$ is true, where $d_{G^{\times}}\left(v_{1}\right) \geq$ $d_{G \times}\left(v_{2}\right) \geq d_{G \times}\left(v_{3}\right)$. If $d_{G^{\times}}\left(v_{1}\right)=3$ or 4 , then $\omega^{\prime}(f) \geq$ $-1+\frac{3}{5} \times 2>0$ by property 3.2 , property 3.1.3 and R1. If $d_{G \times}\left(v_{1}\right) \geq 5$, then $\omega^{\prime}(f) \geq-1+\frac{1}{2} \times 3>0$ by $R 1-R 4$.

Case 2: If $f=v v_{1} v_{2}$ is false, where $d_{G \times}\left(v_{1}\right) \leq d_{G^{\times}}\left(v_{2}\right)$ and v be a false vertex of G^{\times}such that $v_{1} v_{3}$ crossed $v_{2} v_{4}$ in G at v. If $d_{G^{\times}}\left(v_{1}\right)=3$, then $d_{G^{\times}}\left(v_{2}\right), d_{G^{\times}}\left(v_{3}\right) \geq 12$ by Property 3.2. By $R 1, R 5$ and $R 6.1$, we have $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{3}$ and $\tau\left(v_{2} \rightarrow v\right) \geq \frac{2}{3}$. Thus, $\omega^{\prime}(f) \geq-1+\frac{2}{3}+\frac{1}{3}=0$. If $d_{G} \times\left(v_{1}\right)=4$, then $\omega^{\prime}(f) \geq-1+\frac{3}{5}+\frac{1}{5}+\frac{1}{5}=0$ by $R 1, R 5$ and $R 6$. If $d_{G^{\times}}\left(v_{1}\right)=5$ and $d_{G} \times\left(v_{2}\right)=9^{+}$, then $\omega^{\prime}(f) \geq$ $-1+\frac{4}{9}+\frac{5}{9}=0$ by $R 1, R 2, R 3$ and $R 4$. If $d_{G^{\times}}\left(v_{1}\right)=5$ and $d_{G^{\times}}\left(v_{2}\right) \neq 9^{+}$, then $\omega^{\prime}(f) \geq-1+\frac{1}{2} \times 2=0$ by $R 4$. If $d_{G^{\times}}\left(v_{1}\right)=6^{+}$, then $\omega^{\prime}(f) \geq-1+\frac{1}{2} \times 2=0$ by $R 1$ and $R 2$.
(2) $d_{G} \times(f)=4$.

Case 1: Suppose f is not incident with any transitive false vertex, then $\omega^{\prime}(f) \geq d_{G^{\times}}(f)-4 \geq 0$ by $R 6$ and $R 7$.

Case 2: Suppose $f=v_{1} v_{2} v_{3} v_{4}$ is incident with two transitive false vertices, say v_{1} and v_{3}, then let $\min \left\{d_{G^{\times}}\left(v_{2}\right)\right.$, $\left.d_{G^{\times}}\left(v_{4}\right)\right\}=p$, and $\max \left\{d_{G^{\times}}\left(v_{2}\right), d_{G \times} \times\left(v_{4}\right)\right\}=q$. If $5 \leq p \leq 6$ and $q \geq 12$, then $\omega^{\prime}(f) \geq 0+\frac{2}{3}-\frac{1}{3} \times 2=0$ by $R 1, R 2$ and $R 6.6$. If $5 \leq p \leq 6$ and $10 \leq q \leq 11$, then $\omega^{\prime}(f) \geq 0+\frac{3}{5}-\frac{1}{5} \times 2>0$ by $R 1, R 2$ and $R 6.7$. If $7 \leq p \leq 9$, then $\omega^{\prime}(f) \geq 0$ by $R 1, R 6.4 .1$ and $R 6.3$, similarly. If $10 \leq p \leq 11$. Since G doesn't have (4,4)cycle, f sends out at most $\frac{3}{5} \times 2 R 1$ and R6.2. Thus, $\omega^{\prime}(f) \geq 0-\frac{3}{5} \times 2+\frac{3}{5} \times 2=0$. If $p \geq 12$, then $\omega^{\prime}(f) \geq 0-\frac{4}{3}+\frac{2}{3} \times 2=0$ by $R 1$ and $R 6.1$, similarly.

Case 3: Suppose f is only incident with one transitive false vertex, then it is similar to the proof of Case 2.
(3) $d_{G} \times(f)=5$.

If $d_{G^{\times}}(f)=5$, then f is incident with at most two transitive false vertices. Similar to the proof of $d_{G \times}(f)=4$, we can get $\omega^{\prime}(f) \geq d_{G \times}(f)-4 \geq 0$.
(4) $d_{G \times}(f) \geq 6$.

Suppose f is incident with at least t transitive false vertices, then $t \leq\left\lfloor\frac{d_{G} \times(f)}{2}\right\rfloor$. The worst case is that the neighbors of transitive false vertices on f are 12^{+}-vertices, then $\omega^{\prime}(f) \geq d_{G^{\times}}(f)-4-\frac{4 t}{3}+\frac{2 t}{3} \geq d_{G^{\times}}(f)-4-\frac{d_{G \times(}(f)}{3}=$ $\frac{2 d_{G} \times(f)}{3}-4 \geq 0$ by R1, R6 and R7.

The proof of Theorem 1.2 is complete.

REFERENCES

[1] J.A. Bondy, U.S.R. Murty, "Graph Theory with Applications," New York, MacMillan, 1976.
[2] O. Borodin, A. Kostochka, D. Woodall, "List edge and list total colourings of multigraphs," J. Combin. Theory Ser. B, vol.71, no.2, pp.184-204,1997.
[3] J. R. Griggs, R. K. Yeh, "Labelling graphs with a condition at distance 2," Discrete Math., vol.5, no.4, pp.586-595,1992.
[4] F. Havet, M. L. Yu, " $(p, 1)$-Total labelling of graphs," Discrete Math., vol.308, no.4, pp.496-513,2008.
[5] J. F. Hou, G. Z. Liu, J. L. Wu, "Some results on list total colorings of planar graphs, Lecture Note in Computer Science, vol.4489, pp.320328,2007.
[6] A. Kcmnitz, M. Marangio, " $[r, s, t]$-colorings of graphs," Discrete Math., vol.307, no.2, pp.199-207,2007.
[7] L. Sun, J.L. Wu, " On ($p, 1$)-total labelling of planar graphs," J. Comb. Optim., vol.33, no.1, pp.317-325,2015.
[8] Y. Song, L. Sun, "Two Results on $K-(2,1)$-Total Choosability of Planar Graphs," Discrete Mathematics, Algorithms and Applications, vol.12, no.6, pp.1-14,2020.
[9] M. A. Whittlesey, J. P. Georges, D. W. Mauro, "On the λ-number of Q_{n} and related graphs," Discrete Math., vol.8, no.4, pp.499-506,1995.
[10] Y. Yu, X. Zhang, G. H. Wang, J.B. Li, "(2,1)-total labelling of planar graphs with large maximum degree," Discrete Math., vol.20, no.8, pp.1536-1625,2017.
[11] Y. Yu, " $[r, s, t ; f]$-Colorings and $(p, 1)$-Total Labelling of Graphs," D. Shandong University, vol.1, pp.25-79,2012.
[12] X. Zhang, J.L. Wu, G. Z. Liu, "List edge and list total coloring of 1planar graphs," Frontiers of Mathematics in China, vol.7, no.5, pp.10051018,2012.
[13] X. Zhang, G. Z. Liu, "On edge colorings of 1-planar graphs without adjacent triangles," Information Processing Letters, vol.112, no.4, pp.138-142,2012.
[14] H. Y. Zhu, L. Y. Miao, S. Chen, X. Z. Lv, W. Y. Song, "The list $L(2,1)$-labeling of planar graphs," Discrete Mathematics, vol.112, no.8, pp.2211-2219,2018.

[^0]: Manuscript received December 3, 2021; revised February 7, 2022. This work was supported by the National Natural Science Foundation of China (Grant No.12071265) and the Natural Science Foundation of Shandong Province (Grant No. ZR2019MA032) of China.

 Yan Song is a master student of Mathematics and Statistics Department, Shandong Normal University, Jinan, Shandong, 250014, China, e-mail: songy159@163.com.
 ${ }^{*}$ Lei Sun, corresponding author, is an associate professor of Mathematics and Statistics Department, Shandong Normal University, Jinan, Shandong, 250014, China, phone: 0531-86181790, e-mail: sunlei@sdnu.edu.cn.

