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Abstract—The partial complement of a graph G with respect
to a set S denoted by G⊕S is the graph obtained by removing
the edges of ⟨S⟩ and adding edges which are not in ⟨S⟩ in G. In
this paper we introduce the concept of Seidel energy of partial
complement of a graph. Some bounds are obtained for Seidel
energy of partial complementary graph. We compute Seidel
energy and Seidel spectrum for partial complement of several
classes of graph.

Index Terms—Partial complements, Seidel matrix, Seidel
energy, Seidel eigenvalues.

I. INTRODUCTION

Let G = (V,E) be a graph and S ⊆ V . The partial
complement of a graph G with respect to S, denoted by
G ⊕ S, is a graph (V,ES), where for any two vertices
u, v ∈ V , uv ∈ ES if and only if one of the following
conditions hold good:

1) u /∈ S or v /∈ S and uv ∈ E.
2) u, v ∈ S and uv /∈ E.

Alternatively, we can also define partial complement of graph
G with respect to a set S as graph obtained from G by
removing edges of ⟨S⟩ and adding the edges which are not
in ⟨S⟩.
Let G⊕S be partial complement of a graph G with respect
to S. Partial complement adjacency matrix [5] of G ⊕ S is
n× n matrix defined by Ap(G⊕ S) = (aij), where

aij =


1, if vi and vj are adjacent with i ̸= j

1, if i = j and vi ∈ S

0, otherwise.
(1)

We refer to [2] and [7] for all notations and terminologies.
J. Liu and B. Liu defined the Seidel energy of a graph in

generalization for Laplacian energy and analyzed the Seidel
energy bounds using the rank of the Seidel matrix and
extended the concept of energy to Hermite matrix. In Seidel
switching and graph energy, Willem H. Haemers investigates
how Seidel switching changes the spectrum but not the
energy and presents an infinite family of examples with
maximal energy. We refer to [1] and [6] for more information
on the energy of graphs.
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Definition 2. [3] The Seidel matrix of a simple graph G
with n vertices and m edges, denoted by S(G) = (sij) is a
real square symmetric matrix of order n defined as

sij =


−1, if vi and vj are adjacent
1, if vi and vj are not adjacent
0, i = j.

Definition 3. [3] The Seidel energy of the graph G with n
vertices and m edges is defined as

SE(G) =
n∑

i=1

|si|,

where s1, s2, . . . , sn are the eigenvalues of the Seidel matrix
S(G).

Definition 4. The Seidel matrix of partial complementary
graph G ⊕ S with n vertices and mS edges, denoted by
Sp(G⊕ S) is defined as

sij =


−1, if vi and vj are adjacent
1, if vi and vj are not adjacent
1, if vi ∈ S

0, if i = j.

Definition 5. The Seidel energy of the partial complementary
graph G⊕ S with n vertices and mS edges is defined as

SEp(G⊕ S) =
n∑

i=1

|si|,

where s1, s2, . . . , sn are the eigenvalues of the partial com-
plement Seidel matrix Sp(G⊕ S).

Theorem 6. The Seidel eigenvalues s1, s2, . . . , sn of the
Seidel matrix of partial complementary graph G⊕S satisfies
the following relations:

1)
n∑

i=1

si = |S|.

2)
n∑

i=1

s2i = |S|2+n2 − n.

Proof:

1) Sum of principal diagonal elements of Sp(G⊕S) = |S|.
Also sum of eigenvalues of Sp(G⊕S)=trace of Sp(G⊕
S) = |S|.

2) We know that sum of squares of eigenvalues of Sp(G⊕
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S) is trace of S2
p(G⊕ S).

n∑
i=1

s2i =
n∑

i=1

n∑
j=1

sijsji

=
n∑

i=1

s2ii +
∑
i̸=j

sijsji

=
n∑

i=1

s2ii + 2
∑
i<j

s2ij

= |S|2+2

[
mS(−1)2 +

(
n2 − n

2
−mS

)
12
]

= |S|2+n2 − n.

II. BOUNDS FOR SEIDEL ENERGY OF PARTIAL
COMPLEMENTARY GRAPH

Theorem 7. If G ⊕ S is partial complementary
graph on n vertices with induced subgraph ⟨S⟩, then√
|S|+n2 − n+ n(n− 1)[detSp(G⊕ S)]2/n

≤ SEp(G⊕ S) ≤
√
n(|S|+n2 − n).

Proof: By taking ai = 1 and bi = |si| in Cauchy-
Schwarz inequality, we get(

n∑
i=1

|si|

)2

≤ n
n∑

i=1

|si|2

From Theorem 6,(
n∑

i=1

|si|

)2

≤ n(|S|2+n2 − n)

SEp(G⊕ S) ≤
√
n(|S|2+n2 − n).

By Arithmetic mean and Geometric mean inequality,

1

n(n− 1)

∑
i̸=j

|si||sj | ≥

∏
i̸=j

|si||sj |


1

n(n− 1)

≥ [detSp(G⊕ S)]
2/n∑

i̸=j

|si||sj | ≥ n(n− 1) [detSp(G⊕ S)]
2/n

.

Consider,

[SEp(G⊕ S)]2 =

(
n∑

i=1

|si|

)2

=

n∑
i=1

|si|2+
∑
i̸=j

|si||sj |

SEp(G⊕ S) ≥
√

|S|+n2 − n+ n(n− 1)[detSp(G⊕ S)]2/n.

Lemma 8. [4] Let a, a1, a2, . . . an, A and b, b1, b2, . . . , bn, B
be real numbers such that a ≤ ai ≤ A and b ≤ bi ≤ B,
∀i = 1, 2, . . . , n. Then the following inequality is valid.∣∣∣∣∣n

n∑
i=1

aibi −
n∑

i=1

ai

n∑
i=1

bi

∣∣∣∣∣ ≤ α(n)(A− a)(B − b)

and equality holds if and only if a1 = a2 = . . . = an and
b1 = b2 = . . . = bn.

Theorem 9. Let |λ1|, |λ2|, . . . , |λn| be non-increasing or-
der of eigenvalues of Sp(G⊕ S). Then SEp(G ⊕ S) ≥√
n(n2 − n+ |S|)− α(n)(|λ1|−|λn|)2, where α(n) =

n[n2 ](1−
1
n [

n
2 ]).

Proof: Taking ai = |λi| , bi = |λi|, a = b = |λn| and
A = B = |λ1| in Lemma 8, we obtain∣∣∣∣∣∣n

n∑
i=1

|λi|2−

(
n∑

i=1

λi

)2
∣∣∣∣∣∣ ≤ α(n)(|λ1|−|λn|)2 (10)

but,
n∑

i=1

|λi|2= n2 − n+ |S|.

Inequality (10) becomes n(n2−n+ |S|)− [SEp(G⊕S)]2 ≤
α(n)(|λ1|−|λn|)2.

SEp(G ⊕ S) ≥
√
n(n2 − n+ |S|)− α(n)(|λ1|−|λn|)2,

where α(n) = n[n2 ](1−
1
n [

n
2 ]), [

n
2 ] denotes the integral part

of a real number.

Theorem 11. Let |λ1|≥ |λ2|≥ . . . ≥ |λn|> 0 be a non-
increasing order of eigenvalues of G⊕ S. Then

SEp(G⊕ S) ≥ n2 − n+ |S|+n|λ1||λn|
|λ1|+|λn|

.

Proof: Let ai ̸= 0, bi, r and R be real numbers satisfying
rai ≤ bi ≤ Rai, then the following inequality holds.

n∑
i=1

b2i + rR

n∑
i=1

ai ≤ (r +R)

n∑
i=1

aibi

By putting bi = |λi|, ai = 1, r = |λn| and R = |λ1|,
we obtain

n∑
i=1

|λi|2+|λ1||λn|
n∑

i=1

1 ≤ (|λ1|+|λn|)
n∑

i=1

|λi|

n2 − n+ |S|+|λ1||λn|n ≤ (|λ1|+|λn|)SEp(G⊕ S)

SEp(G⊕ S) ≥ n2 − n+ |S|+n|λ1||λn|
|λ1|+|λn|

.

Theorem 12. Let ρ(G⊕S) be the spectral radius of Sp(G⊕
S) of order n and size mS . Then√

n2 − n+ |S|
n

≤ ρ(G⊕ S) ≤
√
n2 − n+ |S|.

Proof: Consider,

ρ2(G⊕ S) = max
1≤i≤n

{|λi|2}

≤
n∑

i=1

λ2
i = n2 − n+ |S|.

ρ(G⊕ S) ≤
√
n2 − n+ |S|.

Next consider,

nρ2(G⊕ S) ≥ max
1≤i≤n

{|λi|2}

≥ n2 − n+ |S|.

Thus,

ρ(G⊕ S) ≥
√

n2 − n+ |S|
n

.
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Hence,

√
n2 − n+ |S|

n
≤ ρ(G⊕ S) ≤

√
n2 − n+ |S|.

Theorem 13. If λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of
Sp(G⊕S) on n vertices and mS edges, then SEp(G⊕S) ≤
λ1 +

√
(n− 1)(n2 − n+ |S|−λ2

1).

Proof: Applying Cauchy Schwarz inequality for (n−1)
terms, (

n∑
i=2

λi

)2

≤

(
n∑

i=2

1

)(
n∑

i=2

λ2
i

)
[SEp(G⊕ S)− λ1]

2 ≤ (n− 1)(n2 − n+ |S|−λ2
1)

SEp(G⊕ S) ≤ λ1 +
√

(n− 1)(n2 − n+ |S|−λ2
1).

Theorem 14. For G⊕S on n vertices, mS edges and 2mS ≥
n,

Ep(G⊕ S) ≤n2 − n+ |S|
n

+

√√√√(n− 1)

[
n2 − n+ |S|−

(
n2 − n+ |S|

n

)2
]
.

Proof: From Theorem 13, we have,

SEp(G⊕ S) ≤ λ1 +
√
(n− 1)(n2 − n+ |S|−λ2

1).

Let

f(x) = x+
√

(n− 1)(n2 − n+ |S|−x2).

For decreasing function,

f ′(x) ≤ 0 ⇒ 1− 2x(n− 1)

2
√
(n− 1)(n2 − n+ |S|−x2)

≤ 0

⇒ x ≥
√

n2 − n+ |S|
n

.

Since n2 − n+ |S|≥ n,

we have

√
n2 − n+ |S|

n
≤ n2 − n+ |S|

n
≤ λ1

Thus,

Ep(G⊕ S) ≤n2 − n+ |S|
n

+

√√√√(n− 1)

[
n2 − n+ |S|−

(
n2 − n+ |S|

n

)2
]
.

III. SEIDEL ENERGY OF PARTIAL COMPLEMENTS OF
SOME FAMILIES OF GRAPHS

For various classes of graphs, we now compute Seidel
energy and the spectrum of partial complements. We adopt
approach of eigenvector to prove Theorems 15, 19. 22
and 28. In this approach, the result is proved by showing
SpW = λW for certain vector W and by making use of fact
that geometric multiplicity and algebraic multiplicity of each
eigenvalue λ is same, as Sp(G⊕ S) is real and symmetric.

Theorem 15. Partial complement Seidel energy of complete
graph Kn with |S|= k vertices is SEp(Kn⊕S) = (n−k−
1) +

√
4nk − 4k2 + n2 − 2n+ 1.

Proof:

Sp(Kn ⊕ S) =

[
Jk×k −Jk×(n−k)

−J(n−k)×k (I − J)(n−k)×(n−k)

]
n×n

is the Seidel matrix of partial complement of Kn ⊕ S.

Let W =

[
X
Y

]
be an eigenvector of order 2n partitioned

conformally with Sp.
Consider

(Sp(Kn ⊕ S)− λI)

(
X
Y

)
=

[
[(J − λI)X − JY

−JX + [−J + (1− λ)I]Y

]
(16)

Case 1: Let X = Xj = e1 − ej , j = 2, 3, . . . , k and
Y = On−k.

From equation (16), [J − λI]Xj − JOn−k = −λXj .
Then, λ = 0 is an eigenvalue with multiplicity of at least

(k − 1) since there are (k − 1) independent vectors of the
form Xj .
Case 2: Let X = Ok−1 and Y = Yj = e1 − ej , j =
2, 3, . . . , n− k.
From equation (16), [−J + (1− λ)I]Yj = (1− λ)Yj .
So λ = 1 is an eigenvalue with multiplicity of at least
(n− k− 1) since there are n− k− 1 independent vectors of
the form Yj .

Case 3: Let Y = 1n−k and X =

(
n− k

k − λ

)
1k, where λ is

any root of the equation

λ2 + λ(n− 2k − 1) + 2k2 − 2nk + k = 0.

From equation (16),

−J

(
n− k

k − λ

)
1k + [−J + (1− λ)I]1n−k

= (1− λ)1k +

(
k + λ− 1

λ+ 1

)
(n− k)1k

= −k1n−k
n− k

k − λ
+ (−n+ k + 1− λ)1n−k

=
λ2 + λ(n− 2k − 1) + 2k2 − 2nk + k

k − λ
1n−k

So

λ =
2k + 1− n

2
+

√
(2k + 1− n)2 + 4(2k2 − 2nk + k)

2

and

λ =
2k + 1− n

2
−
√
(2k + 1− n)2 + 4(2k2 − 2nk + k)

2

are the eigenvalues with multiplicity of at least one.
Thus partial complement Seidel spectrum of complete graph
is

0 k − 1
1 n − k − 1

2k + 1 − n

2
+

√
(2k + 1 − n)2 + 4(2k2 − 2nk + k)

2
1

2k + 1 − n

2
−

√
(2k + 1 − n)2 + 4(2k2 − 2nk + k)

2
1


.

So,

SEp(Kn ⊕S) = (n− k− 1)+
√
4nk − 4k2 + n2 − 2n+ 1

.

Theorem 17. Let K1,n−1 ⊕ S be the partial comple-
ment of star graph with |S|= k vertices including cen-
tral vertex. Then SEp(K1,n−1 ⊕ S) = (k + n − 3) +√
(n− 2k + 1)2 + 4(k + 2kn− 2k2 − 2n+ 2).
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Proof: Sp(K1,n−1 ⊕ S)

=

 1 J1×(k−1) −J1×(n−k)

J(k−1)×1 (2I − J)k−1 J(k−1)×(n−k)

−J(n−k)×1 J(n−k)×(k−1) (J − I)n−k


n×n

is Seidel matrix of partial complement of K1,n−1 ⊕ S.
On |Sp(K1,n−1⊕S)−λI|, applying row operation R′

i −→
Ri−Ri+1, i = 2, 3, . . . , k−1, k+1, . . . , n−k−1 and column
operations C ′

i −→ Ci+Ci−1+ . . .+C2, i = k, k−1, . . . , 3,
C ′

j −→ Cj+Cj−1+. . .+Ck+1, j = n−k, n−k−1, . . . , k+2
gives (λ − 2)k−2(λ + 1)n−k−1 det(A), where det(A) is of
order 3.

i.e,

det(A) =

∣∣∣∣∣∣
1− λ k − 1 k − n
1 1− λ− k + 2 n− k
−1 k − 1 −λ+ n− k − 1

∣∣∣∣∣∣
= (λ− 2)[λ2 − (n− 2k + 1)λ+ 2n− k − 2kn

+ 2k2 − 2].

Therefore Seidel spectrum of K1,n−1 ⊕ S is(
2 −1 P +Q P −Q

k − 1 n− k − 1 1 1

)
,

where P =
n− 2k + 1

2
and

Q =

√
(n− 2k + 1)2 + 4(k + 2kn− 2k2 − 2n+ 2)

2
.

Hence SEp(K1,n−1 ⊕ S) = (k + n− 3)
+
√
(n− 2k + 1)2 + 4(k + 2kn− 2k2 − 2n+ 2) is the Sei-

del energy of K1,n−1 ⊕ S.

Theorem 18. Let Kl,m ⊕ S be partial complement of
complete bipartite graph with partites V1 and V2 of l and
m vertices respectively and ⟨S⟩ be an induced subset of V
which consists of p vertices of V1 and k − p vertices of V2.
Then Seidel energy of Kl,m ⊕ S is
SEp(Kl,m⊕S) = (n+k−3)+

√
n2 − 4k2 + 4kn− 6n+ 9.

Proof: The Seidel characteristic polynomial of Kl,m⊕S

is given by |Sp(Kl,m ⊕ S)− λI| =
∣∣∣∣ P Q
Q R

∣∣∣∣
n×n

where,

P =

∣∣∣∣ [(2− λ)I − J ]p Jp×k−p

Jk−p×p [(2− λ)I − J ]k−p

∣∣∣∣ ,
Q =

∣∣∣∣ −JM×p JM×k−p

Jl−p×p −Jl−p×k−p

∣∣∣∣ ,
and

R =

∣∣∣∣ [J − (λ+ 1)I]M −JM×l−p

− Jl−p×M [J − (λ+ 1)I]l−p

∣∣∣∣ ,
where M = (n− l)− (k − p).

Step 1: Applying row operation R′
i −→ Ri − Ri+1, for

i = 1, 2, . . . , p− 1, p+1, . . . , k− p− 1, k− p+1, . . . ,M −
1,M + 1, . . . , l − p − 1 for the above determinant, we get
(λ− 2)k−2(λ+ 1)n−k−2 det(B).
Step 2: In det(B), performing column operations C ′

i −→
Ci + Ci−1 + . . . + C1, i = p, p − 1, . . . , 2, C ′

j −→ Cj +
Cj−1 + . . .+Cp+1, j = k− p, k− p− 1, . . . , p+2, C ′

r −→
Cr + Cr−1 + . . . + Ck−p+1, r = M,M − 1, . . . , k − p + 2
and C ′

s −→ Cs + Cs−1 + . . . + CM+1, s = l − p, l − p −
1, . . . ,M + 2, we get det(C).

On expansion of det(C), it reduces to order 4. On further
simplification, we get polynomial (λ2 − λ − 2)[λ2 + (2k −
n− 1)λ+ 2n− k − 2kn+ 2k2 − 2].
Hence Seidel characteristic polynomial of Kl,m ⊕ S is
(λ − 2)k−1(λ + 1)n−k−1[λ2 + (2k − n − 1)λ + 2n − k −
2kn+ 2k2 − 2].

Also Seidel spectrum of Kl,m ⊕ S is(
2 −1 P +Q P −Q

k − 1 n− k − 1 1 1

)
,

where P =
n− 2k + 1

2
and

Q =

√
n2 − 4k2 + 4kn− 6n+ 9

2
.

Therefore Seidel energy of Kl,m ⊕ S is
SEp(Kl,m⊕S) = (n+k−3)+

√
n2 − 4k2 + 4kn− 6n+ 9.

Theorem 19. Let S0
n ⊕ S be the partial complement of a

crown graph with |S|= k.
(i) SEp(S

0
n⊕S) = 5(n−1)+

√
8n2 − 28n+ 25 for k = n.

(ii) SEp(S
0
n ⊕ S) = 2(3n− 4) for k = 2n.

Proof: (i) Let Sp =

[
(2I − J)n (2I − J)n
(2I − J)n (J − I)n

]
2n×2n

be

the Seidel matrix of S0
n ⊕ S.

Let W =

[
X
Y

]
be an eigenvector of order 2n partitioned

conformally with Sp.
Consider

(Sp − λI)

(
X
Y

)
=

[
[(2− λ)I − J ]X + (2I − J)Y
(2I − J)X + [J − (λ+ 1)I]Y

]
(20)

Case 1: Let X = Xj , j = 2, 3, . . . , n and Y =
λ− 2

2
Xj ,

where λ is any root of the equation

λ2 − λ− 6 = 0.

From equation (20),

(2I − J)Xj + [J − (λ+ 1)I]

(
λ− 2

2

)
Xj

=

[
2− (λ+ 1)(λ− 2)

2

]
Xj .

Hence λ = 3 and λ = −2 are the eigenvalues with
multiplicity of at least n− 1, as there are n− 1 eigenvectors
of the form Xj .

Case 2: Let Y = 1n and X = −λ− n+ 1

n− 2
1n, where λ is

any root of the equation

λ2 − λ− 2n2 + 7n− 6 = 0.

From equation (20),

[(2− λ)I − J ]
(−λ+ n− 1)

n− 2
1n + (2I − J)1n

=
(λ− n+ 1)(λ+ n− 2)

n− 2
− (n− 2).

Thus λ =
1 +

√
8n2 − 28n+ 25

2
and

λ =
1−

√
8n2 − 28n+ 25

2
are the eigenvalues with multi-

plicity of at least one.
Thus Seidel spectrum of partial complement of crown graph
with |S|= n is
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 3 −2
1

2
+

√
8n2 − 28n + 25

2

1

2
−

√
8n2 − 28n + 25

2
n − 1 n − 1 1 1


and its Seidel energy is

SEp(S
0
n ⊕ S) = 5(n− 1) +

√
8n2 − 28n+ 25.

(2) Let Sp =

[
(2I − J)n −(2I − J)n
−(2I − J)n (2I − J)n

]
2n×2n

be the

Seidel matrix of S0
n ⊕ S.

Let W =

[
X
Y

]
be an eigenvector of order 2n partitioned

conformally with Sp.
Consider

(Sp − λI)

(
X
Y

)
=

[
[(2− λ)I − J ]X + (J − 2I)Y
(J − 2I)X + [(2− λ)I − J ]Y

]
(21)

Case 1: Let X = Xj , j = 2, 3, . . . , n and Y = −λ− 2

2
Xj ,

where λ is any root of the equation

λ2 − 4λ = 0.

From equation (21),

(J − 2I)Xj + [(2− λ)I − J ]

(
−λ− 2

2

)
Xj

=

[
−2 +

(λ− 2)2

2

]
Xj .

Hence λ = 0 and λ = 4 are the eigenvalues each with
multiplicity of at least n− 1, as there are n− 1 eigenvectors
of the form Xj .

Case 2: Let X = 1n and Y =
λ+ n− 1

n− 2
1n, where λ is any

root of the equation

λ2 + (2n− 4)λ = 0.

From equation (21),

(J − 2I)1n + [(2− λ)I − J ]
(λ+ n− 2)

n− 2
1n

=
(4− 2n)λ− λ2

n− 2
1n.

Thus λ = 0 and λ = 4 − 2n are the eigenvalues with
multiplicity of at least one.
Thus Seidel spectrum of partial complement of crown graph

with |S|= 2n is
(
0 4 4− 2n
n n− 1 1

)
and its Seidel energy is SEp(S

0
n ⊕ S) = 6n− 8.

Theorem 22. Let Kn×2 be cocktail party graph with ⟨S⟩ =
Kn. Then

SEp(Kn×2 ⊕ S) =
√
17(n− 1) +

√
4n2 − 12n+ 17.

Proof: Let Sp =

[
Jn (2I − J)n

(2I − J)n (I − J)n

]
2n×2n

be the

Seidel matrix of Kn×2 ⊕ S.

Let W =

[
X
Y

]
be an eigenvector of order 2n partitioned

conformally with Sp.
Consider

(Sp − λI)

(
X
Y

)
=

[
(J − λI)X + (2I − J)Y

(2I − J)X + [(1− λ)I − J ]Y

]
(23)

Case 1: Let X = Xj , j = 2, 3, . . . , n and Y =
λ

2
Xj , where

λ is any root of the equation λ2 − λ− 4 = 0.

From equation (23),

(2I − J)Xj + [(1− λ)I − J ]

(
λ

2

)
Xj

=

[
2 +

(1− λ)λ

2

]
Xj .

Hence λ = 2.5616 and λ = −1.5616 are the eigenvalues
each with multiplicity of at least n − 1, as there are n − 1
eigenvectors of the form Xj .

Case 2: Let X = 1n and Y =
λ− n

2
1n, where λ is any

root of the equation
λ2 − λ+ 3n− n2 − 4 = 0.

From equation (23),

(2I − J)1n + [(1− λ)I − J ]
λ− n

2
1n

=
2(2− n) + (1− λ)(λ− n)− n(λ− n)

2
1n.

Thus λ =
1 +

√
4n2 − 12n+ 17

2
and

λ =
1−

√
4n2 − 12n+ 17

2
are the eigenvalues with multi-

plicity of at least one.
Therefore Seidel spectrum of partial complement of cocktail
party graph with ⟨S⟩ = Kn is2.5616 −1.5616

1 +
√
4n2 − 12n + 17

2

1 −
√
4n2 − 12n + 17

2
n − 1 n − 1 1 1


and its Seidel energy is

SEp(Kn×2 ⊕ S) =
√
17(n− 1) +

√
4n2 − 12n+ 17.

Theorem 24. Let S(l,m) be double star graph of order
l +m + 2 with ⟨S⟩ = K1,l. Then Sϕ(S(l,m) ⊕ S) = (λ +
1)m−1(λ − 2)l−1[λ4 + (l − m − 2)λ3 + (m − 2l − 2lm −
2)λ2 + (2m− l + 2lm+ 3)λ+ 2l + 2].

Proof: The Seidel characteristic polynomial of S(l,m)⊕
S is given by
|Sp(S(l,m)⊕ S)− λI| =
∣∣∣∣∣∣∣∣

[(2 − λ)I − J]l Jl×1 Jl×1 Jl×m

J1×l [(1 − λ)I − J]1 J1×1 −J1×m

J1×l J1×1 λI1 −J1×m

Jm×l Jm×1 −Jm×1 [J − (1 + λ)I]m

∣∣∣∣∣∣∣∣
l+m+2

Step 1: Applying row operation R′
i −→ Ri −Ri+1, for i =

1, 2, . . . , l−1, l+3, . . . , , l+m+1 for the above determinant,
we get (λ− 2)l−1(λ+ 1)m−1 det(B).
Step 2: In det(B), performing column operations C ′

i −→
Ci + Ci−1 + . . . + C1, i = l, l − 1, . . . , 2, C ′

j −→ Cj +
Cj−1 + . . .+Cl+3, j = l+m+ 2, l+m+ 1, . . . , l+ 4, we
get det(C).
On expansion of det(C), it reduces to order 4. On further
simplification, we get polynomial λ4+(l−m−2)λ3+(m−
2l − 2lm− 2)λ2 + (2m− l + 2lm+ 3)λ+ 2l + 2.
Hence Seidel characteristic polynomial of S(l,m)⊕ S is
(λ+1)m−1(λ−2)l−1[λ4+(l−m−2)λ3+(m−2l−2lm−
2)λ2 + (2m− l + 2lm+ 3)λ+ 2l + 2].
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Seidel energy of partial complement of amalgamation of m
copies of Kn

A graph amalgamation is a relationship between two
graphs (one graph is an amalgamation of another). Amal-
gamations can be used to reduce a graph to a simpler graph
while retaining some structure.

Definition 25. Let {G1, G2, G3, . . . , Gm} be a finite collec-
tion of graphs and each Gi has a fixed vertex v0i called a
terminal. The amalgamation Amal(v0i, Gi) is formed by tak-
ing all the G′

is and identifying their terminals. In particular,
if we take Gi = Kn for i = 1, 2, . . . ,m we get amalgamation
of m copies of Kn denoted by Amal(m,Kn), m ≥ 2. For
convenience we denote v0 as the vertex of amalgamation and
vj2, vj3, . . . , vjn are the remaining vertices of the jth copy
of Kn, where 1 ≤ j ≤ m.

Theorem 26. Let v0, v12, v13, . . . , v1n, v22, v23, . . . , v2n,
. . . , vm1, vm2, . . . , vmn be the vertices of Amal(m,Kn) and
S = {v0}. Then, SEP (Amal(m,Kn)⊕ S) = 3mn− 2n−
5m+ 3 +

√
(mn− 2n−m+ 4)2 + 4(2n− 3).

Proof: Let Sp =
J1 −J1×n−1 −J1×n−1 . . . −J1×n−1

−Jn−1×1 −Bn−1 Jn−1 . . . Jn−1

−Jn−1×1 Jn−1 −Bn−1 . . . Jn−1

...
...

...
. . .

...
−Jn−1×1 Jn−1 Jn−1 . . . −Bn−1


m(n−1)+1

be the Seidel matrix of Amal((m,Kn)⊕ S). Here J is matrix of
all 1’s and B is the adjacency matrix of complete subgraph.
Step 1: Consider |λI − Sp|.
Applying row operation R′

vij −→ Rvij − Rvij+1 , i =
1, 2, . . . ,m, j = 2, 3, . . . , n − 1 and column operation C′

vij −→
Cvij + Cvij−1 + Cvij−2 + . . . + Cvi2 , i = 1, 2, . . . ,m, j =

n, n−1, . . . , 3 on |λI−Sp|, we get (λ−1)m(n−2) det(C), where
det(C) is of the order m+ 1.
Step 2: On performing row operation R′

i −→ Ri − Ri+1, i =
2, 3, . . . ,m and column operation C′

i −→ Ci + Ci−1 + Ci−2 +
. . . + C2, i = m + 1,m, . . . , 3 on det(C), we obtain (λ + 2n −
3)m−1 det(D) which is of order 2.
Step 3: Expanding det(D) leads to the polynomial λ2+(m+2n−
mn− 4)λ− 2n+ 3.
Hence Seidel spectrum of partial complement of Amal(m,Kn) is(

1 3− 2n
P +Q

2

P −Q

2
m(n− 2) m− 1 1 1

)
,

where P = mn+ 4− 2n−m and
Q =

√
(mn+ 4− 2n−m)2 − 4(3− 2n).

So SEP (Amal(m,Kn) ⊕ S) = 3mn − 2n − 5m + 3 +√
(mn− 2n−m+ 4)2 + 4(2n− 3).

Theorem 27. Let v0, v12, v13, . . . , v1n, v22, v23, . . . , v2n,
. . . , vm1, vm2, . . . , vmn be the vertices of Amal(m,Kn)
with S = {vij |i = 1, 2, . . . ,m, j = 2, 3, . . . , n}. Then
SEP (Amal(m,Kn) ⊕ S) = 3nm − 4m − 2n + 2 +√

(mn− 2n−m+ 2)2 + 4m(n− 1).

Proof: Let Sp =
01 −J1×n−1 −J1×n−1 . . . −J1×n−1

−Jn−1×1 Jn−1 −Jn−1 . . . −Jn−1

−Jn−1×1 −Jn−1 Jn−1 . . . −Jn−1

...
...

...
. . .

...
−Jn−1×1 −Jn−1 −Jn−1 . . . Jn−1


m(n−1)+1

be the Seidel matrix of partial complement of Amal(m,Kn).
Repeating Step 1 to Step 3 of Theorem 26, we get the polynomial

λm(n−2)(λ− 2n+2)m−1[λ2 +(mn− 2n−m+2)λ−mn+m].

Hence the Seidel spectrum of partial complement of Amal(m, kn)
is (

0 2n− 2
P +Q

2

P −Q

2
m(n− 2) m− 1 1 1

)
,

where P = −(mn− 2n−m+ 2) and
Q =

√
(mn− 2n−m+ 2)2 + 4m(n− 1).

Therefore, SEP (Amal(m,Kn) ⊕ S) = 3nm − 4m − 2n + 2 +√
(mn− 2n−m+ 2)2 + 4m(n− 1).

SEIDEL ENERGY OF PARTIAL COMPLEMENT OF LADDER
RUNG GRAPH

The ladder rung graph LRn is a regular graph of degree
one on 2n vertices. Let the vertices of LRn be v1, v2, . . . , v2n
and the vertex vi is adjacent to vi+1, i = 1, 3, . . . , 2n − 1.
We obtain SEp(LRn ⊕ S), when S = {v1, v3, . . . , v2n−1}
in the following theorem.

Theorem 28. Let LRn be the Ladder rung graph with S =
{v1, v3, . . . , v2n−1}. Then, SEp(LRn ⊕ S) = 5(n − 1) +√
8n2 − 28n+ 25.

Proof: Let Sp =

[
(2I − J)n −(2I − J)n
−(2I − J)n −(I − J)n

]
2n×2n

be

the Seidel matrix of LRn ⊕ S.

Let W =

[
X
Y

]
be an eigenvector of order 2n partitioned

conformally with Sp.
Consider

(λI − Sp)

(
X
Y

)
=

[
((λ− 2)I + J)X + (2I − J)Y
(2I − J)X + [(1 + λ)I − J ]Y

]
(29)

Case 1: Let X = Xj , j = 2, 3, . . . , n and Y = −λ− 2

2
Xj ,

where λ is any root of the equation λ2 − λ− 6 = 0.
From equation (29),

(2I − J)Xj − [(1 + λ)I − J ]

(
λ− 2

2

)
Xj

=

[
2− (λ+ 1)(λ− 2)

2

]
Xj .

Hence λ = −2 and λ = 3 are the eigenvalues each with
multiplicity of at least n− 1, as there are n− 1 eigenvectors
of the form Xj .

Case 2: Let X = 1n and Y =
λ+ n− 2

n− 2
1n, where λ is any

root of the equation λ2 − λ− 2n2 + 7n− 6 = 0.
From equation (29),

(2I − J)1n + [(1 + λ)I − J ]
λ+ n− 2

n− 2
1n

=
(2− n)2 + (λ+ 1− n)(λ+ n− 2)

n− 2
1n.

Thus λ =
1 +

√
8n2 − 28n+ 25

2
and

λ =
1−

√
8n2 − 28n+ 25

2
are the eigenvalues with multi-

plicity of at least one.
Therefore Seidel spectrum of partial complement of ladder
rung graph with respect ⟨S⟩ is −2 3

1 +
√
8n2 − 28n + 25

2

1 −
√
8n2 − 28n + 25

2
n − 1 n − 1 1 1


and its Seidel energy is

SEp(LRn ⊕ S) = 5(n− 1) +
√

8n2 − 28n+ 25.
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IV. CONCLUSION

In this paper, we computed the Seidel energy and Seidel
spectrum of partial complements of several graph classes.
The Seidel energy of a partial complement of a graph
is determined by the subgraph chosen from G. We also
examined a few properties and established upper and lower
bounds for SEP (G⊕ S).
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