
 

 
Abstract— This paper studies the identical synchronization 

in a complete network consisting of n nodes. Each node is 
represented by reaction-diffusion equations of Hindmarsh-Rose 
type which was simplified from the famous Hodgkin-Huxley 
model. They are connected by linear coupling. From this 
complete network, a sufficient condition on the coupling 
strength is identified to get the synchronization. The result 
shows that the complete networks synchronize more easily if 
they have more nodes. The paper also shows this theoretical 
result numerically and sees that there is a compromise. 

 
Index Terms— complete network, linear coupling, reaction-

diffusion equations of Hindmarsh-Rose, synchronization 
 

I. INTRODUCTION 
 

synchronization is a ubiquitous feature and studied in 
many natural systems and nonlinear science. The word 

"synchronization" is of  Greek origin, with syn as 
“common” and chronous as “time”, which means having 
the same behavior at the same time [1]. Therefore, the 
synchronization of two dynamical systems usually means 
that one system copies the movement of the other. When 
the behaviors of many systems are synchronized, these 
systems are called synchronous. Studies by Aziz-Alaoui [1] 
and Corson [2] suggested that a phenomenon of 
synchronization may appear in a network of many weakly 
coupled oscillators. There are a lot of different applications 
that have emerged to increase the power of lasers, control 
oscillations in chemical reactions, encode electronic 
messages for secure communications, or synchronize the 
output of electric circuits [1,3]. 

Synchronization has been extensively studied in many 
fields and many natural phenomena reflect the 
synchronization such as the movement of birds forming the 
cloud, the movement of fishes in the lake, the movement of 
the parade, the reception and transmission of a group of  
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cells [1,4-8]. Therefore, the study of synchronization is 
necessary. Specifically, the network of cells is considered in 
this work. 

In the human brain, there are many cells, they connect to 
form a network. A cellular network is a system of cells that 
are physiologically linked together. The exchange between 
them is mainly based on electrochemical processes. This 
paper studies the sufficient condition of coupling strength 
to obtain synchronization in a complete network of cells. In 
which, each cell is described by a system of reaction-
diffusion equations of  Hindmarsh-Rose type. To make the 
study easier, a complete network of n neurons 
interconnected together with linear coupling is investigated. 

In 1952, Hodgkin and Huxley presented a four-
dimensional mathematical model that could approximate 
the energizing properties of cell voltage [2,4,7]. Based on 
this model, many simpler models have been published to 
describe the cell voltage dynamics. In 1982, Hindmarsh J. 
L. and Rose R. M. published a new model named 
Hindmarsh-Rose model (HR) [9]  known as a simplified 
two-dimensional model from Hodgkin-Huxley's famous 
system of equations [6].  Although the model is simpler, it 
has many remarkable analytical results and retains the 
properties and biological significance. It represents the 
equilibrium, activity, and bursting of the cell voltage. The 
model has constituted a common form of two equations in 
the two variables u  and v . The first variable is the fast 
one called excitatory representing the transmembrane 
voltage. The second one is the slow recovery variable 
describing several physical quantities, such as the electrical 
conductivity of ion currents across the membrane. The 
Hindmarsh-Rose equations (HR) are given by: 

           

3 2

21

du v u au I
dt
dv bu v
dt

    

   


                              (1) 

where the parameters 3, 5a b   are constants determined 
by practical experience, I  presents the external current.  

However, this model is not strong enough to describe the 
propagation of action potential. To solve this problem, the 
cable equation is investigated. This mathematical equation 
is derived from a circuit model of the membrane and its 
intracellular and extracellular space to provide a 
quantitative description of current flow and voltage change 
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both within and between neurons, allowing a quantitative 
and qualitative understanding of how neurons function. 
Hence, the reaction-diffusion equations of Hindmarsh-Rose 
type (HR) are considered as follows: 

      

3 2

21

t u

t

du u v u au I d u
dt
dv v bu v
dt

       

    


             (2) 

where ( , ), ( , ), ( , ) , uu u x t v v x t x t d    is a 

positive constant, u  is the Laplace operator of u , 
N   is a regular bounded open set and with Neumann 

zero flux boundary conditions. This system allows the 
emergence of a variety of patterns and relevant phenomena 
in physiology. This system consists of two nonlinear partial 
differential equations of the incomplete parabolic type. The 
first equation describes the action potential and the second 
one presents the recovery variable in the whole set of 
neurons. Besides, the first equation is similar to the so-
called cable equation. It describes the distribution of the 
potential along the axon of a single neuron [6,7]. 

System (2) is considered as a neural model and from this, 
a network of n coupled systems (2) based on HR type is 
constructed as follows:     

3 2

2

( , )

1
, 1,..., , ,

it i i i i i j

it i i

u v u au I d u h u u

v bu v
i j n i j

       
   
  

             (3) 

where ( , ), 1,2,...,i iu v i n  is defined by (2). 
Function h is the coupling function that determines the 

type of connection between neurons iu  and ju . 

Connections between neurons are essential of two types: 
chemical connection and electrical connection, where a 
chemical connection is more abundant than an electrical 
one. For easy research, this paper only focuses on electrical 
connection, then the coupling function is linear [2,10,11] 
and is given by the following formula: 

1,
( , ) ( ), 1,2,..., .

n

i j syn ij i j
j j i

h u u g c u u i n
 

  
 

The parameter 
syng  represents the coupling strength. The 

coefficients ijc  are the elements of the connectivity matrix 

( )n ij n nC c  , defined by: ij 1c   if iu  and ju  are 

coupled, ij 0c   if iu  and ju are not coupled, where 

, 1,2,..., , .i j n i j   
In recent years, there have been many research papers on 

the resonance of the network of cells, but most of them only 
study cells stimulated by the system of equations of 
FitzHugh-Nagumo type [10,11] or the system of ordinary 
differential equations of Hindmarsh-Rose type [2], there is 
no research related to the system of reaction-diffusion 
equations of Hindmarsh-Rose type on a complete network 
of cells. From there, it shows that the research on this issue 

is meaningful and brings a practical application value to the 
currently applied mathematics. 

 
II. SYNCHRONIZATION OF A COMPLETE 

NETWORK 
 

In this paper, the synchronization is investigated in a 
complete network, i.e, each node connects to all other nodes 
of the network [10,11]. For example, Figure 1 shows the 
complete graphs from 3 to 10 nodes. Each node represents 
a neuron modeled by a system of reaction-diffusion 
equations of Hindmarsh-Rose type and each edge represents 
a synaptic connection modeled by a linear coupling 
function. A network of n neurons (2) bi-directionally 
coupled by the electrical synapses, based on HR, is given as 
follows:                    

3 2

1,

2

( )

1 (4)
1,..., ,

n

it i i i i syn i j
j j i

it i i

u v u au I d u g u u

v bu v
i n

 

        
   
 




 

where syng  is the coupling strength between iu  and ju . 

Definition 1 (Ambrosio and Aziz-Alaoui, 2012). Let 
( , ), 1, 2,...,i i iS u v i n   and 1 2( , ,..., )nS S S S  be a 

network. We say that S  is identically synchronous if 

 2 2

1

1 1( ) ( )
1

lim 0.
n

i i i iL Lt
i

u u v v


  


   
 

 

 
Fig. 1. Complete graphs from 3 to 10 nodes 

 
The system (4) can be rewritten as follows:

   
3 2

1,

2

3 2
1 1 1 1 1 1

2

2
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( )

1

( ) (5)

1
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n
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n
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t

u v u au I d u g u u
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u v u au I d u g u u

v bu v
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Let 1 1,i iX u u Y v v     and 

 1, 2,..., .iU u u i n    We have then the system 

corresponding to the variables , :X Y  
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3 21 3( )
4 4 (6)

syn
dX Y X X aU U ng X
dt
dY bXU Y
dt

       

   


 

Theorem 1. If the coupling strength syng  verifies the 

condition: 
2 2

2
1 ( 2 )max , ,

3 4 4 (3 )syn
a b ag
n n n b 

    
with 

2
30 ,
b

   

 
for all initial conditions  (0), (0), 1,2,..., ,i iu v i n   

the system (5) will synchronize. 
Proof.  Let’s choose the Lyapunov function as follows:  

2 21( , ) ,
2 2

E X Y X Y dx



   
   

where   is a positive constant. By taking derivative this 
Lyapunov function according to  t , we have: 

 
4

2 2( , ) ,
4

dE X Y X AX BXY Y dx
dt




 
     

 
  

where 23 , 1.
4 synA U aU ng B bU      

It can be seen that 2 2 0AX BXY Y    if the 
following two conditions are verified : 

(i) Since 23
4 synA U aU ng   , the solutions of the 

equation 0A   are 
 2

1,2

2 3

3
syna a ng

U
 

   if 

2

.
3syn
ag
n

  Therefore, 0A  if  
2

;
3syn
ag
n


 

 
2

2 2 1(ii) 0 (3 ) 2( 2 ) 4 0.
4 syn

BA b U a b U ng 


        

 This condition is satisfied if 
2

2
1 ( 2 )

4 4 (3 )syn
b ag

n n b 


 


 and 

2

3 .
b

   

Then, if the coupling strength syng  verifies the condition: 

2 2

2

1 ( 2 )max , ,
3 4 4 (3 )syn
a b ag
n n n b 

 
  

 
 with 2

30 ,
b

   

we have 2 2 0.AX BXY Y     

It leads to 
( , ) 0,dE X Y
dt

  for all , .X Y  It implies that 

the origin is globally asymptotically stable for ( , )E X Y  

(see [12]). Hence, the neurons of the network (5) is globally 
asymptotically synchronized. The theorem has been proven. 

 
III. NUMERICAL RESULTS AND DISCUSSION 

 
This research focuses on the minimal values of coupling 

strength 
syng  to observe a phenomenon of synchronization 

between n subsystems modeling the function of neuron 
networks. 

In the following, the paper shows the numerical results 
obtained by integrating the system (4) with 

3,n  3, 5, 0, 1, 1,2,3,a b I d i       

       0; 0;200 0;100 0;100 .T      
The integration of the system is realized by using C++ 

and the results are represented by Gnuplot,   
Fig. 2 illustrates the synchronization of the complete 

network of 3 systems of reaction-diffusion equations of  
Hindmarsh-Rose type. The simulations show that the 
system synchronizes from the value 0.2.syng    

Fig.  2(a), 2(b), 2(f), 2(g), 2(k), 2(l), 2(p), 2(q)  represent 
the synchronization errors of the coupled solutions 
 1 1 2 2 1 2( , , ), ( , , )u x x t u x x t and  2 1 2 3 1 2( , , ), ( , , )u x x t u x x t , 

where  0;t T  and for all 1 2( , )x x  . 

In Fig. 2(p) and 2(q) with 0.2,syng   the simulation 

shows that the synchronization errors reach to zero, it 
means: 

1 1 2 2 1 2( , , ) ( , , )u x x t u x x t an 2 1 2 3 1 2( , , ) ( , , )u x x t u x x t  

for all 1 2( , )x x  .  
Fig. 2(c), 2(d), 2(e), 2(h), 2(i), 2(j), 2(m), 2(n), 2(o), 2(r), 

2(s), 2(t) represent the solutions  1 2( , ,190), 1,2,3,iu x x i   of 
the network from when no synchronization has occurred 
until they have the same shape, i.e, the synchronization is 
performed. 

Before synchronization with 0.05,syng   
Fig. 2(a) 

represents the synchronization error between  2u  and 1u , 
for all 

1 2( , )x x  ;  Fig. 2(b) represents the synchronization 

error between  3u  and 2u ; Fig. 2(c) represents a solution 

1 1 2( , ,190)u x x ; similarly, Fig. 2(d) and 2(e) represent the 
solutions 2 1 2( , ,190)u x x  and 3 1 2( , ,190)u x x  when they are 
coupled together; the results are similarly done for   

0.1syng   (Fig. 2(f), 2(g), 2(h), 2(i), 2(j)), 0.15syng   

(Fig. 2(k), 2(l), 2(m), 2(n), 2(o)) and 0.2syng   (Fig. 2(p), 

2(q), 2(r), 2(s), 2(t)).  For 0.2,syng   the synchronization 

occurs. 
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Fig. 2. Synchronization in the complete network of 3 connected cells electrically

  
 
From the above result, in the case of three linearly 

coupled neurons, the coupling strength over or equal to 
0, 2,syng   these neurons has synchronous behaviors. By 

doing similarly for the complete networks of linearly 
identical coupled neurons, the values of coupling strength 
according to the number of neurons n are reported in Table 
1. In Table 1, for each value of n, we seek one necessary 
value of coupling strength to get the synchronization in 
complete network corresponding to n from 3 to 20. 

 
TABLE I 

MINIMAL COUPLING STRENGTH NECESSARY TO 
OBSERVE THE SYNCHRONIZATION  

n  3 4 5 6 

syng
 

 0.2 0.1565 0.136 0.124 

n 7 8 9 10 11 

syng
 

0.1133 0.107 0.1 0.099 0.095 

n  12 13 14 15 

syng
 

 0.0935 0.0915 0.09 0.0885 

n 16 17 18 19 20 

syng
 

0.0873 0.0855 0.0853 0.0844 0.084 

 
Following these numerical experiments, it is easy to see 

that the coupling strength required to observe the 
synchronization of n neurons depends on the number of 
neurons. Indeed, the points in Fig. 3 represent the coupling 
strength of synchronization according to the number of 
neurons in complete network from Table 1, and we find a 
function presenting the relation between the number of 

neurons n and the coupling strength reported in Table 1.  
This function is as follows: 

                          

0.26 0.07,
1syng

n
 


                     (7) 

In Fig. 3, the function (7) is represented by a curve where 
the points corresponding to the coupling strengths are 
almost on. It means that the coupling strength necessary to 
obtain the synchronization in complete network follows the 
law presented by (7). These simulations show that the 
bigger the number of neurons is, the smaller the coupling 
strength is. It means that synchronization is easier when the 
number of neurons in complete networks is bigger.  

 

 
Fig. 3. The evolution of  the coupling strength  with  respect  to  the number of 
neurons  

 
IV. CONCLUSION 

 
This study gave a sufficient condition on the coupling 

strength to achieve the synchronization in the complete 
network of n linearly coupled systems of reaction-diffusion 
equations of Hindmarsh-Rose type. Theorem 1 shows that 
the bigger the value of n is, the smaller ng is. Numerically, 
it displays that the synchronization is stable when the 
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coupling strength exceeded a certain threshold and depends 
on the number of neurons in graphs. The bigger the number 
of neurons is, the easier the phenomenon of 
synchronization will be obtained. Then, a compromise 
between the theoretical and numerical results can be 
reached. In addition, it is necessary to conduct further 
studies on the different synchronization regimes in free 
networks coupled with chemical synapses. 
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