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Numerical Solution for Unsteady Anisotropic
Diffusion-Convection-Reaction Equation of
Exponentially Varying Coefficients and
Compressible Flow

Mohammad Ivan Azis

Abstract—The unsteady diffusion-convection-reaction equa-
tion with exponentially varying coefficients and for anisotropic
inhomogeneous media is discussed in this paper. Numerical
solutions to problems which are governed by the equation
are sought by using a combined Laplace transform and
boundary element method. The variable coefficients equation is
transformed to a constant coefficients equation. The constant
coefficients equation after being Laplace transformed is then
written in a boundary integral equation involving a time-free
fundamental solution. The boundary-only integral equation is
therefore employed to find the numerical solutions using a stan-
dard boundary element method. Finally, the results obtained are
inversely transformed numerically using the Stehfest formula to
get solutions in the time variable. Some problems of anisotropic
exponentially graded media are considered. The results show
that the combined Laplace transform and boundary element
method is easy to implement and accurate.

Index Terms—variable coefficients, anisotropic exponentially
graded materials, unsteady diffusion-convection-reaction equa-
tion, Laplace transform, boundary element method

I. INTRODUCTION

Referred to the two-dimensional Cartesian coordinate
system Oxjxo this paper will concern with the unsteady
anisotropic diffusion-convection-reaction (DCR) equation of
variable coefficients of the form

a2 10 S5 — 3 o )

—k(x)c(x,t) = a(x) w

D

where 4,7 = 1,2, x = (x1,22), d;; is the anisotropic
diffusion/conduction coefficient, v; is the flow velocity, k
is the reaction coefficient, « is the rate of change and c is
the dependent variable. Within the domain in question [d;;]
is a real symmetrical matrix satisfying dy1das — d%z > 0. We
assume that the flow is compressible so that

dv; (x)
8%-

£0

For the repeated indices in equation (1) summation conven-
tion applies so that equation (1) can be written explicitly
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Also, in equation (1) the coefficients d;;, v;, £ and o vary
exponentially with the spatial variable, therefore equation
(1) may be applied for problems of exponentially graded
materials.

Recently, functionally graded materials (FGMs) have be-
come an important topic, and numerous studies on them
for a variety of applications have been reported. FGMs
are materials possessing characteristics which vary (with
time and position) according to a mathematical function.
Therefore equation (1) is relevant for FGMs. FGMs are
mainly artificial materials which are produced to meet a
preset practical performance (see for example [1], [2]). This
constitutes relevancy of solving equation (1).

Heat transfer and mass transport problems are among
applications for which DCR equation is usually taken to be
the governing equation. According to Ravnik and Skerget [3],
in mass transport which frequently occurs in environments,
the convection process take places with a flow velocity
which varies in the medium in question, and in the case of
turbulence modeling with turbulent viscosity hypothesis, the
diffusivity also change in the domain. This situation draws
a relevancy of the DCR equation (1).

A number of studies on the DC or DCR equation had been
done for finding its numerical solutions. The studies can be
classified according to the anisotropy of the media and the
variability of coefficients (inhomogeneity of the media). For
examples, [4]-[7] considered a constant coefficients (homo-
geneous media) isotropic equation, [3], [8]-[12] solved an
isotropic equation with variable coefficients (inhomogeneous
media). In general the works on the variable coefficient
equation considered the case where the coefficients take the
form of constant-plus-variable terms.

Recently Azis and co-workers had been working on steady
state problems of inhomogeneous media for several types
of anisotropic equations such as the modified Helmholtz
equation (see for example [13], [14]), the diffusion convec-
tion equation (see for example [15]-[19]), the Laplace type
equation (see for example [20]-[23]), the Helmholtz equation
(see for example [24]-[28]) and the DCR equation (see for
example [29]-[35]). The works considered the case of other
classes of coefficients which are different from the class of

+
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the constant-plus-variable coefficients. Some other classes of
inhomogeneity functions for FGMs that differ from the class
of constant-plus-variable coefficients are reported from these
papers. Azis et al. also had been working on unsteady state
problems of anisotropic inhomogeneous media for several
types of governing equations (see for example [36]-[40]).

The present work is intended to extend the recently pub-
lished papers [29]-[35] on the steady DCR equation to the
unsteady DCR equation for anisotropic exponentially graded
materials. Equation (1) provides a wider class of problems
since it applies for anisotropic and inhomogeneous media but
nonetheless cover the case of isotropic diffusion that happens
when dj; = da2,d12 = 0 and also the case of homogeneous
media which occurs when the coefficients d;; (x), v; (x),
k (x) and « (x) are constant.

II. STATEMENT OF THE PROBLEM

Given the coefficients d;; (x),v; (x),k (x),a(x), solu-
tions c¢(x,t) and its derivatives to (1) are sought. The
solutions are assumed to be valid for the time interval ¢ > 0
and in a region Q in R? with boundary 9 which consists
of a finite number of piecewise smooth curves. On 9€2; the
dependent variable ¢ (x,t) is specified, and the flux

Oc (x,1)
i 2
D, n (2)

is specified on 9y where 9Q2 = 901 U0Q, and n = (n1, no)
denotes the outward pointing normal to 0f). The initial
condition is taken to be

c(x,0)=0 3)

P (X,t) = di]‘ (X)

III. THE BOUNDARY INTEGRAL EQUATION

The method of solution will be to transform the variable
coefficient equation (1) to a constant coefficient equation. A
Laplace transform is then applied to the constant coefficient
equation, followed by deriving a boundary integral equation
in the Laplace transform variable s. The boundary integral
equation is then solved using a standard boundary element
method (BEM). An inverse Laplace transform is taken to
obtain the solution ¢ and its derivatives for all (x,t) in
the domain. The inverse Laplace transform is implemented
numerically using the Stehfest formula. The analysis is
specially relevant to an anisotropic medium but it equally
applies to isotropic media. For isotropy, the coefficients in
(1) take the form di; = dss and dio = 0 and use of these
equations in the following analysis immediately yields the
corresponding results for an isotropic medium.

We restrict the coefficients d;;, vs, k, o to be of the form

dij (x) dij 9(x) 4
v; (x) 0 g(x) (5)
k(x) = kg(x) 6)
a(x) = ag(x) )

where dij, Vi, l;:, & are constants. Further we assume that the
coefficients d;; (x), v; (x), k (x) and « (x) are exponentially
graded by taking g(x) as an exponential function

9(x) = [exp (Bo + fix:)]” @®)

where (35 and (3; are constants. Therefore if

dijBiBj + 0B — A =0 €))
then (8) satisfies
8291/2 891/2
b; — g2 =0 10
J 8:101830] T axl g ( )

Substitution of (4)-(7) into (1) gives

~ 0 Oc . d(ge) - . Oc
i— | g=— | — U — = ag— 11
dij B, (gaxj) %o kge = ag—- (1D
Assume
c(x,t) =g~ (x) ¥ (x,1) (12)
therefore substitution of (4) and (12) into (2) gives
P (x,t) = =Py (x) ¢ (x,1) + g"/% (x) Py (x,1)  (13)
where
- 9g'/? (x) s O (x,t)
Equation (11) can be written as
.0 | O(g )| 0 PY) g
i 5, [g oz, I T kg™ /"
el )
YT
which can be simplified
s 0 o Dg—1/2
d;i /227
J@xi <g 8l‘j +gw 837j
A oy 0g'?
_5 [ g1/2 22
vi (g 8$L + 1/} ax,-
. N
kg2 = At/
kg Py =g T o
Use of the identity
8971/2 _ _1391/2
implies
s 0 oY 891/2
dii— [ g*/? == —
jaxi (g 695]- ¢ ij
) oy 9g'?
5. [ 17222
vi (g 8%‘1 + w 8371
~ . 0
_kgl/Qw _ agl/Qaith]
Rearranging and neglecting the zero terms yield
;0% o
e (g 2 ¥ 5PV
g <d” 833181] vi 8%)
. 3291/2 A agl/Q
_w (d” 8(&81’] + axl >
N J__aiaglﬂ B '_871/)891/2
*J 63@]- é)xi v 8%‘]' (’)xi
—kg'/*y = ag"/ Q%f (14)
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Equation (10) then implies
P L
diji (o
Taking a Laplace transform of (12), (13), (15) and applying
the initial condition (3) we obtain

P* (x,5) = g"* (x) ¢ (x,9) (16)

Py (x,5) = [P (x,8) + Py (%) 4" (x,9)] g7/% (x) (17)
oo

Y 83318% T 8351

where s is the variable of the Laplace-transformed domain.
By using Gauss divergence theorem, equation (18) can be
transformed into a boundary integral equation

n@¢%&$=éﬁ&dx$¢m©
%, €)

=[Py (x) @ (x,
I (x, )] 9" (x,5)} dS (x)

o

—(A+l%)¢=d§ (15)

—(A+i€+sd)w*:0 (18)

19)

where
P, (x) = 0;n; (x)

For 2-D problems the fundamental solutions ®(x, &) and
I'(x, &) for are given as

¢(x&) = 2£D P <_V2D> Ko (“R)
I'(x,§) = &ij%ni
J

= \/(@/217)2 + [(A+1%+sa) /D}
D= [0?11 + 2d12pr + doo (P2 + P?)} /2
R=x-¢

x = (21 + pr2, pit2)

€= (& + préa, pila)

vV = (01 + priz, pila)

R = \/(xl + prva — &1 — prba)’ + (piza — pi&a)®

0= \/(171 + priva)” + (pita)”
where p, and p; are respectively the real and the positive
imaginary parts of the complex root p of the quadratic
equation A . .
diy + 2d12p + doap® =0

and K is the modified Bessel function. Use of (16) and (17)
in (19) yields

7791/26* :/ {(g_1/2‘1>> p*
o0
+[(P - Pg?) 8- 21| e bas o)

Equation (20) provides a boundary integral equation for
determining the numerical solutions of ¢* and its derivatives
dc* /01 and Oc* /x4 at all points of €.

TABLE I
VALUES OF V,,, OF THE STEHFEST FORMULA

(Vm [N=6] N=8 | N=10 | N=12 |
i 1 —1/3 1/12 —1/60
Vo | —49 14573 —385/12 961,60
Va | 366 906 1279 —1247
Vi | —858 | 16394/3 | —46871/3 8266373
Vs | 810 | —43130/3 | 505465/6 —1579685/6
Vo | —270 18730 2369575 1324138.7
V7 3584073 | 1127735/3 | —58375583/15
Vs 8960/3 | —1020215/3 | 21159859/3
Vo 164062.5 80053365
Vio 328125 55528305
Vi1 21555072
Viz 3502512

Knowing the solutions c¢*(x,s) and its derivatives
Oc*/0x1 and Oc*/Oxe which are obtained from (20), the
numerical Laplace transform inversion technique using the
Stehfest formula is then employed to find the values of
¢ (x,t) and its derivatives Oc/0x1 and dc/Jxo. The Stehfest
formula is

c(x,t) ~ —
t m=1
Oc (x,1) In2 oc* (x, 5m)
~ 22 r JC % Sm) 21
81‘1 t mz::lv 63:1 ( )
Oc (x,1) In2 & oc* (x, 5m)
61‘2 - Tmzz:lvm 8.2?2
where
In2
Sm = —m
t
N
Vin = (—1)7+m><

min(m,%)

EN/2 (2k)!

D

(ﬂ _
k=[mgt] N2
A simple script is developed to calculate the values of the
coefficients V,,,,m = 1,2,..., N for any even number N.

Table (I) shows the values of V,,, for several values of V.

k) ! (k — 1)) (m — k)! (2k — m)!

IV. NUMERICAL RESULTS

In order to verify the analysis derived in the previous
sections, we will consider several problems either as test
examples of analytical solutions or problems without simple
analytical solutions.

We assume each problem belongs to a system which
is valid in given spatial and time domains and governed
by equation (1) and satisfying the initial condition (3) and
some boundary conditions as mentioned in Section II. The
characteristics of the system which are represented by the
coefficients d,; (x),v; (x),k (x),a(x) in equation (1) are
assumed to be of the form (4), (5), (6) and (7) in which g(x)
is an exponential function of the form (8). The coefficients
dij (x),v; (x),k(x),a(x) represents respectively the dif-
fusivity or conductivity, the velocity of flow existing in the
system, the reaction coefficient and the change rate of the
unknown variable ¢ (x, t).

Standard BEM with constant elements is employed to
obtain numerical results. For a simplicity, a unit square
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(depicted in Figure 1) will be taken as the geometrical
domain for all problems. A number of 320 elements of equal
length, namely 80 elements on each side of the unit square,
are used. A FORTRAN script is developed to compute the
solutions and a specific FORTRAN command is imposed to
calculate the elapsed CPU time for obtaining the results.

We try to use N = 6,8,10,12 for the Stehfest formula
and find out the convergence of the error when N changes
from N = 6 to N = 10 and N = 10 is the best value
of N that makes the error stable and optimized. Increasing
N from N =10 to N = 12 gives worse results. According
to Hassanzadeh and Pooladi-Darvish [41] these worse results
are induced by round-off errors. This justifies to choose N =
10 in (20) for the Stehfest formula.

D(0,1) C(1,1)
A(0,0) B(1,0) "

Fig. . The domain 2

A. Test problems

Other aspects that will be verified are the accuracy and
consistency (between the scattering and flow) of the numer-
ical solutions. The analytical solutions are assumed to take
a separable variables form

c(x,t) =g 2 () h(x) f (1)

where

h(x) = exp[—0.75+ 0.2521 + 0.522]

The function g'/2 (x) is

g2 (x) = exp(—0.35z; — 0.2525)

and depicted in Figure 2.
We will consider three forms of time variation functions f (t)
of time domain ¢ = [0 : 5] which are

f@®) = 1—exp(—1.8t)
f) = 02¢
f@) = 012t(5-1)

We take mutual coefficients dAij and k for the problems

a2(x1,%;) = exp(-0.35%;-0.25%;)

N

o ==
—_
)
L¥Y]
=
h

Fig. 3. Function f (¢) for Problem 1

5 { 0.75 0.35

dij = 0.35 1 :| V; = (015, 025)

so that from (9) we have

A = 0.100625

‘We choose

k=1 a=-0.87875/s

and a mutual set of boundary conditions (see Figure 1)

P is given on side AB
c is given on side BC

P is given on side CD
P is given on side AD

Problem 1: First, we suppose that the time variation
function is

f(t)=1—exp(—1.8t)

Function f (¢) is depicted in Figure 3. Figure 4 shows the
accuracy of the BEM solutions. The errors occur in the
fourth decimal place for the ¢ and the derivatives Oc/0x; and
Oc/dxy solutions. Figure 5 shows the consistency between
the scattering and the flow solutions which verifies that
the solutions for the derivatives had also been computed
correctly. Figure 6 shows that the solution ¢ changes with
time ¢ in a similar way the function f (¢) = 1 —exp (—1.8¢)
does (see Figure 3) and tends to approach a steady state
solution as the time goes to infinity, as expected. The elapsed
CPU time for the computation of the numerical solutions at
19 x 19 spatial positions and 11 time steps from ¢ = 0.0005
to t =5 is 7777.546875 seconds.
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Fig. 5. Solutions ¢ and (Oc/dz1,0c/dx2) at t = 5 for Problem 1

Problem 2: Next, we suppose that the time variation
function is (see Figure 7)

Ft) =02t

Figure 8 shows the accuracy of the BEM solutions. The
errors occur in the fourth decimal place for the ¢ and the
derivatives dc/0x1 and Oc/Oxo solutions. Figure 9 shows
the consistency between the scattering and the flow solutions.
Figure 10 shows that the solution ¢ changes with time ¢ in
a manner which is almost similar to as the function f (t) =

BEM at (0.3,0.3) |
BEM at (0.5,0.5)
BEM at (0.7.0.7)

3 35 4 45 5

Fig. 6.

Solutions ¢ for Problem 1

f{t) = 0.2t

0.8 - 8

0.6 - -

02 f

Fig. 7. Function f (¢) for Problem 2

0.2t does (see Figure 7), as expected. The elapsed CPU time
for the computation of the numerical solutions at 19 x 19
spatial positions and 11 time steps from ¢ = 0.0005 to ¢t = 5
is 7777.21875 seconds.

Problem 3: Now, we suppose that the time variation
function is (see Figure 11)

Ft) =012t (5 1)

Figure 12 shows the accuracy of the BEM solutions. The
errors occur in the fourth decimal place for the ¢ and the
derivatives dc/0xq and Jc/dxo solutions. Figure 13 shows
the consistency between the scattering and the flow solutions
which again verifies that the solutions for the derivatives
had also been computed correctly. Figure 14 shows that the
solution ¢ changes with time ¢ in a similar way the function
f(t) = 0.12t (5 — t) does. The elapsed CPU time for the
computation of the numerical solutions at 19 x 19 spatial
positions and 11 time steps from ¢ = 0.0005 to t = 5 is
7779.53125 seconds.

B. Examples without analytical solutions

Furthermore, we will show the impact of the anisotropy
and the inhomogeneity of the material under consideration
on the solutions. We choose

o =(0.15,025) k=1 a=1

Problem 4: For this problem the medium is supposed to
be inhomogeneous or homogeneous, anisotropic or isotropic
with a gradation function g(x), constant coefficients ciij
and corresponding A satisfying (9) and (10) as respectively
follows:
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Fig. 11. Function f (¢) for Problem 3
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« inhomogeneous and anisotropic case

o
-]

coocooocooo

— A s L Y- 00D

0.1 02 03 04 05 06 0.7 0.8 0.9

g'?(x) = exp(—0.35z; — 0.252) X
A 0.75 0.35 i )
dij = 0.35 1 Fig. 12. The errors of solutions ¢ (top), Oc/dz1 (center), dc/Ox2 (bottom)
: at t = 5 for Problem 3
A = 0.100625
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« inhomogeneous and isotropic case

exp (—0.35z1 — 0.2525)

; 10
diy = [01}

A = 0.185

9% (x) =

« homogeneous and isotropic case
g% x) = 1
dij =

>
L —
O =

« homogeneous and anisotropic case
9= = 1
i - 0.75 0.35
. 035 1
A =0

The boundary conditions are that (see Figure 1)

P =0 on side AB
¢ =0 on side BC
P =0 on side CD
P =1 on side AD
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Fig. 16.

Solutions ¢ at (z1,z2) =

(0.5,0.5) for Problem 4

There is no simple analytical solution for the problem. In
fact the system is geometrically symmetric about the axis
x2 = 0.5.The results in Figure 15 verify that anisotropy and
inhomogeneity give impact to the values of solution ¢ for
being asymmetric about x5 = 0.5. Solutions are symmetric
only for homogeneous isotropic case, as expected. Moreover,
for all cases the results in Figure 16 indicate that the system
has a steady state solution. After all, the results suggest that
it is important to take both aspects of inhomogeneity and
anisotropy into account when doing an experimental study.

Problem 5: We consider the inhomogeneous and
anisotropic case of Problem 4 again. But we change slightly
the set of the boundary conditions of Problem 4 especially
on the side AD. Now we use three cases of the boundary

Volume 52, Issue 2: June 2022



TAENG International Journal of Applied Mathematics, 52:2, [JAM 52 2 09

B S S L
¥
x0T
~B._ i
] i
g ~
"~
C K\.‘ —
1
.
\\
.
o
—6— Problem 4
- ¥ - Exponential
B Linear_|
————— Quadratic
1 1 1

Fig. 17. Solutions ¢ at (z1,22) = (0.5,0.5) for Problem 5

condition on the side AD, namely

P =1—exp(—1.8t) on side AD
P = 0.2t on side AD
P =0.12¢t (5 —t) on side AD

The results in Figure 17 are expected. The trends of the
solutions ¢ mimics the trends of the exponential function
1 — exp (—1.8t), the linear function 0.2¢ and the quadratic
function 0.12¢ (5 — t) of the boundary condition on side AD.
Specifically, for the exponential function 1 —exp (—1.8¢), as
time ¢ goes to infinity, values of this function go to 1. So
for big value of ¢, Problem 5 is similar to Problem 4 of
the anisotropic inhomogeneous case. And the two plots of
solutions ¢ for Problem 4 and Problem 5 in Figure 17 verify
this, they approach a same steady state solution as ¢ gets
bigger.

V. CONCLUSION

A mixed Laplace transform and standard BEM has been
used to find numerical solutions to initial boundary value
problems for anisotropic exponentially graded materials
which are governed by the diffusion-convection-reaction
equation (1) of compressible flow. The method is easy to
implement and involves a time variable free fundamental
solution therefore it gives quite accurate solutions. It does not
produce round-off error propagation as it solves the boundary
integral equation (20) independently for each specific value
of ¢ at which the solution is computed. Unlikely, the methods
with time variable fundamental solution may produce less
accurate solutions as the fundamental solution sometimes
contain time singular points and also solution for the next
time step is based on the solution of the previous time step
so that the round-off error will propagate.

The numerical method has been applied to a class
of exponentially graded materials where the coefficients
dij (x),v; (%), k(x),a(x) do depend on the spatial variable
x only, taking the forms (4), (5), (6) and (7) and on the same
inhomogeneity or gradation function g(x) of exponential
form (8). Therefore, it will be of interest to extend the
study in the future to the case when the coefficients depend
on different gradation functions varying also with the time
variable t.

In order to use the boundary integral equation (20), the
values ¢ (x,t) or P (x,t) of the boundary conditions as stated

in Section (II) of the original system in time variable ¢ have
to be Laplace transformed first. This means that from the
beginning when we set up a problem, we actually put a set
of approximating boundary conditions. Therefore it is really
important to find a very accurate technique of numerical
Laplace transform inversion. The results of the problems
in Section IV-A show that the Stehfest formula 21 is quite
accurate.
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