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Abstract—In computer network, the structure of network is
modelled by a graph, and toughness, as a graph parameter, is
employed to detect the vulnerability of the network. A fractional
k-factor exists to satisfy h(e) = 1, if for arbitrary e ∈ E(G),
graph G is fractional k-covered. This work studies the mutu-
al influence of toughness and fractional fractional k-covered
graph, and obtains the result that a graph G is fractional k-
covered if t(G) ≥ k − 1

k
. This conclusion implies that the best

toughness bound for the existence of the fractional k-factor is
also the tight t(G) condition of the fractional k-coverage graph.
Finally, some extended conclusions are presented.

Index Terms—graph, fractional factor, fractional covered
graph, toughness.

I. INTRODUCTION

AS an illustrious network model, the graph is used to
represent its topological structure. In this work, we only

take the simple graphs (finite, having no loops and multiple
edges) into consideration. All the notations and terminologies
follow from standard graph theory which can be referred to
[1].

Let g and f be two non-negative integer-valued functions
on V (G) satisfying g(x) ≤ f(x) for all x ∈ V (G). A
fractional (g, f)-factor is a function h : E(G)→ [0, 1] such
that g(x) ≤

∑
e∈E(x) h(e) ≤ f(x) for arbitrary x ∈ V (G). If

g(x) = a and f(x) = b for any x ∈ V (G), then a fractional
(g, f)-factor is a fractional [a, b]-factor. If g(x) = f(x) = k
for arbitrary x ∈ V (G), then a fractional (g, f)-factor is a
fractional k-factor.

If for any e ∈ E(G), A graph G is a fractional (g, f)-
covered graph, there exists a fractional (g, f)-factor h such
that h(e) = 1. The fractional [a, b]-covered graph and frac-
tional k-covered graph can be defined similarly. A graph G
is fractional (g, f, n)-critical covered graph (resp. fractional
(a, b, n)-critical covered graph or fractional (k, n)- critical
covered graph) if any n vertices from G is deleted, the
resulting subgraph remains as a fractional (g, f)-covered
graph (resp. fractional [a, b]-covered graph or fractional k-
covered graph). In a data transmission network, data is di-
vided into several small pieces and transmit through different
channels, and the fractional factor corresponds to whether
the data transmission is feasible at the same time in the
network. The meaning of the fractional covered graph is that
a certain channel must be fully utilized when performing a
certain transmission task. Such situations are quite common
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in computer networks, and the feasibility of the fractional
factor in this setting is worthy of being studied.

Li et al. [2] presented the sufficient and necessary con-
dition on which a graph can be fractional (g, f)-covered.
We set f(x) = g(x) = k for any vertex x ∈ V (G), then
the result determined in [2] is degenerated to the condition
characterizing fractional k-covered graphs which are stated
as follows.

Lemma 1: Let G and k be a graph and an integer, respec-
tively. Then, G is a fractional k-covered graph if and only
if

k|S| − k|T |+ dG−S(T ) ≥ ε1

holds for any S ⊆ V (G) and T = {x : x ∈ V (G) \
S, dG−S(x) ≤ k}, where

ε1 =



2, if S is dependent,
1, if S is independent and an edge

exists to join S and V (G) \ (S ∪ T ), or
an edge e = uv exists to join S and T
such that v ∈ T, dG−S(v) = k,

0, otherwise,

By simply modifying the parameter ε1 and subset T , we
yield the following equivalent version.

Lemma 2: Let G and k be a graph and an integer, respec-
tively. Then, G is a fractional k-covered graph if and only
if

k|S| − k|T |+ dG−S(T ) ≥ ε2

holds for any S ⊆ V (G) and T = {x : x ∈ V (G) \
S, dG−S(x) ≤ k − 1}, where

ε2 =


2, if S is dependent,
1, if S is independent and an edge

exists to join S and V (G) \ (S ∪ T ),
0, otherwise,

Li et al. [3] studied the relationship between isolated
toughness (to minimize the ratio |S| \ i(G − S) such that
the denominator part is at least 2) and fractional k-covered
graphs, and determined that a graph having δ(G) ≥ k + 1
is fractional k-covered if I(G) > k. Zhou [4] considered
the neighborhood union bound for fractional (a, b, k)-critical
covered graphs. Zhou et al. [5] investigated the graph param-
eter condition for fractional ID-[a, b]-factor-critical covered
graphs (after removing any independent set, the resulting
subgraph is still a fractional [a, b]-covered graph). More
results on a graph to be fractional (a, b, k)-critical covered
can be referred to Zhou [6].

Toughness was introduced by Chvátal [7] which is formu-
lated by: t(G) = +∞ for complete graph; otherwise t(G)
is obtained by minimizing the ratio |S| \ ω(G − S) with
ω(G−S) ≥ 2. In network security, toughness is a parameter
to evaluate the sturdiness and vulnerability of network. It is
clear that the complete graph has the most sturdy network
structure, and on the contrary, some graphs are very crisp

IAENG International Journal of Applied Mathematics, 52:2, IJAM_52_2_14

Volume 52, Issue 2: June 2022

 
______________________________________________________________________________________ 



such as star networks. Consider G = K1,n, then t(G) = 1
n .

Hence, toughness is used to measure the inner characteristics
of networks from the perspective of graph cut. In reality,
engineering always seeks the balance point for constructing
specific networks. If toughness is too large, then the cost
of building such networks will be high, and if toughness is
too small, the network structure is not stable. Therefore, it is
valuable to determine the marginal toughness value to ensure
that the graph admits fractional factor.

In fact, in very early years, the possibility of relevance
between toughness and existence of k-factors has been found
by researchers, see [8], [9], [10] and [11] for details. About
10 years ago, scholars realized that toughness is also in
close relevance with the existence of fractional factor, as
well as its extended concepts such as fractional critical
graph and fractional deleted graph. Zhou et al. [14] raised
a toughness condition for fractional (k,m)-deleted graphs,
and this bound was improved by Gao et al. [15]. Gao et
al. [12] determined the toughness bound for a graph to
make it fractional (g, f, n)- critical. Gao and Wang [13] did
research on the toughness condition for fractional critical
deleted graphs. Gao et al. [16] presented two independent
set conditions for a graph to be fractional (g, f,m)-deleted.

The fractional critical graph measures the failure of the
network to work when some sites are damaged or under
attack, as long as the number of damaged sites does not
exceed a given bound, the remaining network can still work
normally. When the channel is attacked or damaged by other
reasons, as long as the number of inoperable channels does
not exceed a given value, the remaining network can still
work normally; the final fractional critical cover graph mea-
sures that after both the channel and the site are destroyed at
the same time, as long as the number of damaged channels
and stations is controlled within a certain range, and the
remaining sub-networks can still work normally, which is a
fusion of fractional critical graph and fractional cover graph.

Although there are rich advances in toughness and frac-
tional factors in various settings, toughness and fractional
covered graphs still keep open relationships. Even there is
no conclusion discussed on toughness bounds for fractional
k-covered graph which is the simplest form of fractional
covered graphs. It motivated us to consider this topic, and
our main conclusion is declared as follows.

Theorem 1: Let G be a graph with |V (G)| ≥ k + 2 and
k ≥ 2 be an integer. If t(G) ≥ k − 1

k , G is fractional k-
covered graph.

The rest sections are organized as follows: some useful
lemmas are introduced in next section and the specific
proof is manifested in the third section; several extended
conclusions are manifested and some prospects are discussed
in the conclusion section.

II. SOME USEFUL LEMMAS

In this section, we list the following lemmas which will
support the proof of Theorem 1.

Lemma 3: (Chvátal [7]) If a graph G is non-complete,
t(G) ≤ 1

2δ(G).
Lemma 4: (Liu and Zhang [17]) Take G as a graph and let

ζ = G[T ] such that 1 ≤ dG(x) ≤ k − 1 for every x ∈ V (ζ)
where T ⊆ V (G) and k ≥ 2. Let T1, . . . , Tk−1 be a partition
of the vertices of ζ and make it satisfy dG(x) = j for each

x ∈ Tj in which some Tj are allowed as empty. If a vertex
of degree can be found in each component of ζ at most k−2
in G, ζ has a maximal independent set Ξ and a covering set
Υ = V (H)− Ξ such that

k−1∑
j=1

(k − j)ςj ≤
k−1∑
j=1

(k − 2)(k − j)ιj ,

where ςj = |Υ∩ Tj | and ιj = |Ξ∩ Tj | for j = 1, . . . , k− 1.
Lemma 5: (Liu and Zhang [17]) Let G be a graph and let

ζ = G[T ] such that dG(x) = k − 1 for every x ∈ V (ζ) and
there aren’t any components of ζ isomorphic to Kk where
T ⊆ V (G) and k ≥ 2. An independent set Ξ and the covering
set Υ = V (ζ)− Ξ of ζ exist to satisfy

|V (ζ)| ≤
k∑
i=1

(k − i+ 1)|Ξ(i)| − |Ξ
(1)|
2

and

|Υ| ≤
k∑
i=1

(k − i)|Ξ(i)| − |Ξ
(1)|
2

where Ξ(i) = {x ∈ Ξ, dζ(x) = k − i} for 1 ≤ i ≤ k and
k∑
i=1

|Ξ(i)| = |Ξ|.
The above two lemmas describe the characteristics between
independent sets and covering sets under certain conditions,
and are the basis for the proof of the main theorem.

III. PROOF OF THEOREM 1

If G is complete, then the result is yielded by |V (G)| ≥
k + 2. Hence, we suppose G as non-complete.

Assume that G satisfies the hypothesis of Theorem 1,
but is not fractional k-covered. In light of Lemma 2 and
ε2 ≤ 2, there exist S ⊆ V (G) and T = {x : x ∈
V (G) \ S, dG−S(x) ≤ k − 1} satisfying

k|S| − k|T |+
∑
x∈T

dG−S(x) ≤ 1. (1)

If S = ∅, G− S = G and T = {x : x ∈ V (G), dG(x) ≤
k − 1}. Using Lemma 3, we acquire δ(G) ≥ 2t(G) ≥ 2k −
2
k ≥ 2k − 1, which implies T = ∅ and ε2 = 0. Hence, we
get 0 > 0 by Lemma 2, a contradiction. Therefore, S 6= ∅.

Take l as the number of the Kk components in ζ ′ = G[T ]
and set T0 = {x ∈ V (ζ ′)|dG−S(x) = 0}. Take ζ as
the subgraph yielded from ζ ′ − T0 by removing all Kk

components.
If |V (ζ)| = 0, according to (1) we get

k|S| ≤ k|T0|+ kl + 1

or
1 ≤ |S| ≤ |T0|+ l +

1

k
.

If |T0| + l = 0, then T = ∅ and 2 ≤ k|S| ≤ 1 by (1), a
contradiction. If ω(G − S) = |T0| + l > 1, then t(G) ≤
|S|

ω(G−S) ≤
k(|T0|+l)+1
k(|T0|+l) < k+1

k , which contradicts to t(G) ≥
k − 1

k and k ≥ 2. Suppose ω(G − S) = |T0| + l = 1. By
Lemma 3, dG−S(x) + |S| ≥ dG(x) ≥ δ(G) ≥ 2t(G), and
thus

2k − 2

k
≤ 2t(G) ≤ k − 1 + |S| ≤ k +

1

k
.
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It reveals that k2 ≤ 3 which contradicts to k ≥ 2. Therefore,
we deduce |V (ζ)| ≥ 1.

Let ζ = Φ1∪Φ2 where Φ1, the union of components of ζ,
satisfies that dG−S(x) = k−1 for arbitrary vertex x ∈ V (Φ1)
and Φ2 = ζ−Φ1. Considering Lemma 5, Φ1 has a maximum
independent set Ξ1 and the covering set Υ1 = V (Φ1)− Ξ1

meet

|V (Φ1)| ≤
k∑
i=1

(k − i+ 1)|Ξ(i)| − |Ξ
(1)|
2

, (2)

and

|Υ1| ≤
k∑
i=1

(k − i)|Ξ(i)| − |Ξ
(1)|
2

, (3)

where Ξ(i) = {x ∈ Ξ1, dΦ1(x) = k − i} for 1 ≤ i ≤

k and
k∑
i=1

|Ξ(i)| = |Ξ1|. Meanwhile, let Tj = {x ∈

V (Φ2)|dG−S(x) = j} for 1 ≤ j ≤ k − 1. In view of the
definitions of ζ and Φ2 it’s also confirmed that a vertex of
degree exists in each component of Φ2 at most k − 2 in
G−S. In light of Lemma 5, Φ2 has a maximal independent
set Ξ2 and the covering set Υ2 = V (Φ2)− Ξ2 such that

k−1∑
j=1

(k − j)ςj ≤
k−1∑
j=1

(k − 2)(k − j)ιj , (4)

where ςj = |Υ2 ∩ Tj | and ιj = |Ξ2 ∩ Tj | for each j =
1, . . . , k − 1. Let W = V (G) − S − T and Γ = S ∪ Υ1 ∪
(NG(Ξ1) ∩W )) ∪Υ2 ∪ (NG(Ξ2) ∩W ). It’s derived that

|Υ2|+ |NG(Ξ2) ∩W |
= |V (Υ2)| − |Ξ2|+ |NG−S−T (Ξ2)|
= |V (Υ2)| − |Ξ2|+ |NG−S(Ξ2)| − |NT (Ξ2)|
= (|V (Υ2)| − |Ξ2| − |NT (Ξ2)|) + |NG−S(Ξ2)|
≤ (|V (Υ2)| − |Ξ2| − |NΥ2(Ξ2)|) + |NG−S(Ξ2)|

≤ 0 +

k−1∑
j=1

jιj =

k−1∑
j=1

jιj .

Moreover, we infer

|Γ| ≤ |S|+ |Υ1|+
k−1∑
j=1

jιj +
k∑
i=1

(i− 1)|Ξ(i)| (5)

and

ω(G− Γ) ≥ t0 + l + |Ξ1|+
k−1∑
j=1

ιj , (6)

where t0 = |T0|. When ω(G− Γ) > 1, we have

|Γ| ≥ tω(G− Γ), (7)

If ω(G− Γ) = 1, then

tω(G− Γ) = t ≤ δ(G)

2
≤ |S|+ dG−S(x)

2
≤ Γ

2
.

Hence, (7) also establishes if ω(G− Γ) = 1.
By (5)-(7), we acquire

|S|+ |Υ1| (8)

≥
k−1∑
j=1

(t− j)ιj + t(t0 + l) + t|Ξ1| −
k∑
i=1

(i− 1)|Ξ(i)|.

According to k|T | − dG−S(T ) ≥ k|S| − 1, we verify

kt0 +kl+ |V (Φ1)|+
k−1∑
j=1

(k−j)ιj +
k−1∑
j=1

(k−j)ςj ≥ k|S|−1.

Combined with (8), we deduce

|V (Φ1)|+
k−1∑
j=1

(k − j)ςj + k|Υ1|

≥
k−1∑
j=1

(kt− kj − k + j)ιj + (kt− k)(t0 + l)

+kt|Ξ1| − k
k∑
i=1

(i− 1)|Ξ(i)| − 1. (9)

Using (2) and (3), we acquire

|V (Φ1)|+ k|Υ1| (10)

≤
k∑
i=1

(k2 − ki+ k − (i− 1))|Ξ(i)| − (k + 1)|Ξ(1)|
2

.

By means of (4), (9) and (10), we obtain
k−1∑
j=1

(k − 2)(k − j)ιj (11)

+
k∑
i=1

(k2 − ki+ k − (i− 1))|Ξ(i)|

≥
k−1∑
j=1

(kt− kj − k + j)ιj + (kt− k)(t0 + l) + kt|Ξ1|

+
(k + 1)|Ξ(1)|

2
− k

k∑
i=1

(i− 1)|Ξ(i)| − 1.

The discussion below is composed of two circumstances
in light of the value of t0 + l.

Case 1. t0+l ≥ 1. Here, we obtain k(t−1)(t0+l)−1 ≥ 0.
Thus (11) becomes

k−1∑
j=1

(k − 2)(k − j)ιj (12)

+
k∑
i=1

(k2 − ki+ k − (i− 1))|Ξ(i)|

≥
k−1∑
j=1

(kt− kj − k + j)ιj + kt|Ξ1|+
(k + 1)|Ξ(1)|

2

−k
k∑
i=1

(i− 1)|Ξ(i)|.

Therefore, at least one subcase below must hold.

Subcase 1.1.
k−1∑
j=1

(k− 2)(k− j)ιj ≥
k−1∑
j=1

(kt− kj− k+ j)ιj .

There exists j satisfying

(k − 2)(k − j) ≥ kt− kj − k + j,

which implies

kt ≤ (k−2)(k−j)+kj+k−j = k(k−2)+j+k ≤ k2−1.

By t(G) ≥ k− 1
k , we get

∑k−2
j=1 ιj = 0, which has conflicts

with the definition of Φ2 and the selecting of Ξ2 (see the
proof of Lemma 6 in [17] satisfying

∑k−2
j=1 ιj 6= 0).
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Subcase 1.2.
k∑
i=1

(k2 − ki+ k − (i− 1))|Ξ(i)| ≥ kt|Ξ1|+

(k+1)|Ξ(1)|
2 − k

k∑
i=1

(i− 1)|Ξ(i)|.

If t0 + l ≥ 2 or k ≥ 3, by (kt − k)(t0 + l) − 1 ≥ 1, we
have

k∑
i=1

(k2 − ki+ k − (i− 1))|Ξ(i)|

≥ kt|Ξ1|+
(k + 1)|Ξ(1)|

2
− k

k∑
i=1

(i− 1)|Ξ(i)|+ 1

≥ (k2 − 1)|Ξ1|+
(k + 1)|Ξ(1)|

2

−k
k∑
i=1

(i− 1)|Ξ(i)|+ 1.

That is,

|Ξ(1)|(−k
2

+
1

2
) +

k∑
i=2

(−i+ 2)|Ξ(i)| ≥ 1,

which leads to a contradiction.
We have t0 + l = 1 and k = 2. In this case, (kt− k)(t0 +

l)− 1 ≥ 0 and hence

|Ξ(1)|(−k
2

+
1

2
) +

k∑
i=2

(−i+ 2)|Ξ(i)| ≥ 0.

It implies that |Ξ(1)| = 0 and |Ξ1| = |Ξ(2)|.
Let Y = NG(Ξ1)∪W . Then we ome to the two subcases

below.
Subcase 1.2.1. There exists y ∈ Y such that |NG(y) ∩

Ξ1| = 1.
Let Γ = S ∪Υ1 ∪ (NG(Ξ1)∩ (W −{y})). Then, we infer
|Γ| ≤ |S|+ |Ξ1|(k−1)−1 < |Ξ1|(k−1)+2

k + |Ξ1|(k−1)−1 =
|Ξ1|+2

2 + |Ξ1| − 1 = 3
2 |Ξ1|. Hence,

3

2
≤ t(G) ≤ |Γ|

ω(G− Γ)
≤

3
2 |Ξ1|
|Ξ1|+ 1

<
3

2
,

a contradiction.
Subcase 1.2.2. Any vertex in Y has at least two neigh-

borhoods in Ξ1.
Let Γ = S ∪Υ1∪ (NG(Ξ1)∩W ). Then, we deduce |Γ| ≤
|S|+ |Ξ1|(k−2)+ |Ξ1|

2 < |Ξ1|(k−1)+2
k + |Ξ1|(k−2)+ |Ξ1|

2 =
3|Ξ1|+2

2 . Therefore,

3

2
≤ t(G) ≤ |Γ|

ω(G− Γ)
≤

3|Ξ1|+2
2

|Ξ1|+ 1
<

3

2
,

a contradiction.
Case 2. t0 + l = 0.

In this circumstance, using (11) we get
k−1∑
j=1

(k − 2)(k − j)ιj (13)

+
k∑
i=1

(k2 − ki+ k − (i− 1))|Ξ(i)|

≥
k−1∑
j=1

(kt− kj − k + j)ιj + kt|Ξ1|+
(k + 1)|Ξ(1)|

2

−k
k∑
i=1

(i− 1)|Ξ(i)| − 1.

Now, the following circumstances are considered on the
basis of whether Ξ1 or Ξ2 is empty.

Subcase 2.1. |Ξ1| = 0.
In this case, (13) becomes
k−1∑
j=1

((k − 2)(k − j)− (kt− kj − k + j))ιj + 1 ≥ 0.

Let

Θ = (k − 2)(k − j)− (kt− kj − k + j)

= k2 + j − k − kt ≤ j − k + 1.

Then max{Θj} = Θk−1 = 0 and the second largest value of
Θj is Θk−2 = −1. By analyzing the proof process of Lemma
4 in Liu and Zhang [17], it’s ensured that Φ2 is connected,
any vertex in Ξ2 has degree k−1 in G−S with the exception
that one vertex has degree k − 2 in G− S. It reveals that

|Υ2| ≤ (k − 2) + (|Ξ2| − 1)(k − 1− 1) = |Ξ2|(k − 2),

|T | ≤ |Ξ2|(k − 1),

and
|S| ≤ |Ξ2|+

1− |Ξ2|
k

.

If |Ξ2| = 1, then |S| ≤ 1, δ(G) ≤ |S|+ (k − 1) ≤ k, which
is contradictory to δ(G) ≥ 2t(G) > k. Therefore, |Ξ2| ≥ 2
and

k − 1

k
≤ t(G)

≤ |Γ|
ω(G− Γ)

≤
1−|Xi2|

k + |Ξ2|+ |Ξ2|(k − 2)

|Ξ2|

= (k − 1− 1

k
) +

1

k|Ξ2|
.

This reveals 1 ≤ 1
k|Ξ2| , which contradicts to k ≥ 2 and

|Ξ2| ≥ 2.
Subcase 2.2. |Ξ2| = 0.
Here, (13) changes to

k∑
i=1

(k2 − ki+ k − (i− 1))|Ξ(i)| − kt|Ξ1|

− (k + 1)|Ξ(1)|
2

+ k
k∑
i=1

(i− 1)|Ξ(i)|+ 1 ≥ 0.

This implies
k∑
i=2

(−i+ 2)|Ξ(i)|+ (−1

2
k +

1

2
)|Ξ(1)|+ 1 ≥ 0.
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We get
∑k
i=4 |Ξ(i)| = 0, |Ξ(3)| ≤ 1 and |Ξ(1)| ≤ 2.

Subcase 2.2.1. |Ξ(1)| = 1. Here, we have
∑k
i=3 |Ξ(i)| = 0.

In light of the proof tricks of Lemma 2.2 in Liu and Zhang
[17], we verify |Ξ1| ≥ 2,

|T | ≤ (k − 1) + (|Ξ1| − 1)(k − 1) = |Ξ1|(k − 1),

|S| ≤ |T |+ 1

k
≤ |Ξ1|(k − 1) + 1

k
,

and

|Γ| ≤ |S|+ |Υ1|+
k∑
i=1

(i− 1)|Ξ(i)|

≤ |Ξ1|(k − 1) + 1

k
+ |Ξ1|(k − 1)

−|Ξ1|+ (|Ξ1| − 1)

=
|Ξ1|(k − 1) + 1

k
+ |Ξ1|(k − 1)− 1.

Thus,

k2 − 1

k
≤ t(G) ≤ |Γ|

ω(G− Γ)

≤
|Ξ1|(k−1)+1

k + |Ξ1|(k − 1)− 1

|Ξ1|
.

This implies 0 ≤ 1−k
|Ξ1| , a contradiction.

Subcase 2.2.2. |Ξ(1)| = 2. Here, we obtain
∑k
i=3 |Ξ(i)| =

0, and a contradiction will be similar to Subcase 2.2.1.
Subcase 2.2.3. |Ξ(1)| = 0. Here, we confirm∑k
i=4 |Ξ(i)| = 0 and |Ξ(3)| ≤ 1. If |Ξ1| = 1, then |S| ≤ 1.

Thus, we get

k = 1 + k − 1 ≥ k − 1 + |S| ≥ δ(G) ≥ 2t(G) ≥ 2k − 2

k
,

a contradiction. Thus, |Ξ1| ≥ 2. Let Y = NG(Ξ1) ∩W .
If there exists a vertex y ∈ Y with |NG(y) ∩ Ξ1| = 1.

Reset

Γ = S ∪Υ1 ∪ (NG(Ξ1) ∩ (W − {y})).

Thus, we derive

|Γ| ≤ |S|+|Ξ1|(k−1)−1 ≤ |Ξ1|(k − 1) + 1

k
+|Ξ1|(k−1)−1.

In light of |Ξ1| ≥ 2, we obtain

k2 − 1

k
≤ t(G) ≤ |Γ|

ω(G− Γ)

≤
|Ξ1|(k−1)+1

k + |Ξ1|(k − 1)− 1

|Ξ1|
.

This implies 0 ≤ 1−k
|Ξ1| , a contradiction.

If any vertex in Y is adjacent to at least two vertices in
Ξ1. We determine

|Γ| ≤ |S|+ |Ξ1|(k − 2) +
|Ξ1|

2

≤ |Ξ1|(k − 1) + 1

k
+ |Ξ1|(k − 2) +

|Ξ1|
2
,

where Γ = S ∪ Υ1 ∪ (NG(Ξ1) ∩W ). Using |Ξ1| ≥ 2, we
get

k2 − 1

k
≤ t(G) ≤ |Γ|

ω(G− Γ)

≤
|Ξ1|(k−1)+1

k + |Ξ1|(k − 2) + |Ξ1|
2

|Ξ1|
.

This implies 0 ≤ ( 1
|Ξ1| −

k
2 ), which contradicts to k ≥ 2 and

|Ξ1| ≥ 2.
Subcase 2.3. |Ξ1| 6= 0 and |Ξ2| 6= 0. According to the

discussion presented in Subcase 2.1, we yield
k−1∑
j=1

(k−2)(k−

j)ij ≤
k−1∑
j=1

(kt− kj − k + j)ij + 1. Then, we yield

k∑
i=1

(k2 − ki+ k − (i− 1))|I(i)|

≥ kt|I1|+
(k + 1)|I(1)|

2
− k

k∑
i=1

(i− 1)|I(i)|.

This implies

k∑
i=2

(−i+ 2)|I(i)|+ (−1

2
k +

1

2
)|Ξ(1)| ≥ 0.

Hence, we verify
∑k
i=4 |Ξ(i)| = 0, |Ξ(3)| ≤ 1 and |Ξ(1)| ≤ 2

by what we have argued in Subsection 1.2. We only discuss
the circumstances of |Ξ(1)| = 0, and the other two situations
for |Ξ(1)| = 1 and |Ξ(1)| = 2 can be done in terms of the
same fashion.

Using |Ξ(1)| = 0, we derive
∑k
i=4 |Ξ(i)| = 0, |Ξ(3)| ≤ 1,

|T | ≤ |Ξ1|(k − 1) + |Ξ2|(k − 1) = (k − 1)(|Ξ1|+ |Ξ2|),

and

|S| ≤ |T |+ 1

k
≤ (k − 1)(|Ξ1|+ |Ξ2|) + 1

k
.

In view of |Ξ1|+ |Ξ2| ≥ 2, we infer

k2 − 1

k
≤ t(G) ≤ |Γ|

ω(G− Γ)

≤ |S|+ |Ξ2|(k − 2) + |Ξ1|(k − 1)

|Ξ1|+ |Ξ2|
.

Hence,

(k2 − 1)(|Ξ1|+ |Ξ2|)
≤ (k − 1)(|Ξ1|+ |Ξ2|) + 1 + (k2 − 2k)(|Ξ1|+ |Ξ2|)

+k|Ξ1|,

which reveals 0 ≤ 1− k|Ξ2|, a contradiction.
Thus, Theorem 1 is proved.

IV. THE EXTENDED RESULTS

Let I(G) be the isolated toughness of graph G. In the
theorems below, it’s usually assumed that a, b are positive
integers, g, f are two non-negative integer-valued functions
which are defined on V (G) meeting a ≤ g(x) ≤ f(x) ≤ b
for all x ∈ V (G), n be a non-negative integer and ∆ = b−a.
Using the tricks presented in Gao et al. [18]-[19] and this
paper, we get the following extended results, and the specific
proving is skipped.

Theorem 2: Let G be a graph, b ≥ 2 and (a, b) 6= (1, 2).
Assume |V (G)| ≥ n + b + 2 if G is complete. If t(G) ≥
b2−∆+bn−1

a , G is fractional (g, f, n)-critical covered.
Theorem 3: Let G be a graph and 2 ≤ a ≤ b. As-

sume |V (G)| ≥ n + b + 2 if G is complete. If t(G) ≥
ab−b+a−∆+bn−1

a , G is fractional (a, b, n)-critical covered.
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Theorem 4: Let G be a graph, b ≥ 2 and (a, b) 6= (1, 2).
Assume |V (G)| ≥ n + b + 2 if G is complete. If t(G) ≥
b2−∆−1

a + n, G is fractional (g, f, n)-critical covered.
Theorem 5: Let G be a graph, b ≥ 2 and (a, b) 6= (1, 2).

Assume |V (G)| ≥ n + b + 2 if G is complete. If I(G) ≥
b2−∆+bn

a and δ(G) ≥ n + b + 1, G is fractional (g, f, n)-
critical covered.

Theorem 6: Let G be a graph and 2 ≤ a ≤ b. Assume
|V (G)| ≥ n+b+2 if G is complete. If I(G) ≥ ab−b+a−∆+bn

a
and δ(G) ≥ n+ b+ 1, then G is fractional (a, b, n)-critical
covered.

Theorem 7: Let G be a graph, b ≥ 2 and (a, b) 6= (1, 2).
Assume |V (G)| ≥ n + b + 2 if G is complete. If I(G) ≥
b2−∆
a + n and δ(G) ≥ n + b + 1, G is fractional (g, f, n)-

critical covered.

V. CONCLUSION AND DISCUSSION

In computer network, the network flow problem is trans-
formed into the fractional factor existence problem, and the
resource scheduling algorithm and its feasibility are based
on the existence of graph fractional factor. In real work,
we are often faced with two work scenarios: upgrading
the existing network to meet new business requirements;
or rebuilding new network facilities according to business
needs. Therefore, different scenarios need to correspond to
the existence of fractional factors under different settings,
and the scenarios corresponding to fractional critical graphs
and coverage graphs are that some networks cannot be used
normally due to attacks on the network; or there are some
channels that must pass through as network data streams or
service streams.

This paper mainly contributes to determining the tough-
ness bounds for fractional covered and fractional critical
covered graph in different settings. All toughness bounds
presented in our article are tight in some sense because
these bounds are exactly the tight bounds for the existence of
corresponding fractional factor. For example, t(G) ≥ k − 1

k
is a sharp bound for a graph admits fractional k-factor (see
Liu and Zhang [17]), and hence the toughness condition
presented in Theorem 3 is sharp as well. Furthermore, it also
reveals that after the network toughness parameter reaching
the predetermined critical value, not only can the network
have a fractional factor, but also a fractional factor that must
pass through a certain channel can be guaranteed.
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