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Abstract—Michael Somos conjectured thousands of
theta-functions of various levels with the help of computer
and not provided the proof. These theta-functions highly
matches Ramanujan’s recordings. The objective of our
work in this paper is to prove two theta-functions of level 6
conjectured by Somos and to give an alternate proof of the
identities proved by B. R. Srivatsa Kumar and G. Sharath.
Further, as an application of this, we offer colored partition
identities for the same.

Index Terms—Colored partitions, Dedekind eta-function,
Modular equations, Theta functions.

I. INTRODUCTION

Ramanujan documented many identities which involve
f(−q), f(−q2), f(−qn) and f(−q2n) in his second and
‘Lost’ notebook [7, 8]. For example [5, p.206], if
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where

f(−q) :=
∞∏

n=1

(1− qn)

Subsequently after publishing [5], numerous authors
along with C. Adiga et al. [1], N. D. Baruah [2, 3] and
K. R. Vasuki [14, 15] and many mathematicians found
several new type of modular equations of the above type
and employed for the evaluation of continued fractions,
weber class invariants and many more. Recently, Michael
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Somos [9] conjectured/discovered nearly 6200 Dedekind
η-function identities of numerous levels by GP/PARI
scripts using computer and offered no proof of these.
Many authors have given the proof of his identities
and for the wonderful work one may refer [10-13, 16,
17]. The Somos identities of level 6 contains argu-
ments in f(−q), f(−q2), f(−q3) and f(−q6) namely
−q,−q2,−q3 and −q6 all have exponents dividing 6,
which is thus call it as level of the identity 6. The
aim of our work in this paper is to prove two of new
η-function identities of level 6 conjectured by Somos
by using modular equations given by Ramanujan. The
present work is classified as follows. In Section 2, we
prove two Somos’s theta-function identities of level 6
and give an alternate proof of the identities proved by B.
R. Srivatsa Kumar and G. Sharath in [14]. Further as an
application of this in Section 3 we demonstrate colored
partition identities and verify the same with an example.
Prior to pursue to demostrate Somos’s identities, we have
conscript at the beginning to review some theta-functions
and modular equation identities which will be required
in future. All through the paper, we shall use the typical
q-notation. For |q| < 1, the q-shifted factorial is defined
as

(a; q)∞ : =
∞∏

n=1

(
1− aqn−1

)
.

If |mn| < 1, Ramanujan’s general theta function
f(m,n) is stated as follows:

f(m,n) =
∞∑

j=−∞
m

j(j+1)
2 n

j(j−1)
2 .

By Jacobi’s triple product identity [4, p.35], we have

f(m,n) = (−m,−n,mn;mn)∞.

The meaningful particular cases of f(m,n) [4, p.36], are
as follows:

φ(q) : = f(q, q) =
∞∑

n=−∞
qn

2

= (−q; q2)2∞(q2; q2)2∞

f(−q) : = f(−q,−q2) =
∞∑

n=−∞
(−1)nq

n(3n−1)
2 = (q; q)∞,

χ(−q) : = (−q; q)∞.
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For any complex number τ , if q = e2πiτ then f(−q) =
e−πiτ/12η(τ), where η(τ) is the classical Dedekind η-
function with Im(τ) > 0 and is defined as

η(τ) : = q1/24
∞∏

n=1

(1− qn)

= e−πiτ/12
∞∏

n=1

(
1− q2nπiτ

)
.

After Ramanujan, we define

χ(q) : =
(
−q; q2

)
∞ .

Also, one can easily see that

φ(q) =
f5
2

f2
1 f

2
4

, χ(q) =
f2
2

f1f4
, χ(−q) =

f1
f2

, (1)

where fk = (qk; qk)∞. A modular equation of nth

degree
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is an equation relating α and β where

2F1(a, b, c; z) =

∞∑
n=0

(a)n(b)n
(c)nn!

zn, |z| < 1.

stands for an ordinary hypergeometric function with

(a)k =
Γ(a+ k)

Γ(a)
,

and generally it is said that β is of nth degree over α
and call the ratio

m : =
z1
zn

as the multiplier, where z1 = 2F1

(
1
2 ,

1
2 ; 1;α

)
and

zn = 2F1

(
1
2 ,

1
2 ; 1;β

)
.

II. MAIN RESULTS

Theorem 1. We have

2
φ3(q)

φ(q3)
+ 6q

φ3(q3)

φ(q)
= 3

φ3(−q3)

φ(−q)
− φ3(−q)

φ(−q3)
.

Proof: If β has degree 3 over α, Ramanujan docu-
mented the following modular equation [9] [4, pp. 230-
238 Entry 5]

1

P
− P =

1

2
√
2

(
1

Q
+Q

)
(2)

where P := {16αβ (1− α) (1− β)}1/8 and Q =

{ β(1−β)
α(1−α)}

1/4. Suppose if y = π
2F1( 1

2 ,
1
2 ;1;1−x)

2F1( 1
2 ,

1
2 ;1;x)

and

z = 2F1

(
1
2 ,

1
2 ; 1;x

)
, then from Entry 10(i) and 12(v)[4,

pp. 122-124], we have

φ(q) : =
√
z (3)

and

χ(q) : = 21/6{x(1− x)q}−1/24 (4)

where q = e−y. On transforming (2) by using (4), we
obtain

m6

n6
+

n6

m6
= m3n3 − 8

m3n3
(5)

where

m : = m(q) = q−1/24χ(q)

and

n : = n(q) = q−1/8χ(q3)

Now on multiplying (5) throughout by 2/n12, we obtain

16
m3

n9
+ 2− 2

m9

n3
+ 2

m12

n12
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Equivalently,(
2 +

m9

n3

)(
1− 4
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n9

)
− m8

n8

(
2
m4

n4
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)(
4
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− 1

)
= 0. (6)

Also from Entry 5[5, pp. 230-238], we have

m =
1− 2

(
β3(1−β)3

α(1−α)

)1/8

1− 2(αβ)1/4

and

3

m
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2
(
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which implies

m2

3
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(

β3(1−β)3
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2
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.

On rewriting the above into theta function using (3) and
(4), we obtain

φ4(q)

3φ4(q3)
=

1− 4qm3

n9

4 n3

m9 − 1
. (7)

Employing (7) in (6), we deduce(
2 +

n9

m3

)
φ4(q)

φ4(q3)
− m8

n8

(
2
m4

n4
+mn5

)
= 0. (8)
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From (1) it is observed that

φ(q)

φ(q3)
=

m2

n2

f2
f6

. (9)

Using (9) in (8), we obtain

2− 3

[
2
m4

n4
+mn5

](
f6
f2

)4

+
m9

n3
= 0.

On letting q → −q in the above, rewriting m(−q)
and n(−q) in terms of fn by employing (1) and after
multiplying throughout by f3

1 f
3
2 f

3
3 f

3
6 and on simplifying

(1), we obtain the desired result.

Theorem 2. We have

81q
φ4(q3)

φ4(q)

φ4(−q3)

φ4(−q)

=

(
1− χ9(−q)

χ3(−q3)

)(
1 + 8

χ3(−q3)

χ9(−q)

)
.

Proof: On multiplying (5) throughout by
n−24

(
16m12 −m9n9 − 16m3n3 − 8n12

)
, we obtain
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which is equivalent to

9
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(
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+
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− 8

)(
1− 4

m3

n9

)2
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Employing (7) in the above, we see that

81
m5

n

(
f6
f2

)8

+ 7
m9

n3
+

m18

n6
− 8 = 0.

On letting q → −q in the above, rewriting m(−q)
and n(−q) in terms of fn by employing (1) and after
multiplying throughout by f18

2 f7
3 f6 and on simplifying

(1), we obtain the desired result.

Theorem 3. We have

f1f
3
2 f

9
3 + qf4

1 f
9
6 − f8

2 f
4
3 f6 = 0.

Proof: On dividing Theorem 3 by f1f
3
2 f

9
3 , we

obtain

1 + q
f3
1 f

9
6

f3
2 f

9
3

− f5
2 f6
f1f5

3

= 0. (10)

From [16, Theorem 3.4(i)] if

A =
f1

q1/24f2
and B =

f3
q1/8f6

,

we have

(AB)3 +
8

(AB)3
=

(
B

A

)6

−
(
A

B

)6

. (11)

Also from [5, p. 204, Entry 51], if

P =
f2
1

q1/12f2
3

and Q =
f2
2

q1/6f2
6

we have

PQ+
9

PQ
=

(
Q

P

)3

−
(
P

Q

)3

. (12)

Employing A,B, P and Q in (10), reduces to

(AB)3 = PQ− P 3

Q3
.

On employing the above in (11) and then factorizing, we
obtain

Q(P 6 − P 4Q4 − 9P 2Q2 +Q6) = 0.

But the second factor is nothing but (12) and it verifies
Theorem 3.

Theorem 4. We have

f9
1 f3f

3
6 + 9qf4

1 f2f
8
6 − f9

2 f
4
3 = 0.

Proof: On dividing Theorem 4 by f9
1 f3f

3
6 , we

obtain
1 + 9q

f2f
5
6

f5
1 f3

− f9
2 f

3
3

f9
1 f

3
6

= 0.

On using the definitions of A,B, P and Q from (11) and
(12) in the above and after simplification, we obtain

(AB)3 =
Q3

P 3
− 9

PQ
.

Employing the above in (11) and then factorizing, we
obtain (12) and it verifies Theorem 4.

III. APPLICATION TO PARTITIONS

S. S. Huang [6] introduced the theory of colored
partitions. We use the notation

(a1, a2, .....an; q)∞ :=
∞∏
i=1

(aj ; q)∞,

Also for clarity, we write

(qm1
a1

, qm2
a2

, ..., qmk
ak

; qn)∞ = (qm1 ; qn)a1
∞(qm2 ; qn)a2

∞...

× (qmk ; qn)ak
∞ (qn−m1 ; qn)a1

∞(qn−m2 ; qn)a2
∞...

× (qn−mk ; qn)ak
∞ .

For example (q1±4 ; q6)∞ = (q14 , q
5
4 ; q

6)∞ =
(q14 ; q

6)∞(q54 ; q
6)∞.

Now we define the colored partition as defined in the
literature.
“A positive integer n has l colors if there are l copies of
n available colors and all of them are viewed as distinct
objects. Partitions of a positive integer into colored
parts are called colored partitions”.
Example: Suppose 1, 2 and 3 are allowed, having
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two colors, then the achievable partitions of 3 are
3i, 3r, 2i + 2i, 2r + 2r, 2r + 2i, 1r + 1r + 1r, 1i + 1i +
1i, 1i + 1r + 1r, 1r + 1i + 1i, where we employed
(indigo) and (red) as the indices to distinguish two
colors 1, 2 and 3. Also the generating function for the
partitions of n is given by

1

(qa; qb)m∞
=

∞∑
n=0

α(n)qn,

for α(0) = 1 and the entire summands are ≡ a(mod b)
with m colors.

Theorem 5. We have for any n ≥ 1

2p1(n) + 6p2(n− 1)− 3p3(n) + p4(n) = 0,

where p1(n): absolute sum of partitions of n splits
into many summands which are ≡ ±1,±2(mod 6)
with nine colors and +3(mod 6) with fourteen colors.
p2(n): total number of partitions of n splits into many
summands ≡ ±1(mod 6) having five colors, +2(mod 6)
having thirteen colors and +3(mod 6) with fourteen
colors. p3(n): absolute sum of partitions of n splits
into many summands ≡ ±1(mod 6) having eight colors,
+2(mod 6) having thirteen colors and +3(mod 6) with
eight colors. p4(n): unrestricted sum of partitions of
n splits into many summands +2(mod 6) having nine
colors and +3(mod 6) with fourteen colors.

Proof: On rephrasing Theorem 1 to the base q6

throughout, we obtain

2

(q1±9 , q2±9 , q314; q
6)∞

+
6q

(q1±5 , q2±13 , q
3
14; q

6)∞

− 3

(q1±8 , q2±13 , q
3
8 ; q

6)∞
+

1

(q2±9 , q38 ; q
6)∞

= 0.

The quotients of the above equation are the generating
functions of p1(n), p2(n), p3(n) and p4(n) respectively.
Hence we have an equivalent identity as

2
∞∑

n=0

p1(n)q
n + 6q

∞∑
n=0

p2(n)q
n

− 3
∞∑

n=0

p3(n)q
n +

∞∑
n=0

p4(n)q
n = 0,

where we set p1(0) = p2(0) = p3(0) = p4(0) = 1. On
equating the coefficient of qn in the above, we achieve
the desired identity.

Example: Below Table I verifies the above theorem for
n = 2.

TABLE I
THE COLORED PARTITIONS FOR n = 2

p1(2) = 54 : 1w + 1w, 1r + 1r, 1g + 1g , 1b + 1b,
1bl + 1bl, 1y + 1y , 1o + 1o, 1v + 1v ,
1i + 1i, 1w + 1r, 1w + 1g , 1w + 1b,
1w + 1bl, 1w + 1y , 1w + 1o, 1w + 1v ,
1w + 1i, 1r + 1g , 1r + 1b, 1r + 1bl,
1r + 1y , 1r + 1o, 1r + 1v , 1r + 1i,
1g + 1b, 1g + 1bl, 1g + 1y , 1g + 1o,
1g + 1v , 1g + 1i, 1b + 1bl, 1b + 1y ,
1b + 1o, 1b + 1v , 1b + 1i, 1bl + 1y ,
1bl + 1o, 1bl + 1v , 1bl + 1i, 1y + 1o,
1y + 1v , 1y + 1i, 1o + 1v , 1o + 1i,
1v + 1i, 2w, 2r, 2g , 2b, 2bl, 2y , 2o,

2v , 2i.
p2(1) = 5 : 1w, 1r, 1g , 1b, 1bl
p3(2) = 49 : 1w + 1w, 1r + 1r, 1g + 1g , 1b + 1b,

1bl + 1bl1y + 1y , 1o + 1o, 1v + 1v ,
1w + 1r, 1w + 1g , 1w + 1b, 1w + 1bl,
1w + 1y , 1w + 1o, 1w + 1v , 1r + 1g ,
1r + 1b, 1r + 1bl, 1r + 1y , 1r + 1o,
1r + 1v , 1g + 1b, 1g + 1bl, 1g + 1y ,
1g + 1o, 1g + 1v , 1b + 1bl, 1b + 1y ,
1b + 1o, 1b + 1v , 1bl + 1y , 1bl + 1o,
1bl + 1v , 1y + 1o, 1y + 1v , 1o + 1v ,
2w, 2r, 2g , 2b, 2bl, 2y , 2o, 2v , 2i, 2p,

2br, 2m, 2pr.
p4(2) = 9 : 2w, 2r, 2g , 2b, 2bl, 2y , 2o, 2v , 2i

Theorem 6. We have for any n ≥ 1

81p1(n− 1)− 8p2(n) + p3(n) + 7p4(n) = 0,

where p1(n): unrestricted sum of partitions of n
splits into parts ≡ ±1(mod 6) with thirteen colors,
±2(mod 6) with twenty six colors and +3(mod 6) with
thirteen colors. p2(n): absolute sum of parts of n into
several parts ≡ ±1,±2(mod 6) having eighteen colors,
and +3(mod 6) with nineteen colors. p3(n): total sum
of partitions of n splits into parts ≡ ±2(mod 6) having
eighteen colors and +3(mod 6) with seven colors.
p4(n): unrestricted sum of partitions of n splits into
parts ≡ ±1(mod 6) having nine colors, +2(mod 6)
having eighteen colors and +3(mod 6) with thirteen
colors.

Proof: On rephrasing Theorem 2, to the base q6

throughout, we obtain
81q

(q1±13 , q
2±
26 , q

3
13; q

6)∞
− 8

(q1±18 , q
2±
18 , q

3
19; q

6)∞

+
1

(q2±18 , q
3
7 ; q

6)∞
+

7

(q1±9 , q2±18 , q
3
13; q

6)∞
= 0.

The quotients of the above represents the generating
functions of p1(n), p2(n), p3(n) and p4(n) respectively.
Hence the above identity can be rewritten as

81q
∞∑

n=0

p1(n)q
n − 8

∞∑
n=0

p2(n)q
n

+

∞∑
n=0

p3(n)q
n + 7

∞∑
n=0

p4(n)q
n = 0,
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where we set p1(0) = p2(0) = p3(0) = p4(0) = 1. On
comparing the coefficient of qn in the above, we achieve
the desired identity.

Example: For n = 2, the Table-II verifies the above
theorem.

TABLE II
THE COLORED PARTITIONS FOR n = 2

p1(1) = 13 : 1w, 1r, 1g , 1b, 1bl, 1y ,
1o, 1v , 1i, 1p, 1br, 1m, 1pe.

p2(2) = 189 : 1w + 1w, 1r + 1r, 1g + 1g ,
1b + 1b, 1bl + 1bl, 1y + 1y , 1o + 1o,
1v + 1v , 1i + 1i and similar 180

combinations exists
p3(2) = 18 : 2w, 2r, 2g , 2b, 2bl, 2y , 2o, 2v , 2i, 2p,

2br, 2m, 2pr, 2go, 2pe, 2a, 2c, 2gr
p4(2) = 63 : 1w + 1w, 1r + 1r, 1g + 1g , 1b + 1b,

1bl + 1bl, 1y + 1y , 1o + 1o, 1v + 1v ,
1i + 1i, 1w + 1r, 1w + 1g , 1w + 1bl,
1w + 1b, 1w + 1y , 1w + 1o, 1w + 1v ,
1w + 1i, 1r + 1g , 1r + 1b, 1r + 1bl,
1r + 1y , 1r + 1o, 1r + 1v , 1r + 1i,
1g + 1b, 1g + 1bl, 1g + 1y , 1g + 1o,
1g + 1v , 1g + 1i, 1b + 1bl, 1b + 1y ,
1b + 1o, 1b + 1v , 1b + 1i, 1bl + 1y ,
1bl + 1o, 1bl + 1v , 1bl + 1i, 1y + 1o,
1y + 1v , 1y + 1i1o + 1v , 1o + 1i,
1v + 1i, 2w, 2r and 16 colors of the

similar type exists.

IV. CONCLUSION

In the present work, we prove Somos’s identities of
level 6 by employing Ramanujan’s modular equation of
degree 3 and and also obtained an alternate proof for
the identities proved by B. R. Srivatsa Kumar and G.
Sharath [14]. Further, as an application of this one can
establish the partition identities for the same. By using
Ramanujan’s modular equations of various degrees, we
claim that Somos’s Dedekind-η function identities of
different levels can be obtained.
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