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Abstract—In this paper we study the closure
properties of partial array tiling systems and define
the new class of partial array languages termed as
hv−local partial array languages. Further we develop
a special kind of partial array tiling systems called
partial array domino systems with the relevance of
family of hv−local partial array languages. We prove
that the class of partial array languages generated
by partial array tiling systems is equal to the class
of partial array languages generated by partial array
domino systems. Finally we study the automata char-
acterization for hv−local partial array languages.
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1 Introduction

In DNA computation, DNA molecules are viewed as fi-
nite strings that encode information. During the en-
coding process, some parts of the information may be
unseen, and these parts can be visible by using partial
words. Research has been extensively conducted on how
to efficiently learn a concept through its representations.
Efficient methods for learning concepts through the rep-
resentation of the concepts have been presented in the
literature [1, 9, 10, 12, 14, 15, 16]. In 1974, Fischer and
Paterson introduced partial words as strings with do not
care symbols [4]. In 1999, Berstel and Boasson started
combinatorics on partial words [2] and have been studied
by Blanchet-Sadri [3] in detail. In 2007, Sasikala et.al
developed an automaton that can recognize partial lan-
guages [17].

To recognize or generate a two-dimensional word, vari-
ous formal models are employed. These strategies were
derived from the problems associated with image pro-
cessing and pattern recognition [5, 13]. Giammarresi
and Restivo proposed the concept of recognizable lan-
guages (or families of recognizable languages) [6] in 1991.
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Thomas studied various logic tiling and automata ideas
[19]. Giammarresi et.al explained how rectangular pic-
tures were recognizable by tiling [7, 8]. In 1997, Latteux
and Simplot studied several characterizations of recogniz-
able picture languages and domino tiling [11]. To study
differences in gene expression between wild type and sig-
naling mutants, Sweety et al. [18] extended tiling systems
to finite partial array languages. The do not care symbol◊ alone cannot be used as a tile to distinguish a local
partial array language from a local array language.

The paper is structured as follows: The basic definitions
are given in section 2. In section 3 we study the closure
properties of partial array tiling systems. In section 4 we
define hv−local partial array languages and prove that ev-
ery hv−local partial array language is a local partial array
language but the converse is not true. Further we discuss
partial array domino system and prove that the equiva-
lence relation between the class of partial array language
is recognizable by partial array tiling system and partial
array domino system. Finally we study the automata
characterization for hv−local partial array languages in
section 5.

2 Preliminaries

Let Σ denotes a finite alphabet and Σ∗ denotes the col-
lection of all finite words including the empty word λ over
Σ. A two-dimensional word over Σ is a two-dimensional
rectangular array of elements from Σ of size (h, v). Σ∗∗

denotes the collection of all arrays over Σ such that the
array language L ⊆ Σ∗∗. For every array X of size (h, v),
X̂ is the array of size (h + 2, v + 2) constructed by en-
closing X with a special symbol # ∉ Σ. Let L1 and L2

be two string languages over Σ then the row-column con-
catenation of L1 and L2 denoted by L1 ⊕ L2 is an array
language L = L1 ⊕ L2 ⊆ Σ∗∗ such that X ∈ L if and only
if the strings corresponding to the rows belong to L1 and
to the columns of X belong to L2 respectively.

A partial word over Σ is a sequence of elements in
Σp where Σp = Σ ∪ {◊} and ◊ ∉ Σ. Formally a par-
tial word w over Σ of length n is a partial function
such that w ∶ {1,2,3,⋯, n} → Σ. For 1 ≤ i ≤ n, if
w = w(1)w(2)⋯w(i)⋯w(n) is defined then i belongs to
the domain set of w, otherwise i belongs to the hole set
of w. If w is a partial word of length n over Σ, then the
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companion of w represented by wp is the total function,
wp ∶ {1,2,⋯n} → Σp defined by

wp(i) = ⎧⎪⎪⎨⎪⎪⎩
w(i) if i ∈ domain(w),

◊ if i ∈ hole(w).

Σ∗p denotes the collection of all finite partial words includ-
ing the empty word λ over Σ. A partial language L over
Σp is said to be local if there exists a tuple (I,C,H,J)
where I, J ⊆ Σ, C ⊆ Σ2, H ⊆ Σ2

p such that L = {x ∈ Σ∗p ∶
P1(x) ∈ I, F2(x) ∈ C, PF2(x) ∈ H, S1(x) ∈ J} where

� P1(x)- Prefix of x of length 1

� S1(x)- Suffix of x of length 1

� F2(x)- Set of subwords of x of length 2

� PF2(x)- Set of subpartial words of x of length 2.

The class of all local partial language is denoted by Lp. A
partial array X of size (h, v) over Σ is a partial function
X ∶ {(1,1),⋯⋯(h, v)} → Σ. For 1 ≤ i ≤ h, 1 ≤ j ≤ v if
X(i, j) is defined then (i, j) belongs to the set of domain
of X, otherwise (i, j) belongs to the set of hole of X.
If X is a partial array of size (h, v) over Σ, then the
companion of X represented by Xp is the total function,
Xp ∶ {(1,1),⋯⋯(h, v)} → Σp defined by

Xp(i, j) = ⎧⎪⎪⎨⎪⎪⎩
X(i, j) if (i, j) ∈ domain(X),

◊ if (i, j) ∈ hole(X).

Σ∗∗p denotes the collection of all finite partial arrays over
Σ. For any partial array X ∈ Σ∗∗p , Br,c(X) is the set
of all partial subarrays of X of size (r, c). A tile is a
partial subarray of size (2,2). A domino is a partial sub-
array of size (1, c) or (r,1). A domino of size (1, c) is
called a horizontal domino and a domino of size (r,1)
is called a vertical domino. The row-column catenation
of any two local partial languages L1, L2 ⊆ Σ∗p is called
a partial array language L = L1 ⊕ L2 ⊆ Σ∗∗p such that
the strings corresponding to rows belong to L1 and the
strings corresponding to columns belong to L2. A non-
deterministic (deterministic) finite partial automata is a
quintuple M = (Sp,Σp, δ, S0, Sf) where

� Sp = S ∪ Sh and S ∩ Sh = ∅ in which S be the finite
collection of states and Sh be the finite collection of
hole states,

� Σp be the input alphabet,

� S0 ⊂ Sp be the collection of initial states,

� Sf ⊆ Sp be the collection of final states,

� δ ∶ Sp ×Σp → 2Sp (δ ∶ Sp ×Σp → Sp) be the transition
function.

For all a ∈ Σ and s, sh ∈ Sp,

1. δ(s, a) = A for some A ⊂ S

2. δ(s,◊) = B for some B ⊂ Sh

3. δ(sh,◊) = C for some C ⊂ Sh.

A finite partial automata M = (Sp,Σp, δ, S0, Sf) is said
to be finite partial local automata if for every

� a ∈ Σ, the set {δ(s, a) ∶ s ∈ Sp} contains atmost one
element.

� ◊ ∈ Σp, the set {δ(s,◊) ∶ s ∈ Sp} contains atmost one
element from Sh.

3 Partial array Tiling Systems

In this section we examine some of the characteristics of
the class of partial array tiling system in terms of closure
under various operations.

Definition 1. [18] Let Γp = Γp ∪ {◊} be a finite alphabet.
A partial array language L ⊆ Γ∗∗p is said to be a local

partial array language if there exists a set of tiles θ ⊆ Γ2×2
p

such that
L = {X ∈ Γ∗∗p ∶ B22(X̂) ⊆ θ} .

In this case, we write L = L(θ).
Definition 2. [18] A partial array tiling system is a four
tuple PT = (Σp,Γp, θ, ψ) where

� Σp,Γp are two finite alphabets

� θ is finite set of tiles over the alphabet Σp ∪ {#}
� ψ ∶ Γp → Σp is a projection.

A partial array tiling system recognizes the partial array
language over Σp as L = ψ(L′) where L′ = L(θ) is the
local partial array language over Γp with the set of tiles
θ.

Theorem 1. The class of partial array language recog-
nized by partial array tiling system is closed under pro-
jection.

Proof. Consider the partial array language L1 ⊆ Σ∗∗p1
and

L2 ⊆ Σ∗∗p2
such that L2 = δ(L1) where δ ∶ Σp1 → Σp2 . We

have to show that, if partial array tiling system recognizes
L1 then partial array tiling system recognizes L2. If L1

is generated by PT1 = (Σp1 ,Γp, θ, ψ1) then there exists a
local partial array language, L′ ⊆ Γ∗∗p and a projection
ψ ∶ Γp → Σp1 such that L1 = ψ1(L′). Now

δ(L1) = δ(ψ1(L′))
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= (δ ○ ψ1)(L′)
= ψ2(L′))

where ψ2 = (δ ○ψ1) ∶ Γp → Σp2 . Hence L2 is generated by
PT2 = (Σp2 ,Γp, θ, ψ2).
Theorem 2. The class of partial array language recog-
nized by partial array tiling system is closed under row
and column concatenation operations.

Proof. Consider the partial array language L1, L2 ⊆ Σ∗∗p .
Let the column concatenation of L1 and L2 be de-
noted as L = L1 � L2. Let PT1 = (Σp,Γp1 , θ1, ψ1) and
PT2 = (Σp,Γp2 , θ2, ψ2) be the partial array tiling sys-
tem such that L1 = L(PT1) and L2 = L(PT2). Consider
PT = (Σp,Γp, θ, ψ) where Γp = Γp1 ∪Γp2 , θ = θ1∪θ2. With-
out loss of assumption let Γp1

and Γp2 are disconnected.
Let Γp = Γp1 ∪ Γp2 . Now we define the set of tiles

θ′1 = { c1 c2
d1 d2

∶ c1 c2
d1 d2

∈ θ1 and c2, d2 ∉ #}

θ′2 = { e1 e2
f1 f2

∶ e1 e2
f1 f2

∈ θ2 and e1, f1 ∉ #}

θ′3 = { c1 e1
# #

,
# #
c2 e2

,
d1 f1
d2 f2

∶
c1 #
# #

,
# #
c2 #

,
d1 #
d2 #

∈ θ1,
# e1
# #

,
# #
# e2

,
# f1
# f2

∈ θ2.}
Then θ = θ′1 ∪ θ′2 ∪ θ′3 and the projection ψ ∶ Γp → Σp is
defined as

ψ(a) = ⎧⎪⎪⎨⎪⎪⎩
ψ1(a) if a ∈ Γp1

ψ2(a) if a ∈ Γp2

then L = L1�L2. Similarly we can obtain a tiling system
for the row concatenation L = L1 ⊖ L2.

Theorem 3. The class of partial array language recog-
nized by partial array tiling system is closed under union
and intersection.

Proof. Consider the partial array language L1, L2 ⊆ Σ∗∗p .
Let PT1 = (Σp,Γp1 , θ1, ψ1) and PT2 = (Σp,Γp2 , θ2, ψ2) be
the partial array tiling system such that L1 = L(PT1)
and L2 = L(PT2). Consider PT = (Σp,Γp, θ, ψ) where
Γp = Γp1 ∪Γp2 , θ = θ1 ∪ θ2 and the projection ψ ∶ Γp → Σp

is defined as

ψ(a) = ⎧⎪⎪⎨⎪⎪⎩
ψ1(a) if a ∈ Γp1

ψ2(a) if a ∈ Γp2

then L = L(PT1) ∪ L(PT2). Therefore L = L1 ∪ L2 is
generated by PT = (Σp,Γp, θ, ψ).

To prove that the class of partial array language rec-
ognized by partial array tiling system is closed under
intersection we have to construct partial array tiling
system for L = L1 ∩ L2. Consider Γp ⊆ Γp1 × Γp2 such
that (c1, d1) ∈ Γp ⇔ ψ1(c1) = ψ2(d1). Then θ = θ1 ∩ θ2 is
defined as

θ = { (c1, c2) (e1, e2)(d1, d2) (f1, f2) ∶ c1 e1
d1 f1

∈ θ1,
c2 e2
d2 f2

∈ θ2}
and the projection ψ ∶ Γp → Σp is defined as ψ((c1, d1)) =
ψ(c1) = ψ(d1) for all (c1, d1) ∈ Γp1 ×Γp2 then L = L(PT1)∩
L(PT2). Therefore L = L1 ∩ L2 is recognizable by partial
array tiling system PT = (Σp,Γp, θ, ψ).
Definition 3. Let L be a local partial array language
over Γp and L = L(θ) for some finite θ ⊆ Γ2×2

p . θ is said

to be minimal if L = L(θ′) for some finite θ′ ⊆ Γ2×2
p such

that θ ⊆ θ′.

Theorem 4. Let L be a local partial array language then
there is a minimal set θ such that L = L(θ).
Proof. Let X be a partial array language over Γp. For
i = 1,2,⋯, n, θi be a subsets of θ ⊆ Γ2×2

p and L = L(θi). If
θ = θ1 ∩ θ2⋯ ∩ θn then for i = 1,2,⋯, n, B22(X̂) ⊆ θi such
that B22(X̂) ⊆ θ. Thus L = L(θ) and θ ⊆ θi.

4 Partial array domino Systems

In this section, we define new class of partial array lan-
guages called hv−local partial array languages.

Definition 4. A partial array language L ⊆ Γ∗∗p is said to
be hv−local partial array language if there exists a system
S = (Δ,Δ◊) where Δ,Δ◊ are the finite sets of dominoes
over the alphabets Γ∪ {#} and Γp ∪ {#} respectively such
that

L = {X ∈ Γ∗∗p ∶ B1,2(X̂) ∪ B2,1(X̂) ⊆ S} .
In this case, we write L = L(S).
Example 1. Consider the system S = (Δ,Δ◊) over Γp ={a, b} ∪ {◊} with

Δ = { # a , # # , a a , b b ,

b # ,
a
#

,
#
#

,
a
a

,
a
b

,
b
b

,
#
b

},

Δ◊ = { # ◊ , ◊ # , a ◊ , ◊ b ,

◊
#

,
◊
a

,
b◊ ,

#◊ }.
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Then

L = L(S) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

◊ b
a ◊,

◊ b b
a ◊ b
a a ◊,

◊ b b b
a ◊ b b
a a ◊ b
a a a ◊

, ⋯⋯
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Hence L is hv−local partial array language.

Theorem 5. Every hv−local partial array language is a
local partial array language.

Proof. Let L ⊆ Γ∗∗p be a hv−local partial array language.
Then there exists a system S = (Δ,Δ◊) where Δ,Δ◊
are the finite sets of dominoes such that L = {X ∈ Γ∗∗p ∶
B1,2(X̂) ∪ B2,1(X̂) ⊆ S}. We construct a set of squares
θ such that θ = {p ∈ (Γp ∪ {#})2,2 ∶ B1,2(p) ∪ B2,1(p) ⊆
S}. Let L′ = {X ∈ Γ∗∗p ∶ B2,2(X̂) ⊆ θ}. Therefore L′ is
local partial array language. Let the partial array X ∈ L′
such that B1,2(X̂) ⊆ B1,2(B2,2(X̂)) ⊆ B1,2(θ) ⊆ S and

B2,1(X̂) ⊆ B2,1(B2,2(X̂)) ⊆ B2,1(θ) ⊆ S where B2,2(X̂) ⊆
θ. Hence X ∈ L. Conversely, X ∈ L and x ∈ B2,2(X̂).
Then B1,2(x) ⊆ B1,2(X̂) ⊆ S and B2,1(x) ⊆ B2,1(X̂) ⊆ S.
Therefore x ∈ θ and X ∈ L′. Therefore L is local partial
array language.

Example 2. Consider the hv−local partial array lan-
guage from Example 1

L =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

◊ b
a ◊,

◊ b b
a ◊ b
a a ◊,

◊ b b b
a ◊ b b
a a ◊ b
a a a ◊

, ⋯⋯
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Then L is local partial array language with

θ = { # a
# #,

# ◊
# a,

# a
# a,

# #
# ◊, # #◊ b,

# #
b b,

# #
b #,

b #
b #,

b #◊ #,
a a
a a,

a ◊
a a,

◊ b
a ◊, b b◊ b,

b b
b b

}.
Remark 1. If L is local partial array language then L
need not be hv−local partial array language.

Example 3. Consider the local partial array language
over Γp = {a} ∪ {◊}

L =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

◊ a
a ◊,

◊ a a
a ◊ a
a a ◊,

◊ a a a
a ◊ a a
a a ◊ a
a a a ◊

, ⋯⋯
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

with

θ = { # a
# #,

# ◊
# a,

# a
# a,

# #
# ◊, a a

a a,
a ◊
# #,

a ◊
a a,

◊ a
a ◊, a #◊ #,

a #
a #,

# #
a #,

# #
a a,

# #◊ a,
a a
# #

}.

Then L is not hv−local partial array language correspond-
ing to the system S = (Δ,Δ◊) with

Δ = { # a , # # , a # , a a ,

a
#

,
#
#

,
a
a

,
#
a

},

Δ◊ = { # ◊ , ◊ # , a ◊ , ◊ a ,

◊
#

,
◊
a

,
#◊ ,

a◊ }
because if it is hv−local partial array language then an
array in which all the entries are a will be in L.

Theorem 6. Every hv−local partial array language is
equal to the row-column concatenation of any two local
partial languages.

Proof. Consider hv−local partial array language L so that
L = L(S) where S = (Δ,Δ◊). Consider the local systems(I1, C1,H1, J1) and (I2, C2,H2, J2) recognizes the local
partial languages L1 and L2 respectively such that L =
L1 ⊕ L2 ∈ Lp ⊕ Lp where

I1 = {a ∶ # a ∈ Δ, a ∈ Γp}
C1 = {ab ∶ a b ∈ Δ, a, b ∈ Γ}

H1 = {a◊ ∶ a ◊ ∈ Δ◊, ◊a ∶ ◊ a ∈ Δ◊}
J1 = {a ∶ a # ∈ Δ, a ∈ Γp}

and

I2 = {a ∶ a
#

∈ Δ, a ∈ Γp}

C2 = {ab ∶ b
a

∈ Δ, a, b ∈ Γ}

H2 = {a◊ ∶ ◊
a

∈ Δ◊, ◊a ∶ a◊ ∈ Δ◊}

J2 = {a ∶ #
a

∈ Δ, a ∈ Γp} .

Conversely, consider L ∈ Lp ⊕ Lp then L = L1 ⊕ L2. Let

Δ1 = { # a ∶ a ∶∈ I1}
Δ2 = { a b ∶ ab ∈ C1}
Δ3 = { a # ∶ a ∈ J1}

Δ4 = { a
#

∶ a ∈ I2}

Δ5 = { b
a

∶ ab ∈ C2}
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Δ6 = { #
a

∶ a ∈ J2}
Δ◊1 = { a ◊ ∶ a◊ ∈ H1, ◊ a ∶ ◊a ∈ H1}

Δ◊2 = { ◊
a

∶ a◊ ∈ H2,
a◊ ∶ ◊a ∈ H2}

such that Δ = (Δ1 ∪ Δ2 ∪ Δ3 ∪ Δ4 ∪ Δ5 ∪ Δ6) and Δ◊ =(Δ◊1 ∪ Δ◊2). Therefore L = L(S) where S = (Δ,Δ◊).
Hence L is hv−local partial array language.

Example 4. Consider the hv−local partial array lan-
guage

L =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a ◊◊ b
,

a a ◊
a ◊ b◊ b b

,

a a a ◊
a a ◊ b
a ◊ b b◊ b b b

, ⋯⋯
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

recognizable by the system S = (Δ,Δ◊) with

Δ = { # # , # a , b b , a a ,

b # ,
b
#

,
#
a

,
a
a

,
b
b

}

Δ◊ = { # ◊ , ◊ b , a ◊ , ◊ # ,

◊
#

,
#◊ ,

a◊ ,
◊
b

}.
Let I1 = {◊, a}, C1 = {aa, bb}, H1 = {a◊,◊b}, J1 = {◊, b}
and I2 = {◊, b}, C2 = {aa, bb}, H2 = {◊a, b◊}, J1 = {◊, a}.
Let the local partial languages L1 and L2 be recognizable
by (I1, C1,H1, J1) and (I2, C2,H2, J2) respectively such
that L1 = {a∗◊b∗} and L2 = {b∗◊a∗}. Then L = L1 ⊕ L2.

Definition 5. A partial array domino system is a quin-
tuple PD = (Σp,Γp,Δ,Δ◊, ψ) where

� Σp,Γp are two finite alphabets

� Δ,Δ◊ are two finite sets of dominoes over Σp ∪ {#}
� ψ ∶ Γp → Σp is a projection.

A partial array domino system recognizes a partial array
language over Σp as L = ψ(L′) where L′ = L(S) is the
hv−local partial array language over Γp with the system
S = (Δ,Δ◊).
Theorem 7. Let L be a local partial array language over
Σp. Then there exists hv−local partial array language L′

over Γp = Γ ∪ {◊} and a projection ψ ∶ Γp → Σp such that
L = ψ(L′).

Proof. Consider the local partial array language L which
is generated by a finite set of tiles over Σp ∪ {#}. There-
fore L = L(θ). Let Γp = θ ⊆ (Σp ∪ {#})2×2 and

Δ1 = { # c1 c1 c2
# # # #

∶ # c1
# #

,
c1 c2
# #

∈ Γp}

Δ2 = { # c2 c2 c4
# c1 c1 c3

∶ # c2
# c1

,
c2 c4
c1 c3

∈ Γp}

Δ3 = { # # # #
# c2 c2 c3

∶ # #
# c2

,
# #
c2 c3

∈ Γp}

Δ4 = { c1 c2 c2 c5
c3 c4 c4 c6

∶ c1 c2
c3 c4

,
c2 c5
c4 c6

∈ Γp}

Δ5 =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

# #
# c1
# c1
# c2

∶ # #
# c1

,
# c1
# c2

∈ Γp

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Δ6 =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

# #
c1 c2
c1 c2
c3 c4

∶ # #
c1 c2

,
c1 c2
c3 c4

∈ Γp

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Δ7 =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

# #
c1 #
c1 #
c2 #

∶ # #
c1 #

,
c1 #
c2 #

∈ Γp

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Δ8 =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c1 c2
c3 c4
c3 c4
c5 c6

∶ c1 c2
c3 c4

,
c3 c4
c5 c6

∈ Γp

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Δ◊1 = { # ◊ ◊ c2

# # # #
∶ # ◊

# #
,

◊ c2
# #

∈ Γp}

Δ◊2 = { # c2 c2 c4
# ◊ ◊ c3

∶ # c2
# ◊ ,

c2 c4◊ c3
∈ Γp}

Δ◊3 = { # # # #
# ◊ ◊ c3

∶ # #
# ◊ ,

# #◊ c3
∈ Γp}

Δ◊4 =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

# #
# ◊
# ◊
# c2

∶ # #
# ◊ ,

# ◊
# c2

∈ Γp

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Δ◊5 =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

# #
c1 ◊
c1 ◊
c3 c4

∶ # #
c1 ◊ ,

c1 ◊
c3 c4

∈ Γp

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Δ◊6 =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

# #◊ #◊ #
c2 #

∶ # #◊ #
,

◊ #
c2 #

∈ Γp

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Here Δ = (Δ1 ∪ Δ2 ∪ Δ3 ∪ Δ4 ∪ Δ5 ∪ Δ6 ∪ Δ7 ∪ Δ8) and
Δ◊ = (Δ◊1 ∪ Δ◊2 ∪ Δ◊3 ∪ Δ◊4 ∪ Δ◊5 ∪ Δ◊6). Let L′ =
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L(S) with S = (Δ,Δ◊) is hv−local partial array lan-
guage over Γp. Define a mapping ψ ∶ Γp → Σp by

ψ ( c1 c2
c3 c4

) = c1. Therefore L = ψ(L′).
Theorem 8. The class of partial array language recog-
nizable by partial array domino system is equal to the
class of partial array language recognizable by partial ar-
ray tiling system.

Proof. This follows from Theorem 5 and Theorem 7.

Definition 6. Let L be an hv−local partial array lan-
guage over Γp and L = L(Δ) for some finite set Δ ⊆
Γp ∪ #. Δ is said to be minimal if L = L(Δ′) for some
finite set Δ ⊆ Γp ∪ # then Δ ⊆ Δ′.

Theorem 9. Let L be an hv−local partial array language
then there is a minimal set Δ such that L = L(Δ).

Proof. Let X be a partial array language over Γp. For
i = 1,2,⋯, n, Δi be a subsets of Δ ⊆ Γ2×2

p and L = L(Δi).
If Δ = Δ1 ∩ Δ2⋯ ∩ Δn then for i = 1,2,⋯, n, B1,2(X̂) ∪
B2,1(X̂) ⊆ Δi such that B1,2(X̂) ∪ B2,1(X̂) ⊆ Δ. Thus
L = L(Δ) and Δ ⊆ Δi.

5 Automata Characterization of hv−local
partial array languages

Definition 7. [18] A non-deterministic (deterministic)
finite online tesselation h-automaton is a quintuple M =(Sp,Σp, δ, S0, Sf) where

� Sp = S ∪ Sh and S ∩ Sh = ∅ in which S be the finite
collection of states and Sh be the finite collection of
hole states,

� Σp be the input alphabet,

� S0 ⊂ Sp be the collection of initial states,

� Sf ⊆ Sp be the collection of final states,

� δ ∶ Sp × Sp × Σp → 2Sp (δ ∶ Sp × Sp × Σp → Sp) be the
transition function.

For all a ∈ Σ and s, sh ∈ Sp,

1. δ(s, s, a) = A for some A ⊂ S

2. δ(s, s,◊) = B for some B ⊂ Sh

3. δ(sh, sh, a) = C for some C ⊂ S

4. δ(sh, sh,◊) = D for some D ⊂ Sh

A computation by M on an ωω−partial array X where

X̂ =
# # # ⋅ # #
# am1 am2 ⋅ amn #⋮ ⋮ ⋮ ⋮ ⋮ ⋮
# a21 a22 ⋅ a2n #
# a11 a12 ⋅ a1n #
# # # ⋅ # #

with aij ∈ Σp and # ∉ Σp is consummate as follows:

When t = 0, s0 ∈ S0 be the initial state corresponding to
all positions of X̂ having #. The state corresponding to
each position (i, j) by δ subject to the states correspond-
ing to the positions (i − 1, j), (i, j − 1) and the symbol
aij. If aij ∈ Σ then gij be the state corresponding to
the position (i, j) and if aij = ◊ then hij be the state
corresponding to the position (i, j). When t = 1, a state
from δ(s0, s0, a11) corresponding to the position (1,1)
holding a11. If a11 ∈ Σ then the state g11 corresponding
to the position (1,1) and if a11 = ◊ then the state h11

corresponding to the position (1,1). When t = 2, states
corresponding concurrently to the positions (2,1) and(1,2) possessing a21 and a12.

Case (i) ∶
If the state g11 corresponds to the position (1,1) then
the state corresponding to the position (2,1) belongs
to δ(s0, g11, a21) and to the position (1,2) belongs to
δ(g11, s0, a12). There are given as follows:

� δ(s0, g11, a21) = g21 if a21 ∈ Σ
� δ(g11, s0, a12) = g12 if a12 ∈ Σ
� δ(s0, g11,◊) = h21

� δ(g11, s0,◊) = h12.

Case (ii) ∶
If the state h11 corresponds to the position (1,1) then
the state corresponding to the position (2,1) belongs
to δ(s0, h11, a21) and to the position (1,2) belongs to
δ(h11, s0, a12). There are given as follows:

� δ(s0, h11, a21) = g21 if a21 ∈ Σ
� δ(h11, s0, a12) = g12 if a12 ∈ Σ
� δ(s0, h11,◊) = h21

� δ(h11, s0,◊) = h12.

If X ∈ Σωω
p , the sequence Σ = s11s12s21s31s22s13⋯smn

of states from Sp is said to be a run of M and it is an
element of Sω

p . The collection of runs is represented as
r(Σ). The language of partial arrays recognized by M is
denoted by L(M).
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Now we introduce online tesselation h-local automaton.

Definition 8. A online tesselation h-automaton M =(Sp,Σp, δ, S0, Sf) is said to be online tesselation h-local
automaton if for every

� a ∈ Σ, the set {δ(s1, s2, a) ∶ s1, s2 ∈ Sp} contains
atmost one element.

� ◊ ∈ Σp, the set {δ(s1, s2,◊) ∶ s1, s2 ∈ Sp} contains
atmost one element from Sh.

Theorem 10. If L is an hv-local partial array language
then L is recognized by online tesselation h-local automa-
ton.

Proof. Let L be an hv-local partial array language. Then
L = L1 ⊕ L2 where L1 and L2 are local partial lan-
guages. Let L1 and L2 be recognized by local partial
finite automata M1 = (Sp1 ,Σp, δ1, S

′
0, Sf1) and M2 =(Sp2 ,Σp, δ2, S

′
0, Sf2) respectively. Consider online tesse-

lation h-local automata M = (Sp,Σp, δ, S0, Sf) where

� Sp = Sp1 × Sp2

� S0 = (S′0, S′′0 )
� Sf = Sf1 × Sf2

and the transition function δ is defined as

� δ((p1, q1), (r1, s1), a) = (δ1(p1, a), δ2(s1, a))
� δ((p1, q1), (r1, s1),◊) = (δ1(p1,◊), δ2(s1,◊)).

Since M1 and M2 are local partial automata then{δ1(p1, a) ∶ p1 ∈ Sp1}, {δ1(p1,◊) ∶ p1 ∈ Sp1} and{δ1(s1, a) ∶ s1 ∈ Sp2}, {δ1(s1,◊) ∶ s1 ∈ Sp2} has
atmost one element such that {δ((p1, q1), (r1, s1), a) ∶(p1, q1), (r1, s1) ∈ Sp} and {δ((p1, q1), (r1, s1),◊) ∶(p1, q1), (r1, s1) ∈ Sp} has atmost one element. There-
fore L is recognized by online tesselation h-local au-
tomata.

Theorem 11. If L is recognized by online tesselation h-
local automata then L is hv-local partial array language.

Proof. Let L is recognized by online tesselation h-local
automata M = (Sp,Σp, δ, S0, Sf). Consider the partial
finite automata M1 = (Sp1 ,Σp, δ1, S0, Sf) and M2 =(Sp2 ,Σp, δ2, S0, Sf) where δ1(p, a) = δ(p, q, a), δ1(p,◊) =
δ(p, q,◊) for some q ∈ Sp and δ2(q, a) = δ(p, q, a),
δ2(q,◊) = δ(p, q,◊) for some p ∈ Sp. Since M is online
tesselation h-local automata then M1 and M2 are also
local partial finite automata. If the languages L1 and L2

recognized by M1 and M2 then L1 and L2 are local par-
tial languages and L = L1 ⊕L2. Therefore by Theorem 6,
L is hv-local partial array language.
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