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Abstract—Ontology is an effective tool for processing concept
semantics, and in the ontology learning algorithm, all the
semantic information of each vertex is expressed by a multi-
dimensional vector. The essence of ontology learning algorithm
is to obtain ontology function in terms of ontology data samples,
so as to map each concept in ontology to a real number.
Stability is the foundation of the ontology learning algorithm
and the guarantee of its generalization ability. This article
relaxes the original uniformly stable hypothesis and proposes
the concept of locally ontology relaxed stability. And under the
setting of reproducing kernel Hilbert space, the upper bound of
stability is verified. Under the framework of random ontology
algorithm, the original concept is redefined. The error bounds in
general, the reproducing kernel Hilbert space and the stochastic
ontology learning algorithm frameworks are obtained in terms
of their respective stability definitions.

Index Terms—ontology, similarity computing, stability, gen-
eralization bound.

I. INTRODUCTION

AS a semantic tool, ontology expresses the interrelation-
ships between concepts in light of graph structures. It

uses vertices to represent concepts, and the edges between
vertices to represent the relationship between concepts. In the
field of data representation, the information corresponding to
a certain concept is denoted by a vector, so that the ontology
function can be described as a dimensionality reduction
operator that maps a high-dimensional space vector to a low-
dimensional space. The so-called ontology learning is used
to obtain the optimal ontology function in view of learning
ontology sample points. Due to its powerful representation
ability, ontology has a wide range of applications in various
engineering fields (several related literatures can be referred
to Stratogiannis et al. [1], Epstein et al. [2], Gheisari et al.
[3], Selvalakshmi et al. [4], Mavracic et al. [5], Goncalves
et al. [6], Maitra et al. [7], Zhu et al. [8] and [9], and Lan
et al. [10] and [11]).
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In recent years, ontology algorithm and applications have
raised great attention among scientists and engineers. Son
and Lee [12] separated 3D geometry into several parts
by means of PointNet and constructed local ontology in
light of summarizing the features of each part. Patel et al.
[13] provided ontology to represent semantic information
about the impact of Covid-19 on the banking sector of
India. Xue and Chen [14] established the semantic links
between heterogenous biomedical concepts called biomedical
ontology matching. Lakzaei and Shamsfard [15] suggested a
new trick to automatically obtain an OWL ontology using
a relational database. Ratnaike et al. [16] collated 26348
human phenotype ontology terms to build the MitoPhen
database. Rahman and Hussain [17] introduced a light-weight
dynamic ontology in view of the most important concepts
and clustering approach. Perea-Romero et al. [18] improved
clinical and molecular SRDs diagnosis in terms of structuring
phenotypic ontology and next-generation sequencing (NGS)-
based pipelines. Bao et al. [19] determined the ontology-
based modeling trick for assembly resource and process.
Chen et al. [20] developed an ontology-based Bayesian
network framework to express causal relationships between
design parameters or process parameters and structure prop-
erties or mechanical properties. Belabbes et al. [21] consid-
ered the problem of dealing with inconsistency in lightweight
ontologies.

The ontology learning algorithms which combine ontology
and machine learning techniques have attracted attention
from both theoretical analysis and engineering applications,
especially the stability analysis of ontology learning tricks.
Wu et al. [22] raised disequilibrium multi dividing ontology
learning algorithm. Gao et al. [23] determined generalization
bounds and uniform bounds for multi-dividing ontology al-
gorithms with convex ontology loss function. Gao et al. [24]
suggested partial multi-dividing ontology learning approach.
Gao et al. [25] introduced ontology geometry distance com-
putation in terms of deep learning trick. Gao et al. [26] raised
a new ontology learning algorithm using discrete dynamics
sparse calculation method.

In the process of ontology learning, we usually divide the
ontology dataset into training set and test set. The training
set is the ontology sample set, which is used to obtain
the optimal ontology function, and the test set is used to
test the quality of the ontology function. In order to make
the learned ontology function generalized, that is, to show
excellent performance on the test set, the ontology learning
algorithm must be required to have a certain stability. That
is, changing a small number of ontology samples will lead
to significant changes in the final learned ontology function.

Ontology algorithm stability is usually expressed in two
ways: loss stability and error stability. However, this setting
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often requires some preconditions, such as each ontology
sample point is equally important and treated without dis-
crimination. And the weakness of this ontology stability
framework is that it can only give global stability and cannot
reflect the local stability of a certain part of the vertices.
Based on the weakness of the original ontology theoretical
framework, the main contribution of this work is to study the
ontology stability in relaxed setting. New classes of ontology
stability are defined and the corresponding generalization
bounds are deduced.

The rest of the paper is organized as follows: the notations,
terminologies and new definitions are explained in the next
section, and then the main results and proofs are manifested
in the third section. Finally, we give the conclusion and future
work.

II. SETTING

Let S = {z1, z2, · · · , zn} be the ontology training set,
where zi is independent and identically distributed which is
drawn from a distribution D on the ontology space Z. In
supervised ontology learning setting, Z = V × Y , where V
and Y are input space and label space respectively; while
in unsupervised ontology learning setting, Z = V . For an
ontology function class F , a learning algorithm A : Zn → F
gets an ontology function AS → F by means of ontology
training set S. For a given ontology training set S with n
ontology vertices, let Si = {z1, · · · , zi−1, z

′

i, zi+1, · · · , zn}
be the new ontology training set by replacing the i-th
element from S where 1 ≤ i ≤ n, and S\i,j =
{z1, · · · , zi−1, , zi+1, · · · , zj−1, , zj+1, · · · , zn} be the new
ontology training set by deleting the i-th and j-th elements
from S where 1 ≤ i < j ≤ n. For any ontology input z,
we consider an ontology loss function l(f, z) with notation
f = AS .

Let βn(·, ·, ·) be functions with n ≥ 3 that each maps any
z1, z2, z3 ∈ Z to a positive score. Now, we introduce PO
ontology relaxed stability and LTO ontology relaxed stability
as follows, where PO stands for “replace one” and LTO
stands for “leave two out”.

Definition 1: (Locally PO Ontology Relaxed Stability)
An ontology algorithm A has locally PO ontology relaxed
stability βn(·, ·, ·) with respect to the ontology loss function
l if, for any n, the inequality

|l(AS , z)− l(ASi , z)| ≤ βn(zi, z
′

i, z)

establishes for any S ∈ Zn, 1 ≤ i ≤ n and z
′

i, z ∈ Z.
Definition 2: (Locally LTO Ontology Relaxed Stability)

An ontology algorithm A has locally LTO ontology relaxed
stability βn(·, ·, ·) with respect to the ontology loss function
l if, for any n, the inequality

|l(AS , z)− l(AS\i,j , z)| ≤ βn(zi, zj , z)

establishes for any S ∈ Zn, 1 ≤ i < j ≤ n and z ∈ Z.
Compare Definition 2 with uniform LTO ontology stability
introduced by Wu et al. [27] which is stated as

|l(AS , z)− l(AS\i,j , z)| ≤ βLTOn

holds for any S ∈ Zn, 1 ≤ i < j ≤ n and
z ∈ Z. The relationship between them is that βLTOn =
supzi,zj ,z βn(zi, zj , z), and it also holds for the relationship

between standard PO uniform ontology stability and locally
PO ontology relaxed stability introduced in Definition 1.

Consider that the ontology function f which is parame-
terized by θ (i.e., f = fθ) and in this case the ontology
loss l(f, z) can be re-written as l(θ, z). The aim of ontology
learning algorithm A is to output fθ̂ such that

θ̂ =
1

n
argminθ∈Θ

n∑
i=1

l(θ, zi).

By setting θ̂\i,j = 1
nargminθ∈Θ

∑
k 6=i,k 6=j l(θ, zk), we have

the following approximation:

βn(zi, zj , z) = |l(θ̂, z)− θ̂\i,j |

≈ 1

n
| 5θ l(θ̂, z)5θ H−1

θ̂
l(θ̂, zi)|,

where Hθ̂ = 1
n

∑n
i=152l(θ̂, zi) is the Hessian matrix.

In what follows, we always keep the following hypoth-
esis: for the function βn(·, ·, ·), for any z1, z2, z3 ∈ Z,
βn(z1, z2, z3) = β(z1,z2,z3)

n for several function β(·, ·, ·)
which has nothing to do with n. Furthermore, β(·, ·, z) is
the function of its first and second parameters which are L-
Lipchitz continuous for arbitrary z ∈ Z and the ontology loss
function, and there is positive Mβ such that β(·, ·, ·) ≤Mβ .

In fact, the assumption βn(z1, z2, z3) = β(z1,z2,z3)
n equals

to the assumption that supn nβn(z1, z2, z3) < +∞ for any
z1, z2, z3 ∈ Z. The boundedness hypothesis of β(·, ·, ·)
establishes if β is a continuous function combined with the
finiteness of Z. In what follows, we denote

Ξ(AS) = Ez∼Dl(AS , z)−
1

n

n∑
i=1

l(AS , zi),

where Ez∼Dl(AS , z) heavily relies on AS .

III. MAIN RESULTS AND PROOFS

In this section, we present our main theoretical analysis
and specific proofs. The content of this section is organized
as follows: first, we give some preparatory lemmas and
conclusions to prepare for the proof of the main theorem;
then, in the second subsection, we yield the main conclusions
and proofs; in the following two parts, we discuss the
local ontology relaxed stability and the generalized bound
analysis of the ontology mathematical framework under the
conditions of reproducing kernel Hilbert space and the spe-
cific ontology execution algorithm using stochastic gradient
descent.

A. Useful lemmas

Set

R =
1

n

n∑
i=1

l(AS , zi),

Ri =
1

n

n∑
j=1

l(ASi , zj),

R\i,j =
1

n

n∑
k=1

l(AS\i,j , zk).

In order to prove our main results in the next subsection, we
need the following lemmas.
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Lemma 3: Assume that an ontology algorithm A with
locally PO ontology relaxed stability βn(·, ·, ·) with respect
to the ontology loss function l. For arbitrary ι > 0, let

M = 2(Mβ + sup
z∈Z

Ezi,z′iβ(zi, z
′

i, z) + 2Ml)

and
M̃ = 2(sup

z∈Z
Ezi,z′iβ(zi, z

′

i, z) + ι+ 2Ml).

There exists a positive constant C ′ determined by the Lip-
chitz constant L and the dimension d of z, suppose ε is small
enough and n is large enough to satisfy

ι2

32M2
β

− log nC ′

n
≥ ε

2M̃2
(
4εM2

M̃2
+ 4M − ε), (1)

we have

P(Ez∼D[l(AS , z)] ≥
1

n

n∑
i=1

l(AS , zi) + ε

+
2 supz∈Z Ezi,z′iβ(zi, z

′

i, z)

n
) ≤ 2e−

nε2

2M̃2 .

Lemma 4: Assume that an ontology algorithm A with
locally LTO ontology relaxed stability βn(·, ·, ·) with respect
to the ontology loss function l. For arbitrary ι > 0, let

M = 2(Mβ + sup
z∈Z

Ezi,zjβ(zi, zj , z) + 2Ml)

and
M̃ = 2(sup

z∈Z
Ezi,zjβ(zi, zj , z) + ι+ 2Ml).

There exists a positive constant C ′ determined by the Lip-
chitz constant L and the dimension d of z, suppose ε is small
enough and n is large enough to satisfy

ι2

32M2
β

− log nC ′

n
≥ ε

2M̃2
(
4εM2

M̃2
+ 4M − ε),

we have

P(Ez∼D[l(AS , z)] ≥
1

n

n∑
i=1

l(AS , zi) + ε

+
2 supz∈Z Ezi,zjβ(zi, zj , z)

n
) ≤ 2e−

nε2

2M̃2 .

Here, we only prove the LTO part, and the proof of Lemma
3 can be processed in the similar way.
Proof of Lemma 4. Note that

|R−R\i,j | ≤ 1

n

∑
k 6=i,k 6=j

β(zi, zj , zk)

n
+

2Ml

n
,

%(S) =
n∑
i=1

l(AS , zi),

%(S\i,j) =
n∑

k 6=i,k 6=j

l(AS\i,j , zk).

Let Fm be the σ-field obtained from z1, · · · , zm, and set

ςm = E[%(S)|Fm]− E[%(S)|Fm−2],

Φ−i,j = {S| sup
zi,zj

|
∑

k 6=i,k 6=j

β(zi, zj , zk)

n

−Ez∼Dβ(zi, zj , z)| ≤ ι}.

Let

ς1m = E[%(S)IΦ−i,j |Fm]− E[%(S)IΦ−i,j |Fm−2],

ς2m = E[%(S)IΦc−i,j |Fm]− E[%(S)IΦc−i,j |Fm−2].

Then, we get

E[exp{λ
n∑
k=1

ςk}] ≤ 1

2
E[exp{2λ

n∑
k=1

ς1k}] (2)

+
1

2
E[exp{2λ

n∑
k=1

ς2k}].

For estimating the second part of the right hand of the
above inequality, we set

Γ2
k = inf

x
E[%(S)IΦc−i,j |z1, · · · , zk−1, zk = x]

−E[%(S)IΦc−i,j |z1, · · · , zk−1],

Λ2
k = sup

x
E[%(S)IΦc−i,j |z1, · · · , zk−1, zk = x]

−E[%(S)IΦc−i,j |z1, · · · , zk−1].

Clearly, we infer
Γ2
k ≤ ς2k ≤ Λ2

k.

Furthermore,

Λ2
k − Γ2

k

= sup
x

E[%(S)IΦc−i,j |z1, · · · , zk−1, zk = x]

− inf
x

E[%(S)IΦc−i,j |z1, · · · , zk−1, zk = x]

≤ sup
x,y

E[%(S)IΦc−i,j |z1, · · · , zk−1, zk = x]

−E[%(S)IΦc−i,j |z1, · · · , zk−1, zk = y]

= sup
x,y

E[%(S)IΦc−i,j |z1, · · · , zk−1, zk = x]

−E[%(S\i,j)IΦc−i,j |z1, · · · , zk−1, zk = x]

+E[%(S\i,j)IΦc−i,j |z1, · · · , zk−1, zk = x]

−E[%(S\i,j)IΦc−i,j |z1, · · · , zk−1, zk = y]

+E[%(S\i,j)IΦc−i,j |z1, · · · , zk−1, zk = y]

−E[%(S)IΦc−i,j |z1, · · · , zk−1, zk = y].

In terms of |β(·, ·, ·)| ≤Mβ and l(·, ·) ≤Ml, we get

E[(%(S)− %(S\i,j))IΦc−i,j |z1, · · · , zk−1, zk = x]

+E[(%(S)− %(S\i,j))IΦc−i,j |z1, · · · , zk−1, zk = y]

≤ 2(Mβ +Ml)P(Φc−i,j |z1, · · · , zk−1).

In light of

E[%(S\i,j)IΦc−i,j |z1, · · · , zk−1, zk = x]

= E[%(S\i,j)IΦc−i,j |z1, · · · , zk−1, zk = y],

we acquire

Λ2
k − Γ2

k ≤ 2(Mβ +Ml)P(Φc−i,j |z1, · · · , zk−1).

To simplify the notation, set

M = 2(Mβ +Ml),

Υk = P(Φc−i,j |z1, · · · , zk−1).
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Hence,

E[exp{2λ
n∑
k=1

ς2k}]

= E[exp{2λ
n−2∑
k=1

ς2k}E[exp{2λς2n}|Fn−2]]

≤ E[exp{2λ
n−2∑
k=1

ς2k} exp{1

2
λ2M2Υ2

n}].

Assume that for certain constant ζn such that
supi,j Φc−i,j ≤ ζn, then for any k = 1, · · · , n, we
have

P(Υn ≥ c) ≤
ζn
c
.

Therefore,

E[exp{2λ
n−2∑
k=1

ς2k} exp{1

2
λ2M2Υ2

n}]

= E[exp{2λ
n−2∑
k=1

ς2k} exp{1

2
λ2M2Υ2

n}IΥn≥c]

+E[exp{2λ
n−2∑
k=1

ς2k} exp{1

2
λ2M2Υ2

n}IΥn<c]

≤ E[exp{2λ
n−2∑
k=1

ς2k} exp{1

2
λ2M2}IΥn≥c]

+E[exp{2λ
n−2∑
k=1

ς2k} exp{1

2
λ2M2c2}IΥn<c].

On the other hand, note that

E[exp{2λς2n−1}IΥn≥c|Fn−2]

≤ exp{2λM}Ezn−1
[IΥn≥c].

Hence, for given positive λ, and arbitrary k ∈ {1, · · · , n},
we get

E[exp{2λ
n−2∑
k=1

ς2k}IΥn≥c]

≤ exp{2M(k − 1)λ}P(Υn ≥ c)

≤ exp{2M(k − 1)λ}ζn
c
.

Note that

E[exp{2λ
n−2∑
k=1

ς2k} exp{1

2
λ2M2Υ2

n}]

≤ E[exp{2λ
n−2∑
k=1

ς2k} exp{1

2
λ2M2Υ2

n}IΥn≥c]

+E[exp{2λ
n−2∑
k=1

ς2k} exp{1

2
λ2M2Υ2

n}IΥn<c]

and

IΥn<c

= IΥn<c(IΥn≥c + IΥn<c)

= IΥn<cIΥn≥c + IΥn<cIΥn<c(IΥn≥c + IΥn<c)

= · · · .

It implies that

E[exp{2λ
n−2∑
k=1

ς2k}]

≤ exp{1

2
λ2M2c2}+ n

ζn
c

exp{1

2
λM max{1, λM}}.

If ι > 2Mβ

n , then

∪i,jΦc−i,j ⊆ {S| sup
zi,zj∈Z

|
n∑
k=1

β(zi, zj , zk)

n

−Ez∼Dβ(zi, zj , z)| ≥
ι

2
}

and hence

sup
k

P{Φc−i,j} ≤ P{{S| sup
zi,zj∈Z

|
n∑
k=1

β(zi, zj , zk)

n

−Ez∼Dβ(zi, zj , z)| ≥
ι

2
}}.

Using L-Lipschitz assumption, select ε = ι
6L and denote

Π by the ε-net of Z. Then, the following inequality holds
with large possibility:

sup
zi,zj∈Π

| sup
zi,zj∈Z

|
n∑
k=1

β(zi, zj , zk)

n
− Ez∼Dβ(zi, zj , z)| ≥

ι

6
.

For any {zi1 , zj1 , zi2 , zj2} with |zi1 − zi2 | ≤ ι
6L and |zj1 −

zj2 | ≤ ι
6L , we get

| sup
zi1 ,zj1∈Z

|
n∑
k=1

β(zi1 , zj1 , zk)

n
− Ez∼Dβ(zi, zj , z)|

− | sup
zi2 ,zj2∈Z

|
n∑
k=1

β(zi2 , zj2 , zk)

n
− Ez∼Dβ(zi, zj , z)|

≤ ι

3
.

Thus,

P{{S| sup
zi,zj∈Z

|
n∑
k=1

β(zi, zj , zk)

n

−Ez∼Dβ(zi, zj , z)| ≥
ι

2
}}

= eC̃d log(Ldι )e
− nι2

32M2
β

where C̃ is a positive constant, d is the dimension of ontology
data and L is Lipschitz constant.

It concludes that

sup
k

P{Φc−i,j} ≤ ζn = Ce
− nι2

32M2
β

for some positive constants C. In fact, we further have

E[exp{2λ
n−2∑
k=1

ς2k}] ≤ exp{1

2
λ2M2c2}

+
nC

c
e
− nι2

32M2
β exp{1

2
λM max{1, λM}}.

Next, let’s focus on E[exp{2λ
∑n−2
k=1 ς

1
k}] part. Set

Γ1
k = inf

x
E[%(S)IΦ−i,j |z1, · · · , zk−1, zk = x]

−E[%(S)IΦ−i,j |z1, · · · , zk−1],
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Λ1
k = sup

x
E[%(S)IΦ−i,j |z1, · · · , zk−1, zk = x]

−E[%(S)IΦ−i,j |z1, · · · , zk−1].

Clearly, we infer
Γ1
k ≤ ς1k ≤ Λ1

k.

As deduced in the first part, we get

Λ1
k − Γ1

k

≤ sup
x,y

E[%(S)IΦ−i,j |z1, · · · , zk−1, zk = x]

−E[%(S\i,j)IΦ−i,j |z1, · · · , zk−1, zk = x]

+E[%(S\i,j)IΦ−i,j |z1, · · · , zk−1, zk = x]

−E[%(S\i,j)IΦ−i,j |z1, · · · , zk−1, zk = y]

+E[%(S\i,j)IΦ−i,j |z1, · · · , zk−1, zk = y]

−E[%(S)IΦ−i,j |z1, · · · , zk−1, zk = y].

In view of |β(·, ·, ·)| ≤Mβ and l(·, ·) ≤Ml, we obtain

E[(%(S)− %(S\i,j))IΦ−i,j |z1, · · · , zk−1, zk = x]

+E[(%(S)− %(S\i,j))IΦ−i,j |z1, · · · , zk−1, zk = y]

≤ 2 sup
zi,zj∈Z

Ezβ(zi, zj , z) + 2ι+ 2Ml.

In light of

E[%(S\i,j)IΦ−i,j |z1, · · · , zk−1, zk = x]

= E[%(S\i,j)IΦ−i,j |z1, · · · , zk−1, zk = y],

we get

Λ2
k − Γ2

k ≤ 2 sup
zi,zj∈Z

Ezβ(zi, zj , z) + 2ι+ 2Ml.

Let M̃ = 2 supzi,zj∈Z Ezβ(zi, zj , z)+2ι+2Ml. We have

E[exp{2λ
n−2∑
k=1

ς1k}] ≤ exp{1

2
nλ2M̃2}.

In light of (2), we infer

E[exp{λ
n∑
k=1

ςk}]

≤ 1

2
exp{1

2
nλ2M̃2}+

1

2
{exp{1

2
λ2M2c2}

+
nCζn
c

exp{2nλM max{1, λM}}}.

If we select

c =
2 supzi,zj∈Z Ezβ(zi, zj , z) + 2ι+ 2Ml

2Mβ + 2ι+ 2Ml
,

then we have c < 1. Set

γn =
nCζn
c

exp{2nλM max{1, λM}.

Then, for any positive λ, we yield

P(%(S)− E[%(S)] ≥ nε) ≤
exp{n2λ

2M̃2}+ γn

exp{λnε}
.

For small positive ε and large n, take λ = ε
M̃2

, and we want
γn ≤ exp{n2λ

2M̃2}, i.e.,

nCζn
c
≤ exp{nλ

2
(M̃2λ− 4M max{Mλ, 1})}.

Plugging in ζn = Ce
− nι2

32M2
β and λ = ε

M̃2
, set C ′ = C

2c which
satisfies

C ′ne
− nι2

32M2
β ≤ exp{(ε− 4εM2

M̃2
− 4M)

nε

2M̃2
}.

It can be expressed by

ι2

32M2
β

− lognC ′

n
≥ (ε− 4εM2

M̃2
− 4M)

nε

2M̃2
,

which leads to

P(%(S)− E[%(S)] ≥ nε)

≤
exp{n2λ

2M̃2}+ γn

exp{λnε}

≤ 2e−
nε2

2M̃2 .

Let

l̃(AS , z) = Ez∼D[l(AS , z)]− l(AS , z),

%̃(S) =
1

n

n∑
i=1

l̃(AS , zi),

%̃(S)\i,j =
1

n

n∑
k=1

l̃(AS\i,j , zk).

We obtain

E[(%̃(S)− %̃(S\i,j))IΦc−i,j |z1, · · · , zk−1, zk = x]

+E[(%̃(S)− %̃(S\i,j))IΦc−i,j |z1, · · · , zk−1, zk = y]

≤ 2(Mβ + 2 sup
zi,zj∈Z

Ez∼Dβ(zi, zj , z)

+2Ml)P(Φc−i,j |z1, · · · , zk−1)

and

E[(%̃(S)− %̃(S\i,j))IΦ−i,j |z1, · · · , zk−1, zk = x]

+E[(%̃(S)− %̃(S\i,j))IΦ−i,j |z1, · · · , zk−1, zk = y]

≤ 2(ι+ 2 sup
zi,zj∈Z

Ez∼Dβ(zi, zj , z)

+2Ml)P(Φ−i,j |z1, · · · , zk−1).

By selecting

M = 2(Mβ + 2 sup
zi,zj∈Z

Ez∼Dβ(zi, zj , z) + 2Ml)

and

M̃ = 2(ι+ 2 sup
zi,zj∈Z

Ez∼Dβ(zi, zj , z) + 2Ml),

we finally get

ES [Ez∼D[l(AS , z)]−
1

n

n∑
i=1

l(AS , zi)]

≤
2 supzi,zj∈Z Ez∼Dβ(zi, zj , z)

n
.

Then the desired conclusion follows. 2

IAENG International Journal of Applied Mathematics, 52:2, IJAM_52_2_21

Volume 52, Issue 2: June 2022

 
______________________________________________________________________________________ 



B. Main conclusion

Theorem 5: Let A be an ontology algorithm with locally
PO ontology relaxed stability βn(·, ·, ·) with respect to the
ontology loss function l. There is a positive constant Ml such
that 0 ≤ l ≤Ml. Suppose that n is a large number. For any
given ι and δ ∈ (0, 1), the following inequality holds with
probability at least 1− δ:

Ξ(AS)

≤
2 supz1,z2∈Z Ez∼Dβ(z1, z2, z)

n

+2(2 sup
z∈Z

Ez∼Dβ(z1, z2, z) + ι+ 2Ml)

√
2 log 2

δ

n
.

Theorem 6: Let A be an ontology algorithm with locally
LTO ontology relaxed stability βn(·, ·, ·) with respect to the
ontology loss function l. There is a positive constant Ml such
that 0 ≤ l ≤Ml. Suppose that n is a large number. For any
given ι and δ ∈ (0, 1), the following inequality holds with
probability at least 1− δ:

Ξ(AS)

≤
2 supz1,z2∈Z Ez∼Dβ(z1, z2, z)

n

+2(2 sup
z∈Z

Ez∼Dβ(z1, z2, z) + ι+ 2Ml)

√
2 log 2

δ

n
.

Here, we only provide the detailed proof of Theorem 6, and
the proof of Theorem 5 can be done by means of the same
tricks.
Proof of Theorem 6. Let δ = 2e−

nε2

2M̃2 , and then we infer

ε = M̃

√
2 log 2

δ

n . Put it into (1) and we deduce

ι2

32M2
β

− log nC ′

n

≥ 1

2M̃2

√
2 log 2

δ

n
(−M̃

√
2 log 2

δ

n

+
4M2

M̃

√
2 log 2

δ

n
+ 4M).

Note that
log nC ′

n
≤ ι2

64M2
β

,

2M2 log( 2
δ )

nM̃2
≤ ι2

128M2
β

,

2M

M̃

√
2 log 2

δ

n
≤ ι2

128M2
β

,

and

lim
n→∞

log nC ′

n
→ 0.

Hence, we yield

ι2

32M2
β

− log nC ′

n
≥

2M2 log( 2
δ )

nM̃2
+

2M

M̃

√
2 log 2

δ

n
.

Therefore, the final conclusion is obtained by means of
Lemma 4. 2

C. Connect to reproducing kernel Hilbert space (RKHS)

In this subsection, we assume that the ontology loss
function associates with an ontology cost function c such that
l(f, z) = c(f(x), y) for ontology samples in the supervised
ontology learning setting. An ontology loss function l is σ-
admissible with respect to YX if the associated ontology cost
function c is convex with respect to its first argument and for
any y1, y2, y3 ∈ Y , we have

|c(y1, y3)− c(y2, y3)| ≤ σ‖y1 − y2‖Y ,

where ‖ · ‖Y is a certain norm defined on Y .
A reproducing kernel Hilbert space (in short, RKHS) H is

a Hilbert space of continuous linear functions, in which for
arbitrary h ∈ H and x ∈ X , we have

h(x) =< h,K(x, ·) >,

where K is the kernel in H. Specially, we have for arbitrary
h ∈ H and x ∈ X ,

|h(x)| ≤ ‖h‖K
√
K(x, x),

where
√
K(x, x) is always denoted by κ(x) and ‖ · ‖K

is the norm induced by kernel K in RKHS. Remind that
K should be positive semi-defined kernel and κ(x) ≥ 0.
The main result in this subsection is stated as follows which
associates locally ontology relaxed stability with reproducing
kernel Hilbert space.

Theorem 7: Let H be a reproducing kernel Hilbert space
with kernel K, and for arbitrary x ∈ X have K(x, x) ≤ κ2 <
∞. The ontology loss function l is σ-admissible with respect
to H and the ontology learning algorithm is formulated by

AS = argminh∈H
1

n

n∑
i=1

l(h, zi) + λ‖h‖2K ,

where λ > 0 is a balance parameter. Then,
(i) AS has locally PO ontology relaxed stability βn(zi, z

′

i, z)
such that

βn(zi, z
′

i, z) ≤
σ2κ(xi)κ(x)

nλ
.

(ii) AS has locally LTO ontology relaxed stability
βn(zi, zj , z) such that

βn(zi, zj , z) ≤
σ2(κ(xi) + κ(xj))κ(x)

2nλ
.

Brief Proof of Theorem 7. Let’s briefly prove the (ii) part
of theorem, and for (i) part, the discussion is similar. Let

R(h) =
1

n

n∑
i=1

l(h, zi) + λ‖h‖2K ,

R\i,j(h) =
1

n

n∑
k 6=i,k 6=j

l(h, zk) + λ‖h‖2K ,

f = argminh∈HR(h),

and
f\i,j = argminh∈HR

\i,j(h).

By setting ∆f = f\i,j − f , we get

2‖∆f‖2K ≤
σ(|∆f(xi)|+ |∆f(xj)|)

nλ
.

IAENG International Journal of Applied Mathematics, 52:2, IJAM_52_2_21

Volume 52, Issue 2: June 2022

 
______________________________________________________________________________________ 



By means of

|f(xi)| ≤ ‖f‖K
√
K(xi, xi) ≤ ‖f‖Kκ(xi)

and

|f(xj)| ≤ ‖f‖K
√
K(xj , xj) ≤ ‖f‖Kκ(xj),

we deduce

‖∆f‖K ≤
σ(κ(xi) + κ(xj))

2nλ
.

Since ontology loss l is σ-admissibility, we infer

|l(f, z)− l(f\i,j , z)| ≤ σ|f(x)− f\i,j(x)|
= σ|∆f(x)| ≤ σ‖∆f‖Kκ(x)

≤ σ2(κ(xi) + κ(xj))κ(x)

2nλ
.

Hence, we prove the desired theorem. 2

D. Connect to stochastic gradient descent

In stochastic gradient descent ontology learning setting, S-
GD ontology learning algorithm is composed of certain steps
of stochastic gradient updates θ̂t+1 = θ̂t − αt 5θ (θ̂t, zit),
where the learning rate αt is allowed to change over time,
it ∈ {1, · · · , n} is selected uniformly at random at time t. Let
T be the total steps in SGD ontology iteration process. For
a randomized ontology algorithm A such as SGD ontology
algorithm, we introduce the locally ontology relaxed stability
as follows.

Definition 8: (locally PO ontology relaxed stability in ran-
domized ontology algorithm setting) An ontology random-
ized algorithm A is βn(·, ·, ·)-locally PO ontology relaxed
stability if for any ontology training set S ∈ Zn and z

′

i ∈ Z,
we have

|EA[l(AS , z)]− EA[l(ASi , z)]| ≤ βn(zi, z
′

i, z),

where the expectation is over the randomness embedded in
the ontology algorithm A.

Definition 9: (locally LTO ontology relaxed stability in
randomized ontology algorithm setting) An ontology ran-
domized algorithm A is βn(·, ·, ·)-locally LTO ontology
relaxed stability if for any ontology training set S ∈ Zn,
1 ≤ i < j ≤ n, we have

|EA[l(AS , z)]− EA[l(AS\i,j , z)]| ≤ βn(zi, zj , z),

where the expectation is stated as the last definition.
For SGD based ontology algorithm A, outputs functions

AS , ASi and AS\i,j are parameterized by θ̂T , θ̂iT and θ̂\i,jT

respectively, and the main conclusions in this subsection
study whether there is a function βn(·, ·, ·) satisfying

|E[l(θ̂T , z)]− E[l(θ̂iT , z)]| ≤ βn(zi, z
′

i, z)

or
|E[l(θ̂T , z)]− E[l(θ̂

\i,j
T , z)]| ≤ βn(zi, zj , z),

where the expectation is taken with respect to randomness
coming from uniformly selecting the index in every itera-
tion. Specifically, the main results consider convex ontology
setting and non-convex ontology setting respectively.

Theorem 10: (Convex Ontology Optimization) Suppose
that the ontology loss function l(·, z) is ϑ-smooth, L(z)-
Lipschitz (here L(z) is finite for any z ∈ Z: |l(θ1, z) −

l(θ2, z)| ≤ L(z)‖θ1 − θ2‖2 holds for any θ1, θ2 ∈ Θ), and
convex for any z ∈ Z. Moreover, L = supz∈Z L(z) < ∞
and αt ≤ 2

ϑ for t ≤ T . Then, we have

|E[l(θ̂T , z)]− E[l(θ̂iT , z)]| ≤
2(L+ L(zi))L(z)

n

T∑
t=1

αt

and

|E[l(θ̂T , z)]− E[l(θ̂
\i,j
T , z)]|

≤ (2L+ L(zi) + L(zj))L(z)

n

T∑
t=1

αt.

Theorem 11: (Non-convex Ontology Optimization) Sup-
pose that the ontology loss function l(·, z) satisfies 0 ≤
l(·, z) ≤ Υ (without loss of generality, we assume that
Υ = 1), ϑ-smooth, L(z)-Lipschitz with finite L(z) for any
z ∈ Z, and L = supz∈Z L(z) < ∞. Suppose that αt ≤ c

t
is a non-increasing sequence for t ≤ T and c is a positive
constant. Set

ψϑ(n, T, zi, z
′

i, z) = (2c(L(zi) + L)L(z)Tϑc)
1

ϑc+1 ,

ψϑ(n, T, zi, zj , z) = (c(L(zi) + L(zj) + 2L)L(z)Tϑc)
1

ϑc+1

and

µn =
1 + 1

ϑc

n− 1
.

Then, we have

|E[l(θ̂T , z)]− E[l(θ̂iT , z)]| ≤ µnψϑ(n, T, zi, z
′

i, z)

and

|E[l(θ̂T , z)]− E[l(θ̂
\i,j
T , z)]| ≤ µnψϑ(n, T, zi, zj , z).

The proof of Theorem 10 and Theorem 11 follows from
standard statistical learning theory approaches, and we skip
the specific proofs here.

IV. CONCLUSION

In this work, we mainly study the special class of ontology
stability which can be regraded as the relaxed version of
uniform ontology stability. We provide the formal definition
in PO and LTO setting, and the upper error bounds of on-
tology learning algorithm are derived in terms of locally PO
ontology relaxed stability and locally LTO ontology relaxed
stability, respectively. Then, we further discuss the setting
when the ontology function space is associated with the
reproduction of kernel Hilbert space, and it is determined that
locally ontology relaxed stability exists if the ontology loss
function is σ-admissible. Finally, we introduce the locally PO
ontology relaxed stability and locally LTO ontology relaxed
stability in randomized ontology learning algorithm, and the
generalization bound is deduced when the key iterative part
of the algorithm is based on stochastic gradient descent.

The following topics can be used as the content of con-
tinued research:
• Although the formal locally ontology relaxed stability is
defined in PO and LTO setting is applied to reproducing
kernel Hilbert space and randomized ontology learning set-
ting, the specific expressed and statistical error bound in
many other ontology learning settings are still open. The
locally ontology relaxed stability in other ontology learning
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framework should be discussed in the future.
• The existence of stability under the framework of regener-
ative nuclear Hilbert space is proved in our contribution, but
the theoretical condition of this result is that the loss function
of the ontology satisfies certain conditions. What needs to
be studied later is whether the mathematical conditions in
these assumptions can be achieved in the actual ontology
algorithm design and applications. In other words, there are
gaps between theory and practical applications, and it is
necessary to study how to bridge these gaps so that the
theoretical results obtained in this paper can be truly applied
to the field of ontology engineering.
• The multi-dividing ontology learning algorithm has been
verified to be well used in the ontology graph learning of
tree structure. The optimal ontology function is obtained
by means of compared learning tricks. The definition and
corresponding properties of locally ontology relaxed stability
in multi-dividing ontology learning setting are awaiting for
further studies.
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