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Abstract—This paper investigated the use of a successive
over-relaxation parameter in a quarter-sweep finite difference
approximation scheme. The performance of the developed
quarter-sweep successive over-relaxation method is examined by
considering a nonlinear partial differential equation, namely the
porous medium equation. The main contribution of this paper
is to present the stability, convergence and efficiency of the pro-
posed method. Several initial-boundary value problems of the
porous medium equation are solved to illustrate the efficiency
of the proposed method. The numerical results showed that
the quarter-sweep successive over-relaxation method is more
efficient in reducing iterations and computational time than
the standard and the existing numerical methods. In addition,
the accuracy of the quarter-sweep successive over-relaxation
method is comparable to the tested numerical methods.

Index Terms—Finite difference method, Newton method,
porous medium equation, quarter-sweep, successive over-
relaxation.

I. INTRODUCTION

IN numerical analysis, the finite difference method, also
commonly known as FDM, is one of the famous dis-

cretization approaches to solving partial differential equa-
tions. FDM is easy to derive for solving many linear and non-
linear mathematical models. The FDM works by approximat-
ing and replacing the derivatives of the equation with finite
difference operators. The restricted spatial domain (and time
interval for time-dependent partial differential equations) is
usually defined for the solution. The unknown values, located
at the discrete points under a restricted spatial domain, can
be represented by algebraic equations. When the system of
equations contains a set of finite differences and a set of
known values from closest points or predefined boundaries,
the sizes of such systems are usually large and possess a
high computational complexity. Solving a large and complex
system of equations requires an efficient iterative method
or algebraic matrix technique. Various iterative methods and
matrix algebra techniques are available in [1], [2].
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The FDM can be categorized into three basic schemes,
namely explicit, implicit and mixed explicit-implicit. One of
the well-known mixed explicit-implicit schemes is the Crank-
Nicolson scheme. The above-mentioned finite difference
schemes could be distinguished according to the stability,
convergency, accuracy, and numerical intensity. The explicit
scheme is conditionally and numerically stable, and it is con-
vergent. The numerical errors from using the explicit scheme
are linearly proportional to the time step and quadratically to
the space step. The explicit scheme has the least numerical
intensity because the solutions of the system of equations
can be computed using a direct method such as Gaussian
elimination. Next, the implicit scheme is unconditionally and
numerically stable, and it is also convergent. The implicit
scheme has a greater numerical intensity than the explicit
scheme because the scheme requires solving a system of
equations for each time step. The magnitude of numerical
errors produced by the implicit scheme are comparable to
the explicit scheme. The Crank-Nicolson scheme is the most
accurate FDM scheme among the three main basic schemes.
Although the scheme is unconditionally numerically stable
and convergent, the numerical intensity is the highest as
it solves a system of equations on each time step. The
numerical errors produced by the Crank-Nicolson scheme
are quadratically proportional to both the time and the space
step [3].

From the basic schemes of FDM, many new schemes
have been proposed to enrich the literature. For instance,
[4], [5] constructed a nonstandard finite difference scheme
to solve a nonlinear partial differential equation. The scheme
focuses on the generalization of the discrete-time derivative.
Then, [6] introduced a new high-order weighted essentially
non-oscillatory finite difference scheme for solving several
nonlinear degenerate parabolic equations. They extended the
works from [7], [8] to obtain sixth-order accuracy in smooth
regions. Another finite difference scheme has been proposed
with the given name as a generalized FDM or GFDM [9].
This scheme is a meshless method and uses irregular clouds
of nodes to model several nonlinear parabolic equations. Fur-
thermore, [10] constructed invariant compact finite-difference
schemes that preserve Lie symmetries for solving linear and
nonlinear partial differential equations. Then, [11] studied
the numerical solution of coupled Burgers’ equation using
the combination of FDM and sinc collocation.

Among the effective finite difference schemes, the quarter-
sweep finite difference scheme emerges as a unique computa-
tional complexity reduction to solving complex mathematical
equations. The quarter-sweep scheme was introduced by
[12] for solving a two-dimensional Poisson equation. Since
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then, many researchers have studied the scheme and applied
it to solve different mathematical equations. For instance,
multidimensional Black-Scholes equation [13], [14], two-
dimensional Helmholtz equation [15], first and second-
order linear Fredholm integrodifferential equations [16]–[18],
multidimensional fuzzy diffusion equation [19], fractional
diffusion equation [20], [21] and nonlinear diffusion equation
[22]. Besides that, the quarter-sweep scheme was used to
simulate a steady-state problem [23] and design a quarter-
sweep alternating decomposition explicit iterative method
for solving linear and nonlinear two-point boundary value
problems containing singularity [24]. Another article [25]
investigated the performance of a nonlocal discretization
scheme with a quarter-sweep iteration for solving nonlinear
two-point boundary value problems. The quarter-sweep finite
difference scheme has successfully overcome the compu-
tational complexity issue in solving systems of equations
generated by many mathematical models and hence becomes
the motivation of this paper.

This paper aims to investigate the impact of adding a suc-
cessive over-relaxation (SOR) parameter to constructing an
efficient quarter-sweep iteration scheme. A numerical method
called the QSSOR method is introduced to solve nonlinear
partial differential equations. One of the nonlinear partial
differential equations called the porous medium equation
(PME) is used as the test problem. PME is chosen for the
numerical experiment because of its importance to describe a
nonlinear process involving heat transfer, fluid flow and gas
diffusion. PME has been applied to model the fire extinguish-
ing process in an aircraft engine nacelle [26], the counter-
current imbibition in a heterogeneous porous medium [27],
the hydrodynamic for the slow reservoirs [28], and the
instability phenomenon from the process of extracting crude
oil from the field [29]. Besides that, a particular form of PME
was used to model the moisture transport of rice and [30]
applied explicit and implicit FDM to solve the mathematical
model. The proposed numerical method in this paper can be
a useful numerical tool for PME modelling and simulation.
Moreover, this paper extends the work presented by [22]
and contributes the stability and convergence theorems to
the existing quarter-sweep iteration scheme for nonlinear
partial differential equations. The stability and convergence
theorems can be used to support the theoretical stability and
convergence of the quarter-sweep finite difference approxi-
mation to nonlinear partial differential equations.

The following sections of the paper can be outlined as
follows: Section 2 presents the quarter-sweep discretization
procedure of the one-dimensional PME model. Section 3 and
4 show the theorems and proofs of stability and convergence
of the quarter-sweep finite difference scheme, respectively.
Section 5 discusses the derivation of the QSSOR method,
followed by the numerical experiment and discussion in
Section 6. Section 7 concludes the paper by highlighting the
findings and future direction of the research.

II. QUARTER-SWEEP DISCRETIZATION PROCEDURE

In this section, the quarter-sweep finite difference scheme
and its discretization procedure is described. The construc-
tion of the quarter-sweep finite difference scheme is similar
to the standard implicit scheme of FDM which both are

Fig. 1. Implicit finite difference scheme framework

Fig. 2. Quarter-sweep finite difference scheme framework

based on Taylor series expansion. However, for the quarter-
sweep finite difference scheme, the distance between two
consecutive grid points to be calculated is quadrupled after a
skipped three grid points. Moreover, the quarter-sweep finite
difference approximation uses a mixed iterative-direct com-
putation approach to solve a system of equations efficiently.
Figure 1 and 2 show the comparison between the quarter-
sweep and the implicit finite difference schemes.

To illustrate the quarter-sweep finite difference discretiza-
tion procedure, let a one-dimensional PME be defined as
[31], [32]:

ut = ρ(umux)x, (1)

and can be further derived using the method of calculus into

ut = ρ(umuxx +mum−1(ux)
2), (2)

where ρ and m are real numbers with ρ > 0. u(x, t) may
express the temperature distribution or the velocity of fluid
flow or gas-particle diffusion in a porous medium. Then, x
represents the coordinate at a specific time t. Meanwhile,
um is a nonlinear term that determines the type of diffusion
process.

The quarter-sweep scheme to approximate Equation 2
depends on the transformation of a differential equation into
an algebraic system of equations in which the finite domain
is discretized into several discrete grid points of Up,n, for
p = 0, 1, 2, . . . ,M, n = 0, 1, 2, . . . , N . The grid point Up,n

is used to approximate the exact values by the expression
u(xp, tn) = Up,n+ϵp,n, p = 0, 1, 2, ...,M, n = 0, 1, 2, ..., N ,
where u(xp, tn) and ϵp,n represent the exact solution and the
approximation error, respectively. The quarter-sweep scheme
uses a common rectangular finite domain where the space
0 ≤ x ≤ L is partitioned uniformly by ph, h = L/M
with M is a positive integer. Since PME is a time-dependent
partial differential equation, the time level is set equally by
tn = nk, k = T/N where T and N are the total time and
the number of time steps respectively. The quarter-sweep
operators used to approximate Equation 2 are defined as [22]

ut ≈
Up,n − Up,n−1

k
, (3)

ux ≈ Up+4,n − Up−4,n

8h
, (4)

and

uxx ≈ Up+4,n − 2Up,n + Up−4,n

16h2
, (5)

where p = 4, 8, ...,M − 4, n = 1, 2, ..., N . Substituting the
operators shown by Equation 3, 4, and 5 into Equation 2
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gives a quarter-sweep finite difference approximation to PME
in the form of

Up,n − α1U
m
p,n(Up+4,n − 2Up,n + Up−4,n)

−α2U
m−1
p,n (Up+4,n − Up−4,n)

2 = Up,n−1, (6)

where α1 = ρk/16h2 and α2 = ρmk/64h2. The next two
sections will discuss the stability and convergence analysis
of the approximation equation shown by Equation 6.

III. STABILITY ANALYSIS

In this section, the stability analysis of the quarter-sweep
finite difference approximation is discussed.

Proposition 1: ∥En∥∞ ≤ ∥E0∥∞ , n = 1, 2, 3, ... .
Theorem 1: The quarter-sweep finite difference approxi-

mation defined by Equation 6 is unconditionally stable.
Proof: Suppose that Ũp,n is the approximate solution

and ϵp,n is the error such that ϵp,n = Ũp,n − Up,n satisfies

ϵp,n − α1ϵ
m
p,n(ϵp+4,n − 2ϵp,n + ϵp−4,n)

−α2ϵ
m−1
p,n (ϵp+4,n − ϵp−4,n)

2 = ϵp,n−1, (7)

where p = 4, 8, ...,M − 4, n = 1, 2, ..., N . Also, let En =
(ϵ4,n, ϵ8,n, ..., ϵM−4,n)

T .
Assume that 0 < ... ≤ ϵm+1

p,n ≤ ϵmp,n ≤ ϵm−1
p,n ≤ ϵp,n,

where m is a positive integer. Using a mathematical induction
method: For n = 1,

ϵp,1 − α1ϵ
m
p,1(ϵp+4,1 − 2ϵp,1 + ϵp−4,1)

−α2ϵ
m−1
p,1 (ϵp+4,1 − ϵp−4,1)

2 = ϵp,0. (8)

Let |ϵL,1| = max4≤p≤M−4 |ϵp,1|. Then, we have

|ϵL,1| ≤ |ϵL,1| − α1|ϵmL,1||ϵL+4,1|+ 2α1|ϵm+1
L,1 |

−α1|ϵmL,1||ϵL−4,1| − α2|ϵm−1
L,1 ||ϵ2L+4,1|

+2α2|ϵm−1
L,1 ||ϵL+4,1||ϵL−4,1| − α2|ϵm−1

L,1 ||ϵ2L−4,1|
≤ |ϵL,1 − α1ϵ

m
L,1ϵL+4,1 + 2α1ϵ

m+1
L,1 − α1ϵ

m
L,1ϵL−4,1

−α2ϵ
m−1
L,1 ϵ2L+4,1 + 2α2ϵ

m−1
L,1 ϵL+4,1ϵL−4,1

−α2ϵ
m−1
L,1 ϵ2L−4,1| = |ϵL,0| ≤ ∥E0∥∞ . (9)

Thus, ∥E1∥∞ ≤ ∥E0∥∞.
Suppose that ∥Ej∥∞ ≤ ∥E0∥∞ , j = 1, 2, ..., n−1 and let

|ϵL,n| = max4≤p≤M−4 |ϵp,n|. Then, we have

|ϵL,n| ≤ |ϵL,n| − α1|ϵmL,n||ϵL+4,n|+ 2α1|ϵm+1
L,n |

−α1|ϵmL,n||ϵL−4,n| − α2|ϵm−1
L,n ||ϵ2L+4,n|

+2α2|ϵm−1
L,n ||ϵL+4,n||ϵL−4,n| − α2|ϵm−1

L,n ||ϵ2L−4,n|
≤ |ϵL,n − α1ϵ

m
L,nϵL+4,n + 2α1ϵ

m+1
L,n − α1ϵ

m
L,nϵL−4,n

−α2ϵ
m−1
L,n ϵ2L+4,n + 2α2ϵ

m−1
L,n ϵL+4,nϵL−4,n

−α2ϵ
m−1
L,n ϵ2L−4,n| = |ϵL,n−1| ≤ ∥E0∥∞ . (10)

Thus, ∥En∥∞ ≤ ∥E0∥∞.
Hence, Theorem 1 is proved.

IV. CONVERGENCE ANALYSIS

In this section, the convergence analysis of the quarter-
sweep finite difference approximation is discussed.

Proposition 2: ∥en∥∞ ≤ c(k+h2), n = 1, 2, 3, ...., where
∥en∥∞ = max4≤p≤M−4 |ep,n|.

Theorem 2: Let Up,n be the approximation to u(xp, tn)
by the use of the quarter-sweep scheme. Then, there is a
positive constant c such that

|Up,n − u(xp, tn)| ≤ c(k + h2). (11)

Proof: Let u(xp, tn), p = 4, 8, ...,M−4, n = 1, 2, ..., N
be the exact solution at grid point (xp, tn). Define ep,n =
u(xp, tn) − Up,n, p = 4, 8, ...,M − 4, n = 1, 2, ..., N and
en = (e4,n, e8,n, ..., eM−4,n)

T . Then, we have

ep,n − α1e
m
p,n(ep+4,n − 2ep,n + ep−4,n)

−α2e
m−1
p,n (ep+4,n − ep−4,n)

2 = ep,n−1 +Rp,n, (12)

where

Rp,n = u(xp, tn)− u(xp, tn−1)− α1u
m(xp, tn)

(u(xp+4, tn)− 2u(xp, tn) + u(xp−4, tn))

−α2u
m−1(xp, tn)(u(xp+4, tn)− u(xp−4, tn))

2. (13)

From the quarter-sweep scheme, we have
u(xp, tn)− u(xp, tn−1)

k
=

δu(xp, tn)

δt
+ c̃1k, (14)

u(xp+4, tn)− 2u(xp, tn) + u(xp−4, tn)

16h2

=
δ2u(xp, tn)

δx2
+ c̃2h

2, (15)

and
u(xp+4, tn)− u(xp−4, tn)

8h
=

δu(xp, tn)

δx
+ c̃3h. (16)

Using Equation 14, 15 and 16, Equation 12 becomes

Rp,n =
δu(xp, tn)

δt
− αum(xp, tn)

δ2u(xp, tn)

δx2

−αmum−1(xp, tn)

(
δu(xp, tn)

δx

)2

+ c̃1k

+(c̃2 + c̃3)h
2. (17)

Also, |Rp,n| ≤ c(k + h2) where c is a constant.
By a mathematical induction: For n = 1, let ∥e1∥∞ =

|eL,1| = max4≤p≤M−4 |ep,1|, we have

|eL,1| ≤ |eL,1| − α1|emL,1||eL+4,1|+ 2α1|em+1
L,1 |

−α1|emL,1||ϵL−4,1| − α2|em−1
L,1 ||e2L+4,1|

+2α2|em−1
L,1 ||eL+4,1||eL−4,1| − α2|em−1

L,1 ||e2L−4,1|
≤ |eL,1 − α1e

m
L,1eL+4,1 + 2α1e

m+1
L,1 − α1e

m
L,1eL−4,1

−α2e
m−1
L,1 e2L+4,1 + 2α2e

m−1
L,1 eL+4,1eL−4,1

−α2e
m−1
L,1 e2L−4,1| = |Rp,1| ≤ c(k + h2). (18)

Suppose that ∥ej∥∞ ≤ c(k + h2), j = 1, 2, ..., n − 1 and
|eL,n| = max4≤p≤M−4 |ep,n|. We have

|eL,n| ≤ |eL,n| − α1|emL,n||eL+4,n|+ 2α1|em+1
L,n |

−α1|emL,n||ϵL−4,n| − α2|em−1
L,n ||e2L+4,n|

+2α2|em−1
L,n ||eL+4,n||eL−4,n| − α2|em−1

L,n ||e2L−4,n|
≤ |eL,n − α1e

m
L,neL+4,n + 2α1e

m+1
L,n − α1e

m
L,neL−4,n

−α2e
m−1
L,n e2L+4,n + 2α2e

m−1
L,n eL+4,neL−4,n

−α2e
m−1
L,n e2L−4,n| = |c̃eL,n−1 +Rp,1|

≤ c̃|eL,n−1|+ c(k + h2)

≤ c̃ ∥en−1∥∞ + c(k + h2) = c(k + h2). (19)

Hence, Theorem 2 is proved.

IAENG International Journal of Applied Mathematics, 52:2, IJAM_52_2_25

Volume 52, Issue 2: June 2022

 
______________________________________________________________________________________ 



V. FORMULATION OF THE QUARTER-SWEEP SUCCESSIVE
OVER-RELAXATION METHOD

In this section, the formulation of the QSSOR method to
solve one-dimensional PME is presented. Let Equation 6 be
written in the form of

Fp,n = Up,n − α1U
m
p,n(Up+4,n − 2Up,n + Up−4,n)

−α2U
m−1
p,n (Up+4,n − Up−4,n)

2 − Up,n−1, (20)

with p = 4, 8, ...,M − 4, n = 1, 2, ..., N . The corresponding
system of nonlinear equations to Equation 20 is

F (Û) = 0, (21)

where F (.) = (F4,n(.), F8,n(.), ..., FM−4,n(.))
T and Û =

(U4,n, U8,n, ..., UM−4,n). A second order Newton method is
applied to solve the nonlinear system shown by Equation 21.
Then, we have a system of linear equations as follows:

JF (Û
(iter))Û

(iter)
= −F (Û (iter)), (22)

where

JF (Û
(iter)) =



δF4,n

δU4,n

δF4,n

δU8,n
. . .

δF4,n

δUM−4,n

δF8,n

δU4,n

δF8,n

δU8,n
. . .

δF8,n

δUM−4,n

...
...

...
δFM−4,n

δU4,n

δFM−4,n

δU8,n
. . .

δFM−4,n

δUM−4,n

 ,

(23)
and

Û
(iter)

= Û (iter) − Û (iter−1), iter = 1, 2, .... (24)

From the previous work [22], using the separation of the
matrix (Equation 23) into

JF (Û
(iter)) = D + L+ V, (25)

where D,L and V indicate the diagonal, the lower and upper
part of the large and sparse matrix, a Gauss-Seidel iterative
method via a quarter-sweep approximation can be derived as

Û
(iter)

= (D + L)−1(−V Û
(iter−1)

− F (Û (iter)). (26)

The derivation of the proposed QSSOR method is made by
adding a relaxation parameter ω to Equation 26. The idea
of adding a SOR parameter to the Gauss-Seidel is adopted
from the concept of a SOR iterative method [33]. Therefore,
the QSSOR method can be derived in the form of

Û
(iter)

= (1− ω)Û
(iter−1)

+ω(D + L)−1(−V Û
(iter−1)

− F (Û (iter)), (27)

where 1 < ω < 2.
The algorithm of the QSSOR method is provided in

Algorithm 1. The selection of the optimal value of ω(±0.01)
can be determined by running the Algorithm 1 program
several times until the lowest number of total iterations is
recorded. The theoretical optimal value of ω for solving a
large system of linear equations can be referred to in [33]. In
addition, the experiment sets the tolerance error ϵ = 10−10 to
standardize the convergence criteria for the implementation
of the QSSOR method with several testing methods.

Algorithm 1 QSSOR method

Define the value of SOR parameter ω, initial guess Û
(0)

and the tolerance error ϵ;
Define the initial and boundaries;
while n ≤ N do

Set iter = 0;
Construct JF (Û (iter))Û

(iter)
= −F (Û (iter));

while
∣∣∣(Û (iter))− (Û (iter−1))

∣∣∣ > ϵ do

while
∣∣∣∣Û (iter)

− Û
(iter−1)

∣∣∣∣ > ϵ do

Û
(iter)

= (1 − ω)Û
(iter−1)

+ ω(D +

L)−1(−V Û
(iter−1)

− F (Û (iter)));
end while
Û (iter) = Û (iter−1) + Û

(iter)
;

iter ++;
end while
n++;

end while
Display the numerical outputs

VI. NUMERICAL EXPERIMENT AND RESULTS

This paper selected three different initial-boundary value
problems of one-dimensional PME to test the proposed
QSSOR method. The outputs such as the number of iterations
(itermax), the computation time (sec.) and the absolute
errors (emax) are recorded for five different sizes of matrices,
M = 256, 512, 1024, 2048 and 4096. Then, the results are
compared to the standard SOR and QSGS [22], which both
are implemented independently using the same sizes of
matrices. Below are the following tested problems:

Problem 1. Consider a simple quadratic PME, which
describes the unsteady flow of groundwater with the presence
of a free surface [31],

ut = (uux)x, (28)

subjects to the initial condition, u(x, 0) = x, 0 ≤ x ≤ 1, and
the two-sided boundaries, u(0, t) = t, u(1, t) = 1 + t, 0 ≤
t ≤ 1. The exact solution is u(x, t) = x+ t.

Problem 2. Consider a slow diffusion type PME [31],

ut = (u2ux)x, (29)

with the initial condition, u(x, 0) = (x + 1)/4, 0 ≤
x ≤ 1, and the Dirichlet boundary conditions, u(0, t) =
1/(2(

√
4− t)), u(1, t) = 1/

√
4− t, 0 ≤ t ≤ 1. The exact

solution is given by u(x, t) = (x+ 1)/(2(
√
4− t)).

Problem 3. Consider a fast diffusion type PME, which is
also known as the Fujita–Storm equation [31], [34],

ut = 0.5(u−2ux)x, (30)

The initial condition is set at u(x, 0) = 1/
√
0.7x+ 1.35

for 0 ≤ x ≤ 1, whereas the boundaries are u(0, t) =
1/

√
1.35− 0.1225t, u(1, t) = 1/

√
0.7− 0.1225t+ 1.35,

for 0 ≤ t ≤ 1. The exact solution is u(x, t) =
1/

√
0.7x− 0.1225t+ 1.35.

From the independent numerical experiments using the
three numerical methods (SOR, QSGS and QSSOR) to solve
Problem 1, 2 and 3, the recorded outputs are tabulated in the
following Tables I, II and III, respectively.
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TABLE I
A NUMERICAL OUTPUT FROM TESTING PROBLEM 1.

M Method itermax sec. emax

256 SOR (ω = 1.93) 2328 1.68 3.19× 10−10

QSGS 3835 1.91 2.75× 10−8

QSSOR(ω = 1.77) 562 0.89 1.18× 10−10

512 SOR (ω = 1.97) 4942 5.89 9.10× 10−11

QSGS 13,678 7.78 1.22× 10−7

QSSOR(ω = 1.87) 1142 0.86 2.09× 10−10

1024 SOR (ω = 1.98) 9445 21.36 1.21× 10−9

QSGS 48,395 44.79 5.33× 10−7

QSSOR(ω = 1.93) 2328 4.44 3.19× 10−10

2048 SOR (ω = 1.99) 18,234 76.94 1.22× 10−9

QSGS 169,693 270.08 2.10× 10−6

QSSOR(ω = 1.97) 4942 8.71 9.10× 10−11

4096 SOR (ω = 1.99) 65,027 664.53 2.79× 10−7

QSGS 587.031 2068.44 7.62× 10−6

QSSOR(ω = 1.98) 9445 73.92 1.21× 10−9

TABLE II
A NUMERICAL OUTPUT FROM TESTING PROBLEM 2.

M Method itermax sec. emax

256 SOR (ω = 1.92) 1784 2.85 8.39× 10−5

QSGS 1345 1.43 8.39× 10−5

QSSOR(ω = 1.73) 462 0.78 8.39× 10−5

512 SOR (ω = 1.96) 3490 4.73 8.39× 10−5

QSGS 4824 4.86 8.39× 10−5

QSSOR(ω = 1.85) 908 1.96 8.39× 10−5

1024 SOR (ω = 1.98) 6758 21.23 8.39× 10−5

QSGS 17,308 27.22 8.39× 10−5

QSSOR(ω = 1.92) 1784 4.65 8.39× 10−5

2048 SOR (ω = 1.99) 13,290 82.05 8.39× 10−5

QSGS 61,658 192.19 8.40× 10−5

QSSOR(ω = 1.96) 3490 14.79 8.39× 10−5

4096 SOR (ω = 1.99) 27,821 330.78 8.39× 10−5

QSGS 218,147 1194.31 8.43× 10−5

QSSOR(ω = 1.98) 6758 57.54 8.39× 10−5

TABLE III
A NUMERICAL OUTPUT FROM TESTING PROBLEM 3.

M Method itermax sec. emax

256 SOR (ω = 1.92) 1706 2.91 2.97× 10−6

QSGS 2015 3.72 2.88× 10−6

QSSOR(ω = 1.70) 420 0.78 2.90× 10−6

512 SOR (ω = 1.96) 3381 5.39 2.98× 10−6

QSGS 7082 6.61 2.90× 10−6

QSSOR(ω = 1.84) 837 2.27 2.96× 10−6

1024 SOR (ω = 1.98) 6687 20.14 2.98× 10−6

QSGS 24,325 51.35 2.71× 10−6

QSSOR(ω = 1.92) 1706 4.15 2.97× 10−6

2048 SOR (ω = 1.99) 13,158 77.29 2.98× 10−6

QSGS 81,729 343.43 1.86× 10−6

QSSOR(ω = 1.96) 3381 17.42 2.98× 10−6

4096 SOR (ω = 1.99) 33,611 404.27 2.91× 10−6

QSGS 265,698 1772.49 3.33× 10−6

QSSOR(ω = 1.98) 6687 46.46 2.98× 10−6

Based on the tabulated numerical outputs shown in Tables
I, II and III, we observe that the QSSOR method required the
least iterations and the shortest computational time between

the three numerical methods for solving all PME problems.
The QSSOR method is more efficient in solving PME
problems than the SOR and QSGS methods. The outputs
showed the superiority of a quarter-sweep scheme with single
SOR parameter in terms of computational efficiency. The
quarter-sweep iteration scheme has successfully reduced the
computational complexity of solving the system of linearized
equations at each time step. Then, the optimal SOR param-
eter has successfully improved the convergence rate of the
approximate values. Hence, the QSSOR method obtained the
final approximate solutions of the selected PME problems in
a shorter time compared to the SOR and QSGS methods.

Based on the absolute errors produced from solving PME
using different size of M (see Tables I, II and III), we observe
that the absolute errors produced by the QSSOR method are
smaller than the SOR and QSGS methods. It can be said
that the accuracy of the QSSOR method is better than the
SOR and QSGS methods. The QSSOR method produced a
significantly smaller absolute error than the SOR and QSGS
methods in solving Problem 1. Then, there is no significant
difference in the accuracy of the methods used for solving
Problem 2. The deviation of the emax values are very small in
solving Problem 2 due to the first-order accurate in time and
second-order accurate in space of the quarter-sweep implicit
finite difference scheme. For Problem 3, the accuracy of
the QSSOR method is better than the SOR method from
M = 256 to 1024. However, the value of emax by the
QSSOR method starts to increase and becomes bigger than
the emax of the SOR method at M = 2048, 4096. On the
other hand, the accuracy of the QSSOR method is better than
its variant, QSGS, when the size of a matrix is sufficiently
large, M = 4096. The study also found that when the value
of M increases, the magnitude of emax does not consistently
decrease for some PME problems. The magnitude of emax

will fluctuate at some sizes of matrices. After a thorough
investigation on this issue, we found that the accumulation
of errors occurred because of the direct computation via
average points for the remaining points in the quarter-sweep
approximation.

Furthermore, a study of arithmetic operations per iteration
is conducted to investigate the computational complexity of
the QSSOR iteration. The result is presented in IV. Based
on IV, it can be observed that the number of unknown grid
points computed by iteration via the quarter-sweep iteration
scheme (QSGS and QSSOR) is lesser than the implicit
iteration scheme (SOR). Thus, the number of arithmetic
operations per quarter-sweep iteration scheme is lesser than
the SOR iteration. Furthermore, the quarter-sweep scheme
can reduce the computational complexity for solving a large
linear system because of fewer arithmetic operations. Besides
that, since the QSSOR method uses single SOR parameter
in the computation, it needs more arithmetic operations for
Plus/Minus and Multiply/Divide compared to its variant, the
QSGS method. However, it does not negatively influence
the performance of the QSSOR iteration since the use of
optimal SOR parameter significantly improves the solution’s
convergence rate.

Besides that, a numerical convergence test is conducted to
verify the theoretical convergence of the quarter-sweep finite
difference approximation as discussed in Section IV. The nu-
merical convergence test uses different values of spatial and

IAENG International Journal of Applied Mathematics, 52:2, IJAM_52_2_25

Volume 52, Issue 2: June 2022

 
______________________________________________________________________________________ 



TABLE IV
ARITHMETIC OPERATIONS PER ITERATION BY SOR, QSGS, AND

QSSOR METHODS

Method Plus/Minus Multiply/Divide

SOR 4(M − 1) 5(M − 1)

QSGS 2(M/4− 1) 3(M/4− 1)

QSSOR 4(M/4− 1) 5(M/4− 1)

TABLE V
A NUMERICAL CONVERGENCE TEST USING PROBLEM 1.

h\k 1/100 1/1000 1/10000

1/256 2.74(10−8) 3.85(10−11) 1.11(10−15)

1/512 1.22(10−7) 6.93(10−10) 5.11(10−15)

1/1024 5.29(10−7) 6.68(10−9) 2.26(10−14)

1/2048 2.09(10−6) 2.91(10−8) 9.78(10−14)

1/4096 7.59(10−6) 1.08(10−7) 3.81(10−13)

TABLE VI
A NUMERICAL CONVERGENCE TEST USING PROBLEM 2.

h\k 1/100 1/1000 1/10000

1/256 8.39(10−5) 9.74(10−7) 1.08(10−8)

1/512 8.39(10−5) 9.74(10−7) 1.08(10−8)

1/1024 8.39(10−5) 9.74(10−7) 1.08(10−8)

1/2048 8.40(10−5) 9.74(10−7) 1.08(10−8)

1/4096 8.43(10−5) 9.75(10−7) 1.09(10−8)

TABLE VII
A NUMERICAL CONVERGENCE TEST USING PROBLEM 3.

h\k 1/100 1/1000 1/10000

1/256 2.88(10−6) 9.84(10−8) 3.58(10−9)

1/512 2.90(10−6) 1.22(10−7) 6.44(10−10)

1/1024 2.71(10−6) 1.17(10−7) 3.39(10−9)

1/2048 1.86(10−6) 1.51(10−7) 2.51(10−8)

1/4096 3.33(10−6) 6.24(10−7) 9.80(10−8)

time steps to observe whether the maximum absolute errors
decrease as both spatial and time steps approach to zero.
Tables V, VI and VII illustrate the numerical convergence
of the quarter-sweep finite difference approximation to the
one-dimensional PME for Problem 1, 2 and 3, respectively.

Based on Tables V, VI and VII, it can be observed that
the maximum absolute errors produced by the quarter-sweep
approximation to the one-dimensional PME decrease as both
spatial and time steps decrease. Hence, the quarter-sweep
approximation scheme is numerically convergent. Therefore,
there is an agreement between the numerical convergence
of the quarter-sweep approximation and the theoretical con-
vergence presented in Section IV. Finally, the graphical
representations of numerical solutions obtained from the use
of the QSSOR method on Problem 1, 2 and 3 are provided.
Figure 3, 4 and 5 show the numerical solutions subject to the
predefined initial-boundary conditions of Problem 1, 2 and
3, respectively.

VII. CONCLUSION

This paper presented the FDM-based numerical method
called the QSSOR method for solving the one-dimensional
PME problems. The quarter-sweep approximation scheme is
discussed together with its stability and convergence analysis.

Fig. 3. Numerical solutions of Problem 1.

Fig. 4. Numerical solutions of Problem 2.

Fig. 5. Numerical solutions of Problem 3.

The stability and convergence theorems support the outputs
obtained from the numerical experiment. The numerical
outputs showed the superiority of the QSSOR method in
terms of efficiency against the existing SOR and QSGS
methods. The proposed QSSOR method required the least
iterations with minimum computation time compared to the
standard SOR and QSGS methods. Moreover, the QSSOR
method obtains more accurate results when solving a simple
quadratic PME and a fast diffusion type PME at a sufficiently
large matrix. In future works, the applicability and efficiency
of the QSSOR method will be further investigated to solve
different cases of PME.
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