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Abstract—The open neighbourhood N(v) of a vertex v ∈
V, is the set of all vertices adjacent to v. Then N [v] =
N(v)∪{v} is called the enclave of v. We say that a vertex
v ∈ V , n-covers an edge x ∈ X if x ∈ 〈N [v]〉, the subgraph
induced by the set N [v]. The n-covering number ρn(G)
introduced by Sampathkumar and Neeralagi [18] is the
minimum number of vertices needed to n-cover all the
edges of G. In this paper one of the results proved in
[18] is disproved by exhibiting an infinite class of graphs
as counter example. Further, an expression for number
of triangles in any graph is established. In addition, the
properties of clique regular graphs has been studied.

Index Terms- n-coverings, clique number, indepen-
dence number, matching number and edge covering
number.

I. INTRODUCTION

Any graph G = (V,X) considered in this paper is
finite, simple and undirected with |V | = p and |X| = q.
For standard notations and terminologies, see Berge
[1] and West [20]. A property P of sets of vertices
is said to be hereditary (superhereditary) if whenever
S has the property P so does every proper subset
(super set) of S. A set S is a vertex cover of G if
at least one vertex of every edge is in S while S is
independent if no two vertices in S are adjacent. The
lower (upper) vertex covering number β(G)(Λ(G)) is
the minimum (maximum) order of a minimal vertex
cover while the upper (lower) independence number
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α(G)(i(G)) is defined as the maximum (minimum)
order of a maximal independent set (see [6], [13]).
The edge analogue of above parameters are similarly
defined. The edge covering number β1(G) is the
minimum number of edges required to cover all the
vertices of G. Finally, the matching number α1(G)
is the maximum number of independent edges of G.
The independence property being hereditary in nature,
while vertex covering property is superhereditary, the
above parameters are related by classical theorem now
known as Gallai’s theorem, stated as for any graph
G,α(G)+β(G) = i(G)+Λ(G) = α1(G)+β1(G) = p.
The generalization of this result using hereditary
properties is found in [8]. A set S is a dominating
set if every vertex in V − S is adjacent to a vertex in
S. The lower (upper) domination number γ(G)(Γ(G))
is the minimum (maximum) number of vertices in a
minimal dominating set. Let N(v) = {u ∈ V |u is
adjacent to v} be the open neighbourhood of v and
then N [v] = N(v) ∪ {v} called closed neighbourhood
or enclave of v. Another graph invariant called
neighbourhood number introduced and studied by
Sampathkumar and Neeralagi [18] and subsequently
attracted several researchers, for example [4], [19],
[9], [11], [12], [7]. A set S ⊆ V is said to be a
neighbourhood set of G if G = Uv∈S〈N [v]〉. For an
isolate free graph we redefine neighbourhood number as
n-covering number. We say that a vertex v ∈ V n-covers
an edge x ∈ X if x ∈ 〈N [v]〉, the subgraph induced
by the set N [v]. A set S is said to be a n-covering (or
neighbourhood set) of G if the vertices of S n-cover all
the edges of G. The n-covering number ρn(G) is the
minimum order of a n-covering of G.

Example 1.

For the Hajo’s graph shown in the Fig. 1, the n-
covering number ρn(G) = 2 and the corresponding ρn−
set is {v1, v2}. The edge covering number β1(G) = 4
and the corresponding β1- set is {x1, x2, x3, x4}. Hence
ρn(G) = 2 < 4 = β1(G).
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Fig. 1. Hajo’s Graph

II. A COUNTER EXAMPLE FOR ρn(G) ≤ β1(G)

Sampathkumar and Neeralagi [18] proved that neigh-
bourhood number is always less than edge covering
number. That is ρn(G) ≤ β1(G). But we observed that
this result is not always true. We disprove this result
by giving a counter example. For example, if G is a
Petersen graph, then ρn(G) = 6 > 5 = β1(G). In
fact, we construct an infinite family of graphs for which
the difference between ρn(G) and β1(G) can be made
arbitrarily large. Let G1 = (V1, X1) and G2 = (V2, X2)
be any two graphs. Then by merging two vertices u ∈ V1

and v ∈ V2, we mean identifying u = v. For example,
let G1 be the star K1,r with the central vertex a and
G2 be the star K1,s with the central vertex b. Then by
merging the vertices a with b (equivalently, identifying
the vertices a = b) we get the new graph G = K1,r+s.

v
11

21v

v
v

v

v

v

v

v

13

31

41
51

61

11

13

14

71

u

u

u 31

u 21

u
51

u
61

u
71

u
41

u
14

Fig. 2. The Graph G(7, 2) for k = 7 and n = 2 with ρn(G) −
β1(G) = 7 = k.

Proposition 1. For any positive integer k, there exists
an infinite class of graphs for which ρn(G)−β1(G) = k

Proof: We construct an infinite class of triangle
free graphs G(k, n), n ≥ 2 with the following three
steps.
Step 1: Consider Two copies of any odd cycle C2n+1

for n ≥ 2. Join ith vertex of first copy of C2n+1

(inner cycle) with the ith vertex of second copy of
C2n+1 (outer cycle). We denote the obtained graph as
H = C2n+1⊕C2n+1. Now obtain k copies of the graph
H . Let uij and vij for 1 ≤ i ≤ k; j = 1, 2, .....2n + 1
respectively be the labels of the vertices of inner and
outer odd cycles C2n+1 in the ith copy Hi of H . Then
uij for 1 ≤ i ≤ k; j = 2, 4, ....2n, 2n + 1 and vij for
1 ≤ i ≤ k; j = 1, 3, 5, ....2n − 1, 2n are called pivotal
vertices.
Step 2: Choose n + 1 integers t1, t2, ...tn+1

such that
∑n+1

r=1 tr = k − 1. Form the stars
K1,t1 ,K1,t2 , .... ...K1,tn+1

. Let cr denote the
central vertices of the star K1,tr , 1 ≤ r ≤ n+ 1.
Step 3: Merge each central vertex cr with the pivotal
vertex v1(2r−1), 1 ≤ r ≤ n respectively and cn+1 with
v1(2n). The obtained graph has k − 1 pendant vertices
say, w1, w2.....wk−1. Finally, merge each pendant vertex
wl, with the pivotal vertex vl+1,1 1 ≤ l ≤ k − 1 to
obtain the graph G(k, n). The graph G(7, 2) is shown
in the Fig. 2.
Now one can verify that the set of pivotal vertices
{uij |1 ≤ i ≤ k; j = 2, 4, ....2n, 2n + 1} ∪ {vij |1 ≤
i ≤ k; j = 1, 3, ....2n − 1, 2n} is a ρn set of
G(k, n) of order k(2n + 2). Further, the set of
edges {uijvij}|1 ≤ i ≤ k ; j = 1, 2, 3, ....2n + 1
is a β1 set of order k(2n + 1). Therefore
ρn(G(k, n))−β1(G(k, n)) = k(2n+2)−k(2n+1) = k.
For the graph G(7, 2) in Fig. 2, the encircled vertices
(6 × 7 = 42) form a ρn-set and the set of edges
(5 × 7 = 35) that join inner odd cycle with outer odd
cycle in each copy of H = C5 ⊕ C5 forms a β1-set.
Therefore ρn(G(7, 2))−β1(G(7, 2)) = 42−35 = 7 = k.

We find a lower bound for matching number α1(G)
in terms of edges.

Proposition 2. For any graph G with odd number of
vertices and α1(G) = k,

−1 +
√

1 + 8q

4
≤ α1(G)

and equality holds if and only if G is a complete graph
with odd number of vertices.

Proof: Let α1(G) = k. Since α1(G) ≤ bp2c, we
have p = 2k + 1 or 2k. Then q ≤2k+1 C2 = k(2k + 1).
Hence 2k2 + k− q ≥ 0. Solving this quadratic equation
for k we get the desired result.
If G is a complete graph with odd number of vertices,
say p = 2k + 1, then one can easily verify that the
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bound is attained. Conversely, suppose that α1(G) =

k = −1+
√

1+8q
4 . On simplifying this expression, we get

q = k(2k + 1) =2k+1 C2. Hence we conclude that G is
a complete graph with p = 2k + 1 vertices.

The bound for a graph with even number of vertices is
similar, but in this case the lower bound is little improved
and we have the following

Corollary 1. For any graph G with even number of
vertices and α1(G) = k,

1 +
√

1 + 8q

4
≤ α1(G)

and equality holds if and only if G is a complete graph
with even number of vertices.

III. NUMBER OF TRIANGLES IN A GRAPH

The strength of a vertex s(v), v ∈ V is defined as the
number of edges in 〈N [v]〉. Then maximum strength of
G,∆s(G) = maxv∈V s(v). Similarly minimum strength
of G, δs(G) is defined. The signature sn(v) of a vertex
v ∈ V is the number of edges in 〈N(v)〉. Equivalently,
sn(v) is the number of triangles containing v. Therefore
if v is a vertex not in any triangle, then sn(v) = 0.
It is well known that sum of degrees of all vertices is
twice the number of edges. We now show that the sum
of signatures of all vertices is equal to thrice the number
of triangles and hence obtain an expression for number
of triangles in any graph.

Proposition 3. For any graph G with t triangles,

t =

∑
v∈V sn(v)

3
(1)

and ∑
v∈V

s(v) = 2q + 3t (2)

Further,
∑

v∈V s(v) is odd (even) if and only if number
of triangles in G is odd (even).

Proof: Since every triangle is counted three
times in counting sn(v) of all the vertices, we have∑

v∈V sn(v) = 3t proving the desired result (1). We
note that for any vertex v ∈ V, the strength s(v) =
d(v) + sn(v). Therefore

∑
v∈V s(v) =

∑
v∈V d(v) +

sn(v) = 2q + 3t.
The last part of the proposition follows from the fact

that
∑

v∈V sn(v) = 3t is odd or even according as
number of triangles in G is odd or even.

For example, for the graph G in Fig. 3, number of
triangles in G = t = 5, q = 15 and

∑
v∈V sn(v) = 15 =

3×5 = 3t. Again,
∑

v∈V s(v) = 45 = 2×15 + 3×5 =
2q + 3t which are in agreement with the results (1) and
(2).
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Fig. 3. A graph G with 5 triangles

Let ∆sn(G), δsn(G) denote the maximum and min-
imum signature of G respectively. If G is a graph in
which every edge is in a triangle, then we can estimate
the number of triangles.

Corollary 2. For any graph G, in which every edge is
in a triangle,

pδsn
3
≤ t ≤ p∆sn

3

Further, the bound is sharp.

Proof: The result follows from the fact that
pδsn ≤

∑
v∈V sn(v) = 3t ≤ p∆sn .

A graph G is said to be k-signature regular if
sn(v) = k for every v ∈ V . Any signature regular
graph need not be regular. But if every edge is contained
in a triangle, then every signature regular graph is also
regular. For example, the graph obtained by removing the
edges joining antipodal vertices from K6 is 4-signature
regular and 4-regular graph. Any signature regular graph
attains both upper and lower bounds in the Corollary 2

We now obtain bounds for n-covering number of G
in terms of maximum strength ∆s(G).

Proposition 4. For any graph G,
q

∆s
≤ ρn(G) ≤ q −∆s + 1 (3)

Further, these bounds are sharp.

Proof: Since a vertex can n-cover at most ∆s(G)
edges, to n-cover all the edges, we need at least q

∆s(G)

vertices. Hence q
∆s(G) ≤ ρn(G) which yields the desired

lower bound. Let v be a vertex of maximum strength ∆s.
Then v n-covers all the edges in 〈N [v]〉. Let S be the
set of vertices of order at most |X − 〈N [v]〉| = q−∆s,
formed by choosing one end of every edge in X−〈N [v]〉.
Then S, n-covers all the edges in X − 〈N [v]〉. Hence
S ∪ {v} is a n-covering of G. Therefore ρn(G) ≤ |S ∪
{v}| ≤ q −∆s + 1.

For any complete bipartite graph, G = Km,n,m >
n,∆s = m, q = mn, and ρn(G) = n = mn

m = q
∆s

.
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Hence the lower bound in (3) is attained for any complete
bipartite graph. A wounded spider is a tree obtained by
subdividing at most n − 1 edges of a star K1,n. Any
wounded spider attains the upper bound in (3). Further,
any complete graph Kn attains both upper and lower
bounds in (3).

For any triangle free graph the maximum degree coin-
cides with maximum strength of G. Hence the following
corollary is immediate.

Corollary 3. For any triangle free graph G with maxi-
mum degree ∆,

q

∆
≤ ρn(G) ≤ q −∆ + 1.

The proof of Proposition 4, suggests a similar lower
bound for another parameter called open full domination
number introduced by Brigham et al. [4]. A vertex v
in a graph G openly dominates the subgraph 〈N(v)〉
induced by the (open) neighbourhood N(v). A set S
of vertices in G is a full open dominating set if every
edge of G belongs to 〈N(v)〉 for some v ∈ S. The
order of minimum full open dominating set is the full
open domination number γFO(G). A graph G has a full
open dominating set if and only if G contains no isolated
vertices and every edge of G lies on a triangle in G. We
get a lower bound for full open domination number of
a graph in terms of maximum signature ∆sn(G).

Proposition 5. For any graph G in which every edge
lies in a triangle,

q

∆sn(G)
≤ γFO(G) (4)

Proof: Since a vertex v can openly dominate at most
∆sn(G) edges, to dominate all the edges of G we need
at least q

∆sn
vertices, Hence γFO(G) ≥ q

∆sn
.

IV. NEW CLASS OF GRAPHS

Definition 1. Well covered graphs In 1970 Plum-
mer [15] has introduced the concept of well covered
graphs and further studied in [2], [16], [17]. A graph
G is well covered if every maximal independent set is
of same order. In other words G is well covered if and
only if i(G) = α(G).

The definition of well covered graphs motivated to
define another special class of graphs called clique
regular graphs. A complete subgraph is called a clique
of G. The clique induced by the set S is maximal if
the S ∪ {v}} is not a clique of G for any v ∈ V . Let
K(G) denote the set of all maximal cliques of G and
|K(G)| = k denote the number of maximal cliques in
G. Then clique number ω(G) is the order of maximum

clique of G. Similarly minimum clique number ϑ(G) is
the minimum order of a maximal clique of G.

Definition 2. Clique Regular Graphs A graph G is
clique regular if every clique is of same order. Thus
G is k- clique regular graph if ω(G) = ϑ(G) = k.

For example, friendship graph Fn is a graph in which
n triangles have a vertex in common. Clearly, Fn is a
3-clique regular graph. Every cycle is 2-clique regular.
A wind mill graph Wd(n, k) is a graph in which k
copies of complete graph Kn have a vertex in common.
In fact wd(3, k) = Fk. Clearly, Wd(n, k) is n-clique
regular graph. The corona product Km ·Kn is obtained
as follows. Take m copies of Kn. Then ith vertex of
Km is adjacent to every vertex of ith copy of Kn for
1 ≤ i ≤ m. The corona product K3 · K2 is 3-clique
regular graph. In general, the corona product Km ·Km−1

is m-clique regular graph.
The next theorem establishes the relationship between

clique regular graphs and well covered graphs.

Proposition 6. A graph G is well covered if and only if
G is clique regular

Proof: A graph G is well covered

⇐⇒ i(G) = α(G)

⇐⇒ every maximal independent set is of same order in G

⇐⇒ every maximal clique is of same order in G

⇐⇒ ω(G) = ϑ(G)

⇐⇒ G is clique regular

From the above theorem it is immediate that the
following graphs are well covered. For example, every
cycle is 2-clique regular, hence the complement of every
cycle is well covered. For a similar reason the com-
plement of Petersen graph, complement of any triangle
free graph are well covered. Further, complement of any
windmill graph Wd(n, k) and complement of any corona
Km ·Km−1 are well covered graphs.

A graph is self complementary if and only if G the
complement of G is isomorphic to G. That is G ≡ G. We
now define another important class of graphs called self
well covered graphs. A graph G is said to be self well
covered if both G and G are well covered. Similarly, a
graph G is self clique regular if both G and G are clique
regular. It is immediate that every self complementary
well covered graphs are self well covered graphs. Again
every self complementary clique regular graphs are self
clique regular. But there are other graphs which are
self well covered. The next result characterizes self well
covered graphs.

Proposition 7. Every self clique regular graph is self
well covered.
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Proof: A graph G is self well covered

⇐⇒ i(G) = α(G) both in G and G
⇐⇒ every maximal independent set is of same order in

G and G

⇐⇒ every maximal clique is of same order both in

G and G
⇐⇒ ω(G) = ϑ(G)both in

G and G

⇐⇒ both G and G are clique regular

For example, Every complete garph Kn is self
well covered. The path P4 and cycle C5 are
self well covered. The complete k−partite graph
Kn1,n2... ...nk

is a graph in which the vertex
set V (G) is partetioned in to k independent sets with
|V1| = n1, |V2| = n2, ... , ..., |Vk| = nk and every
pair of vertices in k sets are adjacent. In particular,
K2,2,... ,...,2 is called cocktail party graph which
is a typical example of self well covered graph.

A minmax relation is a theorem stating equality be-
tween the answers to a minimization problem and a
maximization problem. The Konig- Egervary [10] theo-
rem is such a relation for matching and vertex covering
number which states that if G is a bipartite graph then the
covering number β(G) = the matching number α1(G).
We extend the Konig - Egervary theorem to self clique
regular graphs as follows in which all the four min-max
numbers are equal.

Proposition 8. A graph G is self complementary and
self clique regular graph if and only if
i(G) = α(G) = ω(G) = ϑ(G)

Proof: From Proposition IV.II , we have a graph G
is self clique regular ⇐⇒ i(G) = α(G) and ω(G) =
ϑ(G). Now it remains to show that α(G) = ω(G).
Since independent sets and complete sets exchange their
properties on complementation for any graph we have
α(G) = ω(G). As G is self complementary G ≡ G.
Hence α(G) = ω(G) = ω(G).

Definition 3. Clique paths and clique cycles.

Similar to n-covering number another concept called
line clique covering number is defined by Choudam [5]
as the minimum number cliques that cover all the
vertices of a graph. Parthasarathy and Choudam[14]
studied the same extending it to product graphs. Surekha
R Bhat [3] observed that a block behaves like an edge
of a graph with multiple vertices. This concept led to
define block walks and block paths in a graph. On similar
lines we define clique paths, clique complete graph and

generalized clique stars. It is well known that a clique
graph KG(G) is a graph with vertex set as set of all
maximal cliques of G and any two vertices in KG(G)
are adjacent if any two cliques have a vertex in common.

A graph G is called a clique path, if KG(G) is a
path. A graph G is called a clique cycle, if KG(G) is
a cycle. A graph G is said to be Clique−Complete, if
KG(G) is complete. A graph G is a Clique − Star, if
KG(G) is a clique complete graph. A generalized star
denoted S(n, k) is a windmill graph in which each Kn

has n− 1 vertices in common.

A clique path, two types of clique cycles and a
generalized star are shown in Fig. 4.

Another Clique Cycle G A Clique Cycle  G 
A Clique path G

Generalized Star S(4, 6)Friendship Graph

1

2
3

F
4

Fig. 4. A Clique Path G1, A Clique Cycle G2, Another Clique Cycle
G3, Friendship Graph F4, Generalized Star S(4, 6)

A vertex v ∈ V is said to be unicliqual if v lies
in only one clique, otherwise v is called polycliqual
vertex. A clique k is called a monoclique if k contains
at least one unicliqual vertex. For the clique cycle G2

in Fig. 4, every clique is a monoclique whereas for
the another clique cycle G3 in Fig. 4, no clique is
a monoclique. Friendship graph and Hajo’s graph are
examples of clique complete graphs. The clique cycle
G2 and friendship graph are 3-clique regular graphs.

V. CLIQUE-VERTEX DEGREE, POLYCLIQUAL VERTEX
DEGREE AND CLIQUE-CLIQUE DEGREE

Here we introduce some new clique-degree
concepts.

Definition 4. The cv-degree (clique vertex degree) of
a clique l, dcv(l) is the number of vertices in clique
l. The polycliqual vertex-degree of a clique l, dpc(l) is
the number of polycliqual vertices in the clique l. Let
Vpc denote the set of all polycliqual vertices of G and
|Vpc| = Pc. The vc-degree (vertex clique degree) of a
vertex v ∈ V is the number of cliques incident on v.

Let ∆cv(G) and δcv(G) denote the maximum and
minimum cv-degrees of G respectively. Then ∆pc(G)
and δpc(G), are defined similarly. We observe that
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∆cv(G) = ω(G) and δcv(G) = ϑ(G). A clique-
polycliqual vertex graph CPV(G) is a bipartite graph
with partition V1=set of all cliques of G and V2=set of all
polycliqual vertices of G and any two elements l ∈ V1

and u ∈ V2 are adjacent if the clique l is incident on the
polycliqual vertex u in G.

Proposition 9. For any graph G with k cliques and pc
polycliqual vertices,

pc + k − 1 ≤
∑

u∈Vpc(G)

dvc(u) =
∑

l∈K(G)

dpc(l) ≤ k∆vc

Further,
∑

u∈Vpc(G) dvc(u) = pc + k − 1 if and only if
CPV (G) is a tree.∑

u∈Vpc(G) dvc(u) = k∆vc if and only if CPV (G) is a
complete bipartite graph.

Proof: First we note that for any u ∈ Vpc, dvc(u)
is equal to d(u), u ∈ V2 in CPV (G). Therefore∑

u∈Vpc(G) dvc(u) =
∑

u∈V2
d(u) = q(CPV )(G). Sim-

ilarly, for any l ∈ K(G), dpc(l) is equal to d(l), l ∈ V1

in CPV(G). Therefore
∑

l∈K(G) dpc(l) = q(CPV )(G).
Since CPV (G) is a bipartite graph with Pc+k vertices,
Pc + k − 1 ≤ q(CPV )(G) ≤ k∆vc. This proves the
result.
It is evident that if if CPV(G) is a tree then it has
pc + k − 1 edges and if CPV(G) is a complete bipartite
graph then it has ∆vck edges. This completes the proof.

Note 1. 1) If G is a clique complete graph in which
every polycliqual vertex is in every clique then∑

u∈Vpc(G) dvc(u) = k∆vc.
2) If G is a block graph, then

∑
u∈Vpc(G) dvc(u) =

pc + k − 1.

Note 2. In Hajo’s graph every polycliqual vertex is not
in every clique. Thus upper bound in above theorem is
not attained for Hajo’s graph.

The next proposition is similar to above result and
hence we state the result and omit the proof.

Proposition 10. For any graph G with k cliques and pc
polycliqual vertices,

pc + k − 1 ≤
∑

u∈PC(G)

dvc(u) =
∑

l∈K(G)

dpc
(l) ≤ k∆pc

;

∑
l∈K(G) dpc(l) = pc + k− 1 if and only if CPV (G) is

a tree;∑
l∈K(G) dpc

(l) = k∆pc
if and only if CPV (G) is a

complete bipartite graph.

Extending the above result taking all the vertices
instead of polycliqual vertices, we get the following

result. Clique vertex graph CV (G) is a bipartite graph
with bipartetion V1 as set of all cliques of G and V2 as
set of all vertices of G. Any two elements l ∈ V1, u ∈ V2

are adjacent if they are incident.

Proposition 11. For any graph G with k cliques,

p+ k − 1 ≤
∑

u∈V (G)

dvc(u) =
∑

l∈K(G)

dcv(l) ≤ ωk;

∑
l∈K(G) dcv(l) = ωk if and only if CV(G) is a complete

bipartite graph;∑
l∈K(G) dcv(l) = p + k − 1 if and only if CV(G) is a

tree.

Proof: First we note that for any u ∈ V, dvc(u)
is equal to d(u), u ∈ V2 in CV (G). Therefore∑

u∈V (G) dvc(u) =
∑

u∈V2
d(u) = q(CV )(G). Simi-

larly, for any l ∈ K(G), dcv(l) is equal to d(l), l ∈ V1

in CV(G). Therefore
∑

l∈K(G) dcv(l) =
∑

l∈V1
d(l) =

q(CV )(G). Since CV (G) is a bipartite graph with P+k
vertices, P + k − 1 ≤ q(CPV )(G) ≤ kω. This proves
the result.
It is evident that if if CV(G) is a tree then it has p+k−1
edges and if CPV(G) is a complete bipartite graph then
it has ωk edges. This completes the proof.

G
G

4

5

Fig. 5. Graph G4 with 4 Cliques and Graph G5 with 5 Cliques

Example 2. For the graph G4 of Fig. 5, number of
cliques k = 4,

∑
l∈K(G) dcv(l) = 10 and number of

vertices p = 7. Thus p+k−1 = 10 =
∑

l∈K(G) dcv(l) =
10.

For the graph G5 of Fig. 5, number of cliques k = 5,∑
l∈K(G) dcv(l) = 15, ω = 4 and number of vertices

p = 9. Thus p+ k − 1 = 13 ≤
∑

l∈K(G) dcv(l) = 15 ≤
ωk = 20.

Corollary 4. For any graph G,

p− 1

ω − 1
≤ k

Proof: From Proposition 11, p + k − 1 ≤∑
l∈K(G) dcv(l) ≤ kω. Thus

p+ k − 1 ≤ ωk
p− 1 ≤ k(ω − 1)

p− 1

ω − 1
≤ k
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Fig. 6. Graph G6 with Clique number equal to 4

Example 3. For the graph G6 of Fig. 6, number of
cliques k = 8, ω = 4 and number of vertices p = 11.

Thus
p− 1

ω − 1
=

10

3
≤ k = 8. One can easily check that

for the Friendship graph Fn the equality holds in the
above corollary.

Corollary 5. If G is a block graph, then

p− 1

ω − 1
≤ k ≤ p− 1

ϑ− 1

VI. CONCLUSION

We have disproved the result ρn(G) ≤ β1(G) by
constructing an infinite class of graphs as counter exam-
ple. New class of graphs such as clique regular graphs,
clique complete graphs, clique paths , clique cycles and
generalized stars are defined and studied.
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