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Abstract—The present study deals with a steady two-
dimensional Casson in-compressible fluid flow in a channel due
to non-uniform suction or injection through its porous walls.
The constitutive equations are reduced to a nonlinear ordinary
differential equation using similarity transformation with ap-
propriate boundary conditions. Now, the modeled equation is
solved using Homotopy Perturbation method (HPM) and by an
effective finite difference method (FDM). The results obtained
for velocity, skin friction at the upper and lower walls are
displayed in the form of figures and tables. It is interesting to
note that the results are in good agreement.

Index Terms—Casson fluid, porous channel, Navier-Stokes
equations, homotopy perturbation method, finite difference
method.

I. INTRODUCTION

THE non-Newtonian fluids have wide applications in
everyday life, and it is well known that the fluids that

appear in industrial and engineering processes are mostly
non-Newtonian fluids. The mechanics of non-Newtonian
fluid flows present a special challenge to engineers, physi-
cists, and mathematicians. The properties of such fluids
cannot be explored by simple Navier Stokes equations. The
Navier Stokes theory is inadequate for such fluids and there
is no single constitutive equation that exhibits all properties
of such non-Newtonian fluids. In the process, several non-
Newtonian fluid models have been proposed([1], [2], [3],
[4], [5]). Amongst these Casson fluid satisfactorily describes
the properties of many polymers over a wide range of shear
stress.

In 1957, N. Casson [6] developed the Casson fluid model.
We can observe in the literature that the Casson fluid model
is sometimes stated to fit rheological data better than general
viscoplastic models for many materials. Casson fluid model
exhibits yield stress. If the shear stress is less than the yield
stress applied to the fluid, it behaves like a solid whereas
if the shear stress is greater than the yield stress is applied,
it starts to move. An approximate Casson fluid model for
tube flow of blood is studied by W. P. Walawander et al. [7].
Abdul-Sattar et al. [8] in their paper explain the effect of
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squeezing flow of a Casson fluid between parallel plates on
magnetic fields.

Porous media are encountered in many natural as well
as man-made systems. The laminar flow in a channel with
porous walls was studied by Berman [9]. Further investi-
gation was done by Yuan [10]. Later, White et al. [11]
studied the laminar flow in a uniformly porous channel. The
porous medium is characterized by its permeability which is
a measure of the flow conductivity in the porous medium.
Laminar flow between two parallel porous walls with variable
permeability is studied by various authors ([12], [13], [14]).
Further, Hafeez Y et al. [15], Attia et al. [16] have studied
the effect of injection and suction in Casson fluid.

Non-linear phenomena play a vital role in Fluid Mechan-
ics, Quantum Physics, Magnetohydrodynamics, etc. There
are various analytical and numerical methods to find its
exact or approximate solution ([17], [18]). In this paper,
we have used a powerful semi-analytical method, known
as Homotopy Perturbation Method (HPM). The HPM was
first introduced by J. H. He in 1998 ([19], [20]). To solve
different types of differential and integral equations many
researchers have used HPM ([21], [22], [23], [24], [25], [26]).
This method is a combination of traditional Perturbation
method and homotopy in topology. In HPM the solution
is considered as the summation of an infinite series which
usually converges rapidly to the exact solutions. This method
continuously deforms a tough problem into a number of
simple problems, easy to solve. The major drawback of the
traditional perturbation method is the over-dependence on
the existence of small parameters. This condition is overstrict
and greatly effects the application of the Perturbation method
because most of the nonlinear problems do not even contain
the so-called small parameter. The HPM doesn’t depend upon
a small parameter involved in the problem. The approxima-
tion obtained by HPM is uniformly valid not only for small
parameters but also for very large parameters.

II. FORMULATION OF THE PROBLEM

The steady incompressible Casson fluid flow along a
two-dimensional channel with uniformly porous walls with
different velocities at the walls is considered. Let x and
z coordinate axes are taken parallel and perpendicular to
the channel walls, respectively (Figure 1). Let u and v are
velocity components in x and z directions, respectively.

At the wall z = 0, the velocity components v = V1 and
v = V2 at the wall z = h, where h is the channel width. The
Reynolds number R1 = (V1h)/µ is defined for the cases
|V1| ≥ |V2| and R2 = (V2h)/µ for |V2| ≥ |V1| where µ is
the viscosity. By assuming the flow to be steady, laminar and
incompressible, and by taking the velocity components to be
u = u(x, z) and v = v(x, z), the momentum and continuity
equations reduce to
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Fig. 1: Schematic diagram of the flow
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respectively, where ρ is the fluid density, p is the pressure
, ν is the kinematic viscosity, γ is the Casson parameter
and λ is the non-dimensional variable given by λ = z

h . The
flow of fluid is through a two-dimensional channel having
fluid sucked or injected with constant velocities V1 and V2

through its porous walls at z = 0 and z = h, respectively.
The boundary conditions to be satisfied by the flow are

u(x, 0) = 0, u(x, h) = 0 (4)
v(x, 0) = V1, v(x, h) = V2 (5)

For suction or injection flow, the problems to be solved for
the case |V2| ≥ |V1| can be reduced to the case |V1| ≤ |V2|.
But for mixed flow, the case |V1| ≥ |V2| and |V2| ≥ |V1| are
two different problems and need to be solved separately. It is
assumed that for this two-dimensional incompressible flow,
there exists a stream function of the form

ξ(x, λ) =
[hU(0)

α2
− V2x

]
f(λ) (6)

where α2 = 1− V1

V2
, for the case |V1| ≥ |V2|.

The expressions for the velocity components are

u(x, h) =
[V (0)

α2
− V2x

h

]
f ′(λ) (7)

v(λ) = V2f(λ). (8)

Similarly, for the case |V2| ≥ |V1| there is a stream function
of the form

ξ(x, λ) =
[hU(0)

α1
− V1x

]
f(λ) (9)

where α1 = V2

V1
− 1.

The above choice of stream function and velocity compo-
nents reduce (1) and (2) to scalar equation.(

1 +
1

γ
)f ′′′ +R2(f

′2 − ff ′′) = K2 (10)

where K2 is a constant and f is a function of λ.
The boundary conditions are

f(0) = 1− α2, f
′(0) = 0 (11)

f(1) = 1, f ′(1) = 0 (12)

where α2 = 1− V1

V2
.

Similarly, for the case |V1| ≥ |V2|, the reduced equation is(
1 +

1

γ

)
f ′′′ +R1(f

′2 − ff ′′) = K1. (13)

The boundary conditions are

f(0) = 1, f ′(0) = 0 (14)
f(1) = 1 + α1, f

′(1) = 0 (15)

where α1 = V2

V1
− 1.

The boundary conditions (11) and (14) imply the suction
case α2 and α1, must lie in the range 1 ≤ α2 ≤ 2 and
−1 ≥ α1 ≥ −2, whereas for the mixed cases they are in
the range 0 ≤ α2 ≤ 1 and 0 ≥ α1 ≥ −1.

Differential equations of the type (10) and (13) are usually
solved by direct integration which frequently involves more
than one integration process, because of the two-point nature
of the boundary conditions. Moreover, to confirm the validity
of numerical results they are to be solved using other possible
available methods. Thus, the use of a series solution provides
an effective approach.

III. METHOD OF SOLUTION

A. Homotopy Perturbation Method (HPM)

To describe the HPM solution [27] for non-linear differ-
ential equation, we consider,

D[f(η)]− f1(η) = 0 (16)

where D denotes the operator, f(η) is unknown function,
η denote the independent variable and f1 is known function.
D can be written as

D = L+N (17)

where L is a simple linear part, N is remaining part of
the equation (16).

The proper choice of L,N form the governing equation,
one can get the homotopy equation as follows

H(ϕ(n, q; q)) = (1− q)[L(ϕ, q)− L(v0(η))]

+q[D(ϕ, q)− f1(η)] = 0
(18)

where q is the embedding parameter which varies from 0 to
1 and v0(η) is the initial guess to the equation (16). So we
assume the solution of equation (18) as follows

ϕ(n, q) =
∞∑

n=0

qnfn(η) (19)

The solution to the considered problem is equation (19) at
q = 1. For the problem considered here, the first three terms
in the solution are

For mixed injection:

f0(η) = 1 + 3α1η
2 − 2α1η

3 (20)
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For mixed suction:

f0(η) = 1− α2 + 3α2η
2 − 2α2η

3 (23)
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1
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] (24)
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(25)

B. Finite Difference Method

Finite Difference Method (FDM) is one of the oldest
methods used to solve differential equations that are difficult
or impossible to solve analytically. The finite difference
method is applied directly to the differential form of the
governing equations. The principle is to employ a Taylor
series expansion for the discretization of the derivatives of
the flow variables.

IV. RESULTS AND DISCUSSION

A new type of series solution is presented for Casson
fluid flow through parallel and uniformly porous walls of
different permeability. The behavior of Casson parameter
and Reynolds number on velocity profile is described in this
section. For this purpose Figure(2-13) shows the velocity
profiles for various values of Reynolds number and Casson
parameter for different permeability factors are displayed.

The behaviour of flow for different values of Casson fluid
parameter is shown in Figures (2-13). All the velocity profiles
show that, velocity increases for η values and reaches to
a maximum and thereafter decreases. It is clear from the
figure that, flow pattern changes at one point in the interval
[0, 1] for different Reynolds numbers and γ values. In the

interval 0 ≤ η ≤ 0.5, velocity increases and it decreases
in 0.5 ≤ η ≤ 1. The same behaviour is observed even
when permeability factor values is increased. Figures (14-16)
represent the velocity profile for mixed case with different
values of Reynolds number for γ = 0.1, 0.2, 0.3 respectively.
Figure 17 and Figure 19 represent the velocity profile with
variation of Casson parameter for R1 = 20 and R1 = −20
respectively. The same behaviour is observed even when
permeability factor values is increased (Figure 18).

The effect of different permeability factors on skin friction
at the walls for different values of Reynolds number and
Casson parameter are represented in the Tables(1-3). Also
to find the accuracy of the HPM solution, the values of the
skin friction at the walls are compared with pure numerical
values. In this method we have generated higher order terms
upto 25 using Mathematica.

The results of f ′′(1), f ′′(0) for fixed values of perme-
ability factor and different values of R1, γ are shown in
Table (1-3). The values for f ′′(1) , f ′′(0) are monotonically
increasing with the values of R1 and γ = 0.1, 0.2, 0.3 (Table
1). But, Table (2) depicts that the vlues of f ′′(1) decreasing
with values of R1 and γ. For positive values of α1 and α2

where as reverse trend is observed for f ′′(0). It is important
to know the convergence of series solutions obtained. So,
we have verified the results described in Table (1-3), and
Figures (2-13) by pure numerical method (FDM) and both
the methods give results which are in good agreement.
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Fig. 2: Velocity profiles with α2 = 0.51425, for different
values of Reynolds numbers R2 and ν = 0.1
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Fig. 3: Velocity profiles with α2 = 0.51425, for different
values of Reynolds numbers R2 and ν = 0.2
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Fig. 4: Velocity profiles with α2 = 0.51425, for different
values of Reynolds numbers R2 and γ = 0.3
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Fig. 5: Velocity profiles with α2 = 1.00863, for different
values of Reynolds numbers R2 and γ = 0.1
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Fig. 6: Velocity profiles with α2 = 1.00863, for different
values of Reynolds numbers R2 and γ = 0.2
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Fig. 7: Velocity profiles with α2 = 1.00863, for different
values of Reynolds numbers R2 and γ = 0.3
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Fig. 8: Velocity profiles with α2 = 1.24575, for different
values of Reynolds numbers R2 and γ = 0.1
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Fig. 9: Velocity profiles with α2 = 1.24575, for different
values of Reynolds numbers R2 and γ = 0.2
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Fig. 10: Velocity profiles with α2 = 1.24575, for different
values of Reynolds numbers R2 and γ = 0.3
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Fig. 11: Velocity profiles with α2 = 1.62204, for different
values of Reynolds numbers R2 and γ = 0.1
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Fig. 12: Velocity profiles with α2 = 1.62204, for different
values of Reynolds numbers R2 and γ = 0.2
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Fig. 13: Velocity profiles with α2 = 1.62204, for different
values of Reynolds numbers R2 and γ = 0.3
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Fig. 14: Velocity profiles with α1 = −0.20820, for different
values of Reynolds numbers R1 and γ = 0.1
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Fig. 15: Velocity profiles with α1 = −0.20820, for different
values of Reynolds numbers R1 and γ = 0.2
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Fig.16.Velocity profile with α1 = −0.20820 for different Fig. 17.Velocity profile with α1 = −0.20820, R1 = 20
Values of Reynolds number R1 and γ = 0.3 and for different values of γ
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Fig.18.Velocity profile with α1 = −0.33410 for different Fig. 19.Velocity profile with α1 = −0.20820, R1 = −20
Values of Reynolds number R1 and γ = 0.3 and for different values of γ

TABLE I: Results for physical parameters (mixed injection)

R1 γ α1 = −0.20820 α1 = −0.33410
f ′′(1) (HPM) FDM f ′′(0)(HPM) FDM f ′′(1) (HPM) FDM f ′′(0)(HPM) FDM

-20 0.1 0.96814 0.96634 -1.65479 -1.64697 1.56836 1.56935 -2.61595 2.59718
-15 1.02463 1.02893 -1.54163 -1.53190 1.66583 1.65741 -2.44482 -2.45337
-10 1.09342 1.09625 -1.43624 -1.42679 1.77106 1.77158 -2.28591 -2.28842
-5 1.16827 1.16213 -1.33876 -1.34669 1.88402 1.88350 -2.13922 -2.14269
-1 1.23253 1.22619 -1.26648 -1.27020 1.97988 1.96303 -2.03057 -2.03590
1 1.26611 1.22619 -1.23223 -1.27020 2.02961 2.00984 -1.9791 -1.99645
5 1.33611 1.33404 -1.16745 -1.17477 2.13257 2.11665 -1.88176 -1.89582
10 1.42884 1.43431 -1.09332 -1.09079 2.26763 2.26631 -1.77029 -1.77317
15 1.52714 1.52961 -1.02651 -1.02431 2.40939 2.40498 -1.66965 -1.67138
20 1.63069 1.62212 -.966637 -0.97139 2.55739 2.75450 -1.57922 -1.47454
-20 0.2 0.79288 0.79331 -2.08485 -2.08120 1.28680 1.29100 -3.24718 -3.28364
-15 0.87840 0.87791 -1.83865 -1.83134 1.42432 1.42330 -2.87304 -2.89630
-10 0.98209 0.98080 -1.61622 -1.61791 1.58654 1.60556 -2.53766 -2.55121
-5 1.10547 1.10359 -1.41945 -1.41818 1.77456 1.78866 -2.24271 -2.26056
-1 1.21883 1.22293 -1.28112 -1.27667 1.94360 1.96220 -2.03606 -2.04239
1 1.28038 1.27610 -1.21833 -1.22227 2.03419 2.05046 -1.94232 -1.96062
5 1.41299 1.40826 -1.10516 -1.10652 2.22699 2.24673 -1.77334 -1.78463
10 1.59561 1.59933 -0.98585 -0.97794 2.48824 2.51713 -1.59471 -1.60337
15 1.79507 1.79607 -0.88885 -0.88830 2.76936 2.79034 -1.44864 -1.45705
20 2.00894 2.01115 -0.81114 -0.80706 3.06720 3.09245 -1.33062 -1.33763
-20 0.3 0.69196 0.68387 -2.50393 -2.51221 1.12840 1.12824 -3.92107 -3.39149
-15 0.78122 0.78601 -2.12468 -2.12830 1.27862 1.28418 -3.33333 -3.32697
-10 0.90065 0.89637 -1.78513 -1.78358 1.47199 1.47917 -2.81377 -2.79610
-5 1.05563 1.05830 -1.49201 -1.48465 1.71343 1.70395 -2.36995 -2.37551
-1 1.20736 1.19600 -1.29368 -1.30290 1.94244 1.93932 -2.07145 -2.06927
1 1.29259 1.28595 -1.20673 -1.21420 2.06866 2.07209 -1.94079 -1.93533
5 1.48110 1.48210 -1.05646 -1.05842 2.34316 2.34002 -1.71479 -1.71507
10 1.74767 1.75804 -0.90940 -0.90698 2.72320 2.72379 -1.49246 -1.49447
15 2.04296 2.03655 -0.80070 -0.80094 3.13672 3.15056 -1.32626 -1.31637
20 2.36022 2.34373 -0.72194 -0.72548 3.57529 3.56873 -1.20397 -1.19940
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TABLE II: Results for physical parameters (large suction)

R2 γ α2 = 1.91600 α2 = 1.94300
f ′′(1) (HPM) FDM f ′′(0)(HPM) FDM f ′′(1) (HPM) FDM f ′′(0)(HPM) FDM

-20 0.1 -11.11610 -11.11790 11.35830 11.35440 -11.30860 -11.11790 11.4749 11.35440
-15 -11.20200 -11.19920 11.39220 11.38810 -11.3881 -11.19920 11.51860 11.38810
-10 -11.29370 -11.28760 11.42650 11.42710 -11.47250 -11.28760 11.56380 11.42710
-5 -11.39150 -11.39530 11.46110 11.45550 -11.56240 -11.39530 11.61020 11.45550
-1 -11.47450 -11.47160 11.48900 11.48880 -11.63840 -11.47160 11.64830 11.48880
1 -11.51780 -11.51470 11.50300 11.49800 -11.67790 -11.51470 11.66770 11.49800
5 -11.60790 -11.59940 11.53090 11.53480 -11.7600 -11.59940 11.70700 11.53480
10 -11.7277 -11.72040 11.56560 11.55830 -11.86870 -11.72040 11.75700 11.55830
15 -11.8564 -11.84550 11.59990 11.60250 -11.98500 -11.84550 11.80810 11.60250
20 -11.99460 -11.99090 11.63330 11.63370 -12.10940 -11.99090 11.85990 11.63370
-20 0.2 -10.86530 -10.86650 11.25010 11.24620 -11.07520 -10.86650 11.33880 11.24620
-15 -10.99690 -10.99150 11.30870 11.30480 -11.19790 -10.99150 11.41180 11.30480
-10 -11.14410 -11.14260 11.36960 11.36600 -11.33450 -11.14260 11.48930 11.36600
-5 -11.30950 -11.30500 11.43220 11.43150 -11.48710 -11.30500 11.57140 11.43150
-1 -11.45690 -11.45090 11.48320 11.48000 -11.62220 -11.45090 11.64030 11.48000
1 -11.53610 -11.54020 11.50880 11.50180 -11.69460 -11.54020 11.67580 11.50180
5 -11.70720 -11.71000 11.55990 11.55700 -11.85010 -11.71000 11.74860 11.55700
10 -11.94740 -11.94850 11.62230 11.61790 -12.06700 -11.94850 11.84260 11.61790
15 -12.22220 -12.21400 11.68080 11.68450 -12.31290 -12.21400 11.93860 11.68450
20 -12.53870 -12.53390 11.73200 11.73600 -12.59330 -12.53390 12.03450 11.73600
-20 0.3 -10.68890 -10.68610 11.16500 11.16250 -10.90950 -10.68610 11.23530 11.16250
-15 -10.84630 -10.84230 11.24140 11.23970 -11.05740 -10.84230 11.32800 11.23970
-10 -11.02940 -11.03200 11.32260 11.31670 -11.22810 -11.03200 11.42930 11.31670
-5 -11.24360 -11.24440 11.40790 11.39960 -11.42640 -11.42640 11.53930 -11.39996
-1 -11.44210 -11.44640 11.47830 11.47320 -11.60870 -11.44640 11.63360 11.47320
1 -11.55180 -11.55070 11.51370 11.51370 -11.70890 -11.55070 11.68270 11.51370
5 -11.79590 -11.79050 11.58420 11.58430 -11.93040 -11.93050 11.78440 11.58430
10 -12.15540 -12.14870 11.66780 11.66970 -12.25330 -12.14870 11.91630 11.66970
15 -12.59160 -12.58720 11.73890 11.73760 -12.63990 -12.58720 12.04910 11.73760
20 -13.12900 -13.11720 11.78290 11.78280 -13.10920 -13.11720 12.17350 11.78280

TABLE III: Results of physical parameters (large injection)

R2 γ α2 = 1.61940 α2 = 1.92780
f ′′(1) (HPM) FDM f ′′(0)(HPM) FDM f ′′(1) (HPM) FDM f ′′(0)(HPM) FDM

-20 0.1 -9.06681 -9.05923 10.02100 10.02140 -11.20010 -11.19710 11.40940 11.40370
-15 -9.20967 -9.20571 9.95365 9.95343 -11.28320 -11.28160 11.44750 11.44360
-10 -9.36470 -9.36523 9.88078 9.87137 -11.37180 -11.36960 11.48650 11.48090
-5 -9.53314 -9.54989 9.80189 9.78864 -11.46610 -11.46560 11.52630 11.51900
-1 -9.67849 -9.67263 9.73405 9.73193 -11.54610 -11.54830 11.55870 11.55490
1 -9.75496 -9.75531 9.69846 9.69577 -11.58770 -11.58590 11.57500 11.57080
5 -9.91602 -9.91062 9.62368 9.62350 -11.67440 -11.66860 11.60780 11.60310
10 -10.13370 -10.13120 9.52301 9.52091 -11.7894 -11.78800 11.64920 11.64300
15 -10.37140 -10.36260 9.41358 9.41540 -11.91270 -11.91100 11.69070 11.68180
20 -10.63130 -10.62870 9.29444 9.29178 -12.04500 -12.03610 11.73200 11.73290
-20 0.2 -8.66488 -8.66646 10.21110 10.20850 -10.95680 -10.95710 11.28100 11.28640
-15 -8.87291 -8.87024 10.11270 10.11131 -11.08460 -11.08190 11.35390 11.34720
-10 -9.11315 -9.11246 9.99914 9.99491 -11.22720 -11.22800 11.42200 11.41950
-5 -9.39180 -9.39113 9.86807 9.86384 -11.38710 -11.38340 11.49310 11.48960
-1 -9.64739 -9.64761 9.74855 9.74614 -11.52910 -11.52060 11.55190 11.55040
1 -9.78761 -9.79631 9.68328 9.67552 -11.60540 -11.59790 11.58180 11.58130
5 -10.09610 -10.09090 9.54038 9.54228 -11.76970 -11.76850 11.64230 11.63780
10 -10.54210 -10.54340 9.33530 9.33096 -11.99980 -11.98930 11.71830 11.72020
15 -11.06820 -11.05310 9.09513 9.09126 -12.26210 -12.25900 11.79300 11.78970
20 -11.69140 -11.69200 8.81191 8.80489 -12.56300 -12.56670 11.86340 11.85770
-20 0.3 -8.39621 -8.39641 10.33800 10.33300 -10.78510 -10.78520 11.19580 11.18880
-15 -8.63540 -8.63216 10.22510 10.22370 -10.93840 -10.93770 11.27930 11.27210
-10 -8.92529 -8.92094 10.08790 10.08850 -11.11610 -11.11580 11.36930 11.37060
-5 -9.27964 -9.27579 9.92074 9.91962 -11.32340 -11.31870 11.46540 11.45990
-1 -9.62142 -9.63075 9.76066 9.75335 -11.51490 -11.51150 11.54620 11.54250
1 -9.81560 -9.80878 9.67027 9.66772 -11.62050 -11.61770 11.58760 11.58530
5 -10.25910 -10.25800 9.46523 9.46357 -11.85480 -11.84620 11.67150 11.66570
10 -10.93880 -10.93480 9.15404 9.15369 -12.19840 -12.19410 11.77600 11.77540
15 -11.79720 -11.79230 8.76388 8.76096 -12.61320 -12.60540 11.87360 11.87550
20 -12.89120 -12.87880 8.26588 8.27100 -13.12120 -13.10660 11.95200 11.94810
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V. CONCLUSIONS

The current analysis is focused on Casson fluid flow
between parallel and porous walls with different porosity at
the walls. From careful observations of the results lead to
the following conclusions

1) for a given α2 and varying R2 (increasing) the max-
imum value of the velocity of the fluid shifts to-
wards the axis whereas for smaller values of R2 it
is parabolic.

2) velocity of the fluid decrease as there is increase in the
Reynolds number till it reaches peak, then the relation
get revesed in the other half.

3) as the Casson parameter value increases, we can ob-
serve that the maximum value of f ′(η) is shifting to
its right side.

4) for γ = 0.1 the velocity curves almost coincides with
each other representing their same characteristics.

5) The skin friction f ′′(1) at the wall increses for different
Casson parameters in the range −20 < R1 < 20 But
for the same case f ′′(0) shows reverse trend (for mixed
injection)

6) For the case of suction f ′′(1) and f ′′(0) both increases
in magnitude for different Cason parameters in the
range −20 < R2 < 20.

7) The physical parameter f ′′(1), increse in magnitude in
the domain −20 < R2 < 20, where as f ′′(0) decreses
for different value of γ, the Casson parameter in the
case of injection
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