
 

Abstract—One of the key challenges in cryptography is 
creating a secure yet efficient design of cryptographic 
algorithms. Recently, lightweight cryptography has drawn a 
strong interest of cryptographers, with the most recent research 
concentrating on constructing the design of block ciphers. In 
contrast, there are considerably fewer publicly released 
proposals for the design of lightweight hash functions, indicating 
that this field is still far from being thoroughly explored. In this 
work, we present a new lightweight hash function based on 
sponge construction with ARX-SPN structure permutation. We 
evaluated the proposed algorithm on a number of parameters, 
including randomness, security (focusing on the algorithm’s 
preimage resistance, second preimage resistance, and collision 
resistance properties), and performance in terms of time and 
memory consumption. 
 

Index Terms—cryptography, hash function, IoT, lightweight, 
sponge construction. 
 

I. INTRODUCTION 
HE development of technology has rapidly grown over 
the past decades. This can be seen with the shift of human 

civilization to Industry 4.0. On top of that, with the 
introduction of the Metaverse, it is entirely possible for 
human civilization to enter that era in the upcoming years. 
That surely has an impact on the increased demand for secure 
applications, considering almost all applications currently 
existing are still using insecure channels such as the internet 
to exchange data. The services of confidentiality, integrity, 
and authentication may provide security guarantees for 
applications, such as RFID and sensor networks. The said 
services can be achieved by utilizing cryptographic 
primitives, including the secret-key cipher and hash function. 

The hash function has a pivotal role in enforcing security 
on applications. It can be used to check message integrity 
and/or enable verification processes. Many seemingly trivial 
yet critical daily circumstancing, including online banking 
transactions, digital currency, OTP generation, password 
protection, as well as lock pattern on mobile phones will not 
operate as smoothly and as securely without hash function. 
These features usually utilize dedicated ciphers that require 
large memory, high-power consumption, and high 
implementation cost. This is certainly an issue considering 

the currently emerging technologies, like small computing 
devices and IoT, run in a constrained environment, deeming 
that large consumption costs are no longer an option. 

Lightweight cryptography is accounted as the answer to the 
issue because it is designed to ensure the efficiency of an 
algorithm (i.e., only requiring low memory, power 
consumption, and cost) without ignoring its security. 
Therefore, a well calculated trade-off between efficiency and 
security is inevitable. Many lightweight ciphers have been 
proposed by researchers and analysts in the last decades. 
Several proposed lightweight stream ciphers are Grain v1 [1], 
MICKEY v2 [2], and Trivium [3]. Moreover, lightweight 
block ciphers such as PRESENT [4], CLEFIA [5], SIMON 
and SPECK [6], SIMECK [7], DLBCA [8], and SLIM [9] 
have also come to the surface. Further, works have been done 
on several lightweight hash functions as part of the 
lightweight cipher. In [10], the hashing mode operation that 
uses lightweight block cipher PRESENT with Hirose and 
Davies-Meyer construction is well described, while in [11], 
they proposed a lightweight hash function with Merkle-
Damgard builder construction. In addition, the use sponge 
construction as the builder of a lightweight hash functions 
PHOTON, QUARK, SPONGENT, and NEEVA are 
thoroughly explored in [12], [13], [14], and [15] respectively. 

Though there have been many proposed lightweight 
ciphers, there is still no standard algorithm that can be used 
globally [15]. In this paper, we proposed a secure sponge-
based lightweight hash function algorithm with an ARX-SPN 
structure permutation named RM70, which is more efficient 
in terms of processing time than the most efficient sponge-
based algorithm, SPONGENT and requires considerably low 
memory consumption. This paper is organized as follows: 
Section II describes the fundamental theory underlining the 
ideas we are presenting in this paper. The design of the 
proposed algorithm is described in Section III. Sections IV, 
V, and VI present the randomness evaluation, security 
evaluation, and performance evaluation of the RM70 
algorithm, respectively. This paper ends with a conclusion 
which is stated in Section VII. 
 

II. FUNDAMENTAL THEORY 

A. Lightweight Cryptography 
Lightweight cryptography is one of the fairly new branches 

of cryptography, resulting from the massive development of 
cryptographic primitives that can be implemented on various 
devices with constrained power, such as the RFID and 
Wireless Sensor Network ([16], [17]). Generally, lightweight 
cryptography is divided into two categories: symmetric and 
asymmetric [17]. Over the last decade, a lot of research has 
yielded symmetric lightweight cryptography. The algorithms 
PRESENT [4], CLEFIA [5], SIMON and SPECK [6], 
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SIMECK [7], DLBCA [8], and SLIM [9] are all lightweight 
block ciphers that have emerged steadfastly over the years. 
Research on lightweight stream ciphers also yielded some 
algorithms such as Grain v1 [1], MICKEY v2 [2], and 
Trivium [3]. Furthermore, many have also proposed 
lightweight hash function algorithms such as, ARMADILLO 
[11], PHOTON [12], QUARK [13], SPONGENT [14], and 
NEEVA [15]. 

 

B. Sponge Construction 
The sponge construction is a simple iteration construction 

that processes input to certain length variable into an output 
with arbitrary length, which is based on a transformation or 
permutation function with fixed length in a state with fixed 
number of bits [14],[18]. In its structure, sponge construction 
has several parameters such as rate r, capacity c, and output 
n. The width of a sponge construction is called state s with s 
= r + c. Sponge construction processed in three phases as 
follows: 
1) Initialization Phase 

The padding process and the division of messages into 
message blocks are carried out in this phase. Padding is 
only performed on messages that are not multiples of the 
rate because the input message can be of any length. The 
padded message must be a multiple of rate in length, so 
the message can be divided into message blocks. 

2) Absorbing Phase 
The first message block is XOR-ed with r most 

significant bits of the initial state. Afterward, the state is 
processed into the permutation function of the sponge 
construction. This process is carried out continuously 
until the last message block. The output of this phase will 
be the input for the squeezing phase. 

3) Squeezing Phase 
The hash value generation occurs in the squeezing 

phase by taking the first r-bit of the state as partial output, 
interleaved with the application of the permutation 
function f until an n-bit output is generated. The n-bit 
output is obtained by merging all partial hash values. 

 

III. THE DESIGN OF RM70 
RM70 is a lightweight hash function with a sponge 

construction builder. This algorithm processes arbitrary input 
and produces output with an 88-bit length. The parameters 
used in this algorithm include 96-bit state s with an 8-bit rate 
r and an 88-bit capacity c. In order to gain a clear picture of 
the RM70 algorithm, the general scheme is presented in 
Fig.1. 

RM70 processes message input into a hash value in three 
phases: 
1) Initialization Phase 

The initialization phase consists of the padding 
process and dividing the message input into message 
blocks. Message input, X can be of arbitrary length and 
the padded message should be a multiple of 8-bit. That is 
why padding on messages which are not a multiple of 8-
bit is required. The padding process is done by adding 
one bit 1 followed by k bit 0 at the end of the message. 
Before being processed in the absorbing phase, the 

padded message will be divided into message blocks of 
8-bit length. 

2) Absorbing Phase 
This phase starts by XOR-ing the first block message 

to the 8 most significant bits of the initial state (i.e., a 96-
bit state of all zeros) and then the permutation function f 
is applied to the state. This process is done repeatedly 
until the last message block. The permutation function f 
is the twenty times composition of permutation g which 
can be formulated as 𝑓	 = 	𝑔! ∘ 𝑔" ∘ 		…	∘ 	𝑔"#. The 
function 𝑔 is an ARX-SPN structure permutation 
consisting of a 28-modulus sum layer, substitution box 
layer, mix word layer, and rotation bit layer.  

3) Squeezing Phase 
The first 8-bit of the state is taken as the partial hash 

value, interleaved with the application of the permutation 
function f. This process is done repeatedly until 88-bit 
output hash value is generated. The final hash value H is 
obtained by merging all partial hash values generated 
previously. The final hash value can be formulated by 
𝐻(𝑋) = ℎ! ∥ ℎ" ∥ ⋯ ∥ ℎ!# ∥ ℎ!!. 

A. Permutation Function 
The permutation function f of RM70 algorithm consists of 

function g which operates twenty times. The function g 
comprises several layers such as 28-modulus sum layer, 
substitution box layer, mix word layer, and rotation bit layer. 
The permutation function f of RM70 is presented on Fig. 2. 
1) 28-Modulus Sum Layer 

The 28-modulus sum layer (as shown on Fig. 3) is the first 
layer in function 𝑔. This layer will operate 8-bit of state s with 
8-bit of a round number rN. Thus, to process a state with the 
size of 96-bits, there will be twelve 28-modulus sum 
operations that run simultaneously. Each iteration of function 
g uses different round number value. Hence, for one 
permutation function f, there will be twenty different round 
number values. Table I presents the round number value for 
each iteration of function g. 

 

 
Fig. 3. 28-modulus sum layer 

 
2) Substitution Box Layer 

The substitution box (sB) is a function that maps input 
bits into determined output bits. The RM70 algorithm 
uses substitution box AES [19] which maps 8-bit input 
into 8-bit output. Therefore, twelve substitution box 
operations will be conducted simultaneously to process a 
96-bit state s. The substitution box used in RM70 is 
presented on Fig. 4. 
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TABLE I 
ROUND NUMBER VALUE 

Iteration Round Number rN (in hexadecimal) 
1 8940fc56e0df0f7d80821fe7 
2 51e64cb2dc26db6210d108a0 
3 b97f2fcb3e987b4def3c7b1e 
4 40d11dd80a72cd0da6650aae 
5 ef9ec7a9bc506b0cda83aa81 
6 42bde00aa5ce0d217aa1d504 
7 ac220a881cf0249a9c22ce60 
8 f7038a6bb68576220c316506 
9 f6b87607d0b40ca4b90e5594 

10 f6855096f6eb2a40f8b97371 
11 855bd9516201c7fe464e6fa1 
12 ccf178dae6ecbba10ad15143 
13 dd7d0baa1a8696f99065cc36 
14 ad7d188e37e3804182193c78 
15 7821f9cf5c15e99cf1bea557 
16 4e1808b5b002e30221208020 
17 fb22a00e9a75eabcc4576674 
18 4ef5ed7b84d56f49419555fe 
19 4405bdb750344a2926a35878 
20 b4dabdf3db27cd49122ca1dd 

 
3) Mix Word Layer 

The 96-bit state s will be divided into three groups of 
words gw of 32-bits so there will be gw1, gw2,	and	gw3. 
Each group-word consists of four words w of 8-bit which 
is denoted by w(i,j) with i = 1, 2, 3, 4 and j = 1, 2, 3. Each 
word in group-word will be XOR-ed one to another. The 
second word will be XOR-ed with the first word 
(𝑤!,%⨁𝑤",%), the third word will be XOR-ed with the first 
word (𝑤!,%⨁𝑤&,%), and the fourth word will be XOR-ed 
with the first word (𝑤!,%⨁𝑤',%). Mix word layer (mW) is 
shown in Fig. 5. 

4) Rotation Bit Layer 
After obtaining the output of the mix word layer, the 8 

most significant bits of it is rotated to the left. This 
process sums up the rotation bit layer, as shown in Fig. 
6. 

 

 
Fig. 5. Mix word layer 
 

 
Fig. 6. Rotation bit operation 
 

B. Design Rationale 
The design of the RM70 algorithm has weighed various 

considerations, from the selection of building construction, 
the selection of function type, and the operations composing 
the function of the sponge construction. The sponge 
construction is chosen to be the building construction of the 
RM70 algorithm because of these following reasons: 

1) Sponge construction is a simple construction and has a 
good level of security compared to other hash function 
constructions such as the Merkle-Damgard, the Hirose, 
and the Davies-Meyer constructions [20]. 

2) Sponge construction with one permutation or 
transformation function can be used to generate hash 
values of any length [20]. 

3) Sponge construction has a flexible nature where various 
levels of security of an algorithm can be achieved by 
adjusting to the parameters rate 𝑟, capacity c, and output 
𝑛 [13]. 

4) The computation on sponge construction does not 
require memory to store message blocks and feedforward 
as the case of the Davies-Meyer and the Hirose 
constructions [13],[14]. 

5) Sponge construction can be used to achieve the full 
security level of hash function [13], [21]. 

6) Sponge construction can be used for various functions 
such as a deterministic pseudorandom number generator, 
message authentication codes (MAC), salted hashing, 
plain hashing, and stream encryption [20],[22]. 

Sponge construction has at least one function, be it a 
permutation or transformation function. The iterated 
permutation function was chosen as a function in the sponge 
construction algorithm RM70 with the consideration that the 
iterated permutation function is difficult for attackers to 
exploit in cryptographic attacks. In addition, the computation 
of the iterated permutation function does not require memory 
to store messages [20]. 

The permutation function f which is built from the 
Addition-Rotation-XOR (ARX) and Substitution 
Permutation Network (SPN) is intended to achieve efficiency 
in processing but still possesses the security of the function. 
The ARX structure is known as an efficient and fast structure, 
but its security is not so well fortified compared to other 
structures such as SPN or Feistel [23]. The permutation 
function f is also designed to process 8-bit input with the aim 
of speeding up the processing. 

The 28-modulus sum operation between state s and the 
round number rN is intended to change the pattern of the input 
bits so that no bits with a constant pattern are found to achieve 
confusion property. Similar to the 28-modulus sum operation, 
substitution box is used to achieve good confusion property. 
Other than that, the AES substitution box is used because it 
has adequate security and resistant toward cryptanalysis 
attack such as differential cryptanalysis, linear cryptanalysis, 
impossible differential cryptanalysis, and others [19]. 
Furthermore, the low correlation between the input and the 
output bits of the AES substitution box is another good reason 
as to why we chose it. 

Other than confusion property, an algorithm must also 
satisfy the diffusion property. To achieve this, a mix word 
operation is performed which processes the input in word 
groups as shown in section III.A. However, the output of this 
layer has a weakness for which the first word of each word 
group has a fixed value. To overcome this weakness, rotation 
bit operation is therefore conducted. This operation will rotate 
the 8 most significant bits of mix word layer output. 
Moreover, all components of the permutation function 𝑓 use 
basic operation that will make it easier to write the source 
code both in software and hardware applications. 

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_12

Volume 53, Issue 1: March 2023

 
______________________________________________________________________________________ 



 

C. Test Vector 
We performed a test vector for every intermediate step of 

RM70 hashing process. A 28-bit message (X = 0x1234567) 
will be hashed to generate 88-bit hash value. Table II shows 
the test vector of the RM70 algorithm. 

 
TABLE II 

TEST VECTOR OF RM70 
Initialization Phase 
X = 0X1234567  
X + PAD(X) = 0X12345678 	
X1 = 0X12,	X2 = 0X34,	X3 = 56,	X4 = 78 
Absorbing Phase 

Input Process Output 

0x120000000000000000000000 Absorb 0 0xa24be532d286cd786a1a5ca5 

0x964be532d286cd786a1a5ca5 Absorb 1 0xc4d5036be13ee0422ff8f697 

0x92d5036be13ee0422ff8f697 Absorb 2 0x8f0afe2ef2c3aecaf05f3c0c 

0xf70afe2ef2c3aecaf05f3c0c Absorb 3 0xc8dac54a8a1cb906b64fe64f 

Squeezing Phase 

Input Process Output 

0xc8dac54a8a1cb906b64fe64f Squeezing 0 0xca3b9b3177db4ffd0a80c10f 

0xca3b9b3177db4ffd0a80c10f Squeezing 1 0x41e9d515f779b492f86ddd13 

0x41e9d515f779b492f86ddd13 Squeezing 2 0xa9f6fb02b8a306c15bbe0eec 

0xa9f6fb02b8a306c15bbe0eec Squeezing 3 0xbc6803a559d3c0c9c3bba207 

0xbc6803a559d3c0c9c3bba207 Squeezing 4 0xa8aa52e9f9fd3ec3b59fbb20 

0xa8aa52e9f9fd3ec3b59fbb20 Squeezing 5 0x2a2b8307283ec9322d3dad80 

0x2a2b8307283ec9322d3dad80 Squeezing 6 0xca8d68428ac2e390c6d55849 

0xca8d68428ac2e390c6d55849 Squeezing 7 0xea31f8a07b35503fd97fa5d9 

0xea31f8a07b35503fd97fa5d9 Squeezing 8 0xdf8eafa1c2e04c1e911acf14 

0xdf8eafa1c2e04c1e911acf14 Squeezing 9 0x58c1d3ca3ca00f94d7bef4e6 

0x58c1d3ca3ca00f94d7bef4e6 Squeezing 10 0x8124348a7be7855284c31cc4 

Hash Value 

RM70(X) = 0xc8ca41a9bca82acaeadf58 
 

IV. RANDOMNESS EVALUATION 
Randomness is one of the generic properties of 

cryptographic primitives, including hash functions [24]. A 
hash function is expected to behave in the manner of random 
map. Besides randomness, the hash function also needs to 
satisfy other generic cryptographic properties such as strict 
avalanche criterion (SAC) and collision resistance. Hence, 
evaluation of the output of a hash function is compulsory. 
One way to evaluate the randomness of a hash function output 
is with a method proposed in [24]. 

The cryptographic randomness testing explored in [24] is a 
statistical randomness test evaluating a function by 
investigating its cryptographic properties. In this paper, we 
conducted three cryptographic randomness tests, namely the 
Strict Avalanche Criterion (SAC) Test, the Collision Test, 
and the Coverage Test. Each test that we performed utilized 
220 independent input samples of 32-bits with a significance 
level parameter 𝛼 = 0.01. Each test is carried out five times 
to avoid biased results. 

A. SAC Test 
The SAC test aims to evaluate whether an algorithm has 

satisfied the SAC property. The nature of the SAC in question 
is that a change of one input bit, will cause a change in the 
output bits with a probability of 0.5. In other words, the SAC 
test will evaluate an algorithm whether there is a correlation 
between the input bits and the output bits. 

Two approaches are used to conduct an SAC test to the 

RM70. The first approach uses the chi square goodness of fit 
test and the second approach uses the expected interval. The 
second approach is used to determine whether or not the 
results of the evaluation of the first approach are 
coincidences, considering that the evaluation of the 
correlation between the input bits and the output bits is 
carried out thoroughly. Either the first or second approach 
will evaluate the SAC matrix formed during the testing 
process. 

Table III shows that the resulting p-value from all five tests 
with the first approach is bigger than its significance level. It 
can therefore be concluded that the algorithm has passed the 
SAC test with the chi-square goodness of fit test approach. 
Further evaluation is carried out using the expectation 
interval approach. This evaluation expects each entry in the 
formed SAC matrix to be in the interval of [519,279, 
529,297]. The results presented in Table IV show that from 
the first to the fifth test, there are 2,816 SAC matrix entries 
that are in the interval and none of them are outside the 
interval. Thus, the proposed algorithm passes the SAC test 
through the second approach. 

The evaluation of the proposed algorithm for the SAC test 
shows that the algorithm passed both approaches of the SAC 
test. In other words, the algorithm has a random mapping that 
satisfies cryptographic properties of the strict avalanche 
criterion. 

 
TABLE III 

SAC TEST RESULT WITH FIRST APPROACH 
SAC Test Chi-square value p-value 

I 4.1694 0.3836 
II 3.2473 0.5173 
III 1.6235 0.8046 
IV 6.0274 0.1971 
V 6.0145 0.1981 

 
TABLE IV 

SAC TEST RESULT WITH SECOND APPROACH 
SAC Test Inside interval Outside interval 

I 2,816 0 
II 2,816 0 
III 2,816 0 
IV 2,816 0 
V 2,816 0 

 

B. Collision Test 
The purpose of a collision test is to evaluate the 

randomness of a function by considering the nature of the 
collision resistance. This collision test focuses on the number 
of collisions that occur on certain output bits (near collision). 
In other words, the collision test evaluates an input of size n 
through the function f and evaluates the number of collisions 
b found in the t-bit output. 

The parameters n = 212 and m = 216 are used in conducting 
the test, where n is the number of messages modified by the 
message sample and m is the number of output bits observed 
for collisions. In other words, the message sample will be 
modified to the 12 most significant bits and collision 
observations will be performed on the 16 most significant bits 
of the resulting output. 

The result of the five times collision test stated in Table V 
shows that none of the five tests has a p-value less than 0.01. 
It can therefore be concluded that the RM70 algorithm passed 
the collision test and has a random mapping based on the 
collision resistance property. 
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TABLE V 
COLLISION TEST RESULT OF RM70 

Collision Test Chi-square value p-value 
I 6.1869 0.1856 
II 8.2074 0.0843 
III 6.1097 0.1911 
IV 6.6557 0.1552 
V 12.2189 0.0158 

 

C. Coverage Test 
The coverage test is used to evaluate the randomness of a 

function by observing the size of the output set formed from 
the input set (coverage). The hash function is said to have a 
random map if its coverage reaches 63%. The coverage test 
carried out on the proposed algorithm was performed by 
observing the coverage of the 12 most significant bits output 
formed. We observed the output generated from every 
modified message of the 12 most significant bits of each 
message sample. The results of the observations are presented 
in Table VI, from which we can infer that all the p-values of 
the coverage tests are greater than 0.01. This shows that the 
proposed algorithm has coverage of at least 63% and passed 
the coverage test. Thus, we can safely claim that the proposed 
algorithm is an algorithm with a one-way function that has a 
random mapping. 

 
TABLE VI 

COVERAGE TEST RESULT OF RM70 
Coverage Test Chi-square value p-value 

I 4.6160 0.3290 
II 7.3611 0.1179 
III 5.3991 0.2487 
IV 12.6324 0.0132 
V 8.4196 0.0774 

 

V. SECURITY EVALUATION 
We conducted several security evaluations on the proposed 

algorithm including second preimage resistance, collision 
resistance, and preimage resistance properties. These 
evaluations are meant to determine whether or not the 
proposed algorithm has a decent cryptographic security. 

A. Theoretical Security 
In an iterated variable-output length hash function 

(sponge-based hash function), the required resistance against 
attacks is expressed relative to a single-parameter called 
capacity [20]. An 𝑛-bit sponge-based hash with capacity 𝑐 
and rate 𝑟, can obtain min(2)/", 2+/") of collision resistance 
bound and min(2), 2+/") of second preimage resistance and 
preimage resistance bounds [12]. The design of RM70 uses 
half of the actual state size, resulting in the reduction of 
second preimage security bound to 2+/" and preimage 
security bound to 2),-. The bound reduction is not an issue, 
considering the fact that full second preimage security is not 
a mandatory requirement in many embedded scenarios 
implementing lightweight hash functions. Moreover, the 
reduction of the preimage security bound to 2),- does not 
significantly affect the preimage resistance of the algorithm, 
considering the small value of 𝑟. Table VII shows the security 
bounds of RM70 and other sponge-based lightweight hash 
functions with similar output size. 

 
 
 
 

TABLE VII 
SECURITY BOUND 

Algorithm Preimage 
Resistance 

Second Preimage 
Resistance 

Collision 
Resistance 

RM70 2#$ 2%% 2%% 
SPONGENT-88/80/8 [14] 2#$ 2%$ 2%$ 
PHOTON-80/20/16 [12] 2&% 2%$ 2%$ 
 

B. Second Preimage Resistance 
Second preimage resistance can be interpreted by a 

condition which is hard to find a different message with the 
same hash value from a given message [25]. The evaluation 
of the second preimage resistance property of RM70 is 
performed by applying the second preimage attack method 
proposed by [26]. We developed the attack method by 
changing the position of the modified message block. In [26], 
they used the first-second pair of message blocks to conduct 
a second preimage attack. In the method that we developed, 
we used the first-third, first-fourth, second-third, second-
fourth, and third-fourth message block pairs. Thus, there are 
six different scenarios of the attack. All these attack scenarios 
were performed on 32-bits length of 10,000 independent 
sample messages. In general, second preimage attacks are 
carried out as mentioned in Algorithm 1. 

After carrying out six different scenarios of second 
preimage attack against the proposed algorithm, we obtained 
the results as stated in Table VIII. The data shown in Table 
VIII bring us the information that no collision was found from 
the second preimage attack with a message modification of 
2()/!)/" which was carried out on the proposed algorithm in 
attack scenarios 1, 2, 3, 4, 5, or 6. Henceforth, it can be 
claimed that the proposed algorithm satisfies the property of 
second preimage resistance. 

 
Algorithm 1. Second preimage attack 
INPUT : 𝑥', 𝑥(, 𝑓 
OUTPUT : 𝑥') , 𝑥()  
1. 𝑆' → ∅ 
2. For 𝑖 ← 0 to 2(+,')/( do 

Choose 𝑥'/ ∉ +𝑥', 𝑥'$, … , 𝑥'/0'. at random and compute 𝑦'/ ← 𝑓0𝑥'/ , 𝑥(1 
𝑆' ← 𝑆' ∪ +0𝑥'/ , 𝑦'/1.  

End looping 
3. For 𝑖 ← 0 to 2(+,')/( do 

Choose 𝑥(/ ∉ +𝑥(, 𝑥($, … , 𝑥(/0'. at random and compute 𝑦(/ ← 𝑓0𝑥', 𝑥(/1 
If 𝑦(/ = 𝑦'1 where 𝑦'1 is the second component of an element of 𝑆' 

Return 0𝑥'1, 𝑥(/ 1 
End Looping 

 
TABLE VIII 

RESULT OF SECOND PREIMAGE ATTACK 
Scenario Blocks modified Total Collision 

S1 1 and 2 0 
S2 1 and 3 0 
S3 1 and 4 0 
S4 2 and 3 0 
S5 2 and 4 0 
S6 3 and 4 0 

 

C. Collision Resistance 
Collision resistance is a condition of the hash function such 

that it is very hard to find two different messages with the 
same hash value [27]. To evaluate the collision resistance 
properties of the RM70 algorithm, we used Yuval’s birthday 
attack [26]. As the name implies, this attack uses the birthday 
paradox approach. In general, a collision attack is carried out 
as mentioned in Algorithm 2. 

In the attack, we modified the 20 first bits of the message 
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resulting in 2"# (1,048,576) modifications. Furthermore, the 
attack was carried out five times with five different pairs of 
message samples. The pair of message samples used in the 
attack is called legitimate message and fraudulent message. 
The five pairs of message samples are presented in Table IX. 

After five collision attacks were applied, we obtained the 
results of the attacks as listed in Table X. The data from the 
attack were then analyzed to determine whether the collision 
attack was successfully carried out against the RM70 
algorithm. From Table X, we know that there is no collision 
from the first, second, third, fourth, and fifth attacks. 

A collision attack fails to perform against an algorithm 
when no collision is found. From the evaluation conducted, it 
can be concluded that the RM70 algorithm meets the collision 
resistance property with 𝑂(2"#). 

 
Algorithm 2. Collision attack 
INPUT : 𝑥', 𝑥(, ℎ 
OUTPUT : 𝑥') , 𝑥()  
1. Generate 𝑡 = 2+/( minor modifications 𝑥')  of 𝑥'. 
2. Hashed every modified message 𝑥')  and store the hash value ℎ(𝑥')) with the 

corresponding modified message. 
3. Generate 𝑡 = 2+/( minor modifications 𝑥()  of 𝑥( and hashed every modified 

message 𝑥()  to get hash value ℎ(𝑥()). 
4. Check every hash value ℎ(𝑥()) to ℎ(𝑥')). Collision is found when ℎ(𝑥() ) =
ℎ(ℎ(𝑥')). 

 
TABLE IX 

MESSAGE SAMPLES OF COLLISION ATTACK 
Collision 
Attack 

Legitimate Message 
(in hexadecimal) 

Fraudulent Message 
(in hexadecimal) 

I 1111111111111111111111 f30a75caaef2371bbb9ad9 
II 2222222222222222222222 e6370ca76d364986caa6a6 
III 3333333333333333333333 5938a4e0c0db6296f656fc 
IV 4444444444444444444444 3b7fce2ebd894147ea11ca 
V 5555555555555555555555 15ba3b790033a27e6234ed 

 
TABLE X 

COLLISION ATTACK OF RM70 
Collision Attack Total Collision 

I 0 
II 0 
III 0 
IV 0 
V 0 

 

D. Preimage Resistance 
The meet-in-the-middle attack approach is used to evaluate 

the preimage resistance property. Basically, this attack tries 
to find the middle value by calculating backwards and 
forwards. The meet-in-the-middle attack is carried out in two 
stages, namely pre-computation (looking for the value of 𝑑!) 
and matching (looking for preimage). The attack scheme on 
the RM70 algorithm can be seen in Fig. 7. 

In carrying out a meet-in-the-middle attack, the attacker 
already knows the original message 𝑋, hash value 𝐻(𝑋) =
ℎ! ∥ ℎ" ∥ ⋯ ∥ ℎ1, and the number of iterations in the 
squeezing phase (𝑛/𝑟 iterations). This attack was carried out 
as follows: 
1) Pre-computation Step 

It is known that 𝑓,!(ℎ1/!, 𝑣1/!) = (ℎ1 , 𝑣1) for 𝑖 =
1,2, … , 𝑛/𝑟 in squeezing phase. With the knowledge of 
the value of ℎ1 with size 𝑟 bit, the probability of finding  
the value is ½. Thus, the search for the value (ℎ!, 𝑣!) in 
the squeezing phase is performed by counting backwards 
using 2(()/-),!).- = 2),- 𝑣1 value which is different with 

𝑖 = 1,2, … , 𝑛/𝑟, with 𝑛 is the length of the hash value, 
and 𝑟 is the rate. 

2) Matching Step 
This stage is carried out in the absorbing phase after 

the value (ℎ1 , 𝑣1) from the pre-computation step. The 
matching step is done in the following way: 
a. Choose 𝑘 parameter so that 𝑘 ⋅ 𝑟 ≥ 𝑐/2 with 𝑐 is the 

capacity and 𝑟 the rate. 
b. Generate 2+/" messages which allows for 

𝑥3/", 𝑥3/&, … , 𝑥"3/! and do the backward calculation 
with (ℎ!, 𝑣!). Store both values as the elements of the 
set 𝐺!. 

c. Generate 2+/" which allows for 𝑥!, 𝑥", … , 𝑥3 and do 
the forward calculation with an initial state value 
𝑠# = 0- ∥ 0+. 

d. Compare each value from the forward calculation 
process with all elements in 𝐺! to find the same 𝑐 
least significant bit. The calculated value is the 
capacity 𝑐 from 𝑥3/!. 

e. In 𝑥3 and 𝑥3/" with the same 𝑐 least significant bit, 
perform the XOR operation between the 𝑟 most 
significant bit 𝑥3 with  𝑥3/" to obtain the value of 
𝑥3/!. 

Based on the attacks carried out, it is known that the 
precomputation step has a complexity of 2),- to obtain 𝑑! 
while the matching step has a memory complexity of 2+/" and 
a time complexity of 2+/". Furthermore, it can be inferred that 
the meet-in-the-middle attack has a time complexity of 
max	(2),- , 2+/") and a memory complexity of 2+/". 

 

VI. PERFORMANCE EVALUATION 
Performance evaluation is conducted by comparing and 

analyzing the processing time and memory consumption of 
the proposed algorithm to other similar algorithms in 
software and hardware applications. SPONGENT-88 [14], a 
sponge-based algorithm with great time and memory 
efficiency, is chosen as a comparison in this evaluation. In 
order to gain a fair comparison, the performance evaluation 
of both algorithms is carried out under the same conditions 
and environments. 

A. Software-Based Evaluation 
There are two approaches used in this software-based 

evaluation. The first approach is done by measuring the 
algorithm’s processing time with several variations of 
message size once, while the second approach is done by 
measuring the algorithm's processing time of a determined 
message with several iteration variations. These two 
approaches are carried out several times to gain a less biased 
result. 

The results of the software-based evaluation of RM70, 
either with the first or the second approach show that RM70 
takes less processing time compared to its competitor, 
SPONGENT-88. Based on the result of the evaluation using 
the first approach stated in Table XI, RM70 has a processing 
time efficiency up to 32.82% compared to SPONGENT-88. 
In addition, RM70 can get up to 93.03% of processing time 
efficiency based on the second approach evaluation as 
presented in Table XII. 
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TABLE XI 
RESULT OF RM70 EVALUATION ON SOFTWARE WITH THE FIRST APPROACH 

Data 
(in KB) 

Time Needed (in second) 
RM70 SPONGENT-88 

32 0.0323 0.5189 
64 0.0531 0.0777 

128 0.1072 0.1527 
256 0.2084 0.2915 
512 0.3902 1.1771 

 
TABLE XII 

RESULT OF RM70 EVALUATION ON SOFTWARE WITH THE SECOND 
APPROACH 

Iterations 
Time Needed (in second) 

RM70 SPONGENT-88 
1,000 0.0539 0.7716 
2,000 0.1038 1.5091 
3,000 0.1554 2.2274 
4,000 0.2037 2.9359 
5,000 0.2537 3.6162 

 

B. Hardware-Based Evaluation 
The hardware-based evaluation of the proposed algorithm 

focuses on the processing time and memory consumption of 
the algorithm implemented on a small computing device, like 
the Arduino. The Arduino Uno R3 with its 8-bit processor is 
considered capable of representing small computing devices 
implementing a lot of lightweight cryptography algorithms. 
In conducting this evaluation, a 96-bit message was chosen 
as the input to the algorithms. 

As per shown in Table XIII, RM70 has a better processing 
time than its competitor, SPONGENT-88, with an efficiency 
of 97.86%. In terms of memory consumption, RM70 requires 
1% more flash memory and 25% more SRAM compared to 
SPONGENT-88. The amount of memory consumed in 
hardware is greatly influenced by the efficiency of the source 
code. 

 

TABLE XIII 
RESULT OF RM70 EVALUATION ON HARDWARE 

Aspect RM70 SPONGENT-88 
Time 40 milliseconds 1,872 milliseconds 
Flash 

memory 
3,362 bytes 

(10% of max capacity) 
3,074 bytes 

(9% of max capacity 

SRAM 1,248 bytes 
(60% of SRAM’s capacity) 

732 bytes 
(35% of SRAM’s capacity) 

VII. CONCLUSION 
In this research, we proposed a sponge-based lightweight 

hash function named RM70, which uses an ARX-SPN based 
permutation. This algorithm processes arbitrary input and 
produces output with an 88-bit length. We evaluated the 
proposed algorithm on a number of parameters, including 
randomness, security, and performance. The evaluation of 
randomness was performed by evaluating the randomness of 
the algorithm’s permutation using cryptographic randomness 
testing (strict avalanche criterion test, collision test, and 
coverage test). We also conducted security evaluation in 
terms of preimage resistance, second preimage resistance, 
and collision resistance. We also performed software-based 
and hardware-based performance evaluations by comparing 
the processing time and memory consumption of the RM70 
to its competitor, the SPONGENT-88. From all the 
evaluations that have been carried out, it is shown that the 
proposed algorithm has a random mapping and meets the 
preimage resistance, the second preimage resistance, and the 
collision resistance properties. In addition, the algorithm also 
has better processing time compared to SPONGENT-88, as 
well as lower memory consumption. This algorithm emerges 
to be a good option for a lightweight hash function, which can 
be used in many applications.

 

 
Fig. 1. General scheme of RM70 algorithm 
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Fig. 2. Permutation function 𝑓 
 

 
Fig. 4. Substitution box 
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Fig. 7. Meet-in-the-middle attack scheme of RM70 
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