

Abstract—One of the key challenges in cryptography is
creating a secure yet efficient design of cryptographic
algorithms. Recently, lightweight cryptography has drawn a
strong interest of cryptographers, with the most recent research
concentrating on constructing the design of block ciphers. In
contrast, there are considerably fewer publicly released
proposals for the design of lightweight hash functions, indicating
that this field is still far from being thoroughly explored. In this
work, we present a new lightweight hash function based on
sponge construction with ARX-SPN structure permutation. We
evaluated the proposed algorithm on a number of parameters,
including randomness, security (focusing on the algorithm’s
preimage resistance, second preimage resistance, and collision
resistance properties), and performance in terms of time and
memory consumption.

Index Terms—cryptography, hash function, IoT, lightweight,
sponge construction.

I. INTRODUCTION
HE development of technology has rapidly grown over
the past decades. This can be seen with the shift of human

civilization to Industry 4.0. On top of that, with the
introduction of the Metaverse, it is entirely possible for
human civilization to enter that era in the upcoming years.
That surely has an impact on the increased demand for secure
applications, considering almost all applications currently
existing are still using insecure channels such as the internet
to exchange data. The services of confidentiality, integrity,
and authentication may provide security guarantees for
applications, such as RFID and sensor networks. The said
services can be achieved by utilizing cryptographic
primitives, including the secret-key cipher and hash function.

The hash function has a pivotal role in enforcing security
on applications. It can be used to check message integrity
and/or enable verification processes. Many seemingly trivial
yet critical daily circumstancing, including online banking
transactions, digital currency, OTP generation, password
protection, as well as lock pattern on mobile phones will not
operate as smoothly and as securely without hash function.
These features usually utilize dedicated ciphers that require
large memory, high-power consumption, and high
implementation cost. This is certainly an issue considering

the currently emerging technologies, like small computing
devices and IoT, run in a constrained environment, deeming
that large consumption costs are no longer an option.

Lightweight cryptography is accounted as the answer to the
issue because it is designed to ensure the efficiency of an
algorithm (i.e., only requiring low memory, power
consumption, and cost) without ignoring its security.
Therefore, a well calculated trade-off between efficiency and
security is inevitable. Many lightweight ciphers have been
proposed by researchers and analysts in the last decades.
Several proposed lightweight stream ciphers are Grain v1 [1],
MICKEY v2 [2], and Trivium [3]. Moreover, lightweight
block ciphers such as PRESENT [4], CLEFIA [5], SIMON
and SPECK [6], SIMECK [7], DLBCA [8], and SLIM [9]
have also come to the surface. Further, works have been done
on several lightweight hash functions as part of the
lightweight cipher. In [10], the hashing mode operation that
uses lightweight block cipher PRESENT with Hirose and
Davies-Meyer construction is well described, while in [11],
they proposed a lightweight hash function with Merkle-
Damgard builder construction. In addition, the use sponge
construction as the builder of a lightweight hash functions
PHOTON, QUARK, SPONGENT, and NEEVA are
thoroughly explored in [12], [13], [14], and [15] respectively.

Though there have been many proposed lightweight
ciphers, there is still no standard algorithm that can be used
globally [15]. In this paper, we proposed a secure sponge-
based lightweight hash function algorithm with an ARX-SPN
structure permutation named RM70, which is more efficient
in terms of processing time than the most efficient sponge-
based algorithm, SPONGENT and requires considerably low
memory consumption. This paper is organized as follows:
Section II describes the fundamental theory underlining the
ideas we are presenting in this paper. The design of the
proposed algorithm is described in Section III. Sections IV,
V, and VI present the randomness evaluation, security
evaluation, and performance evaluation of the RM70
algorithm, respectively. This paper ends with a conclusion
which is stated in Section VII.

II. FUNDAMENTAL THEORY

A. Lightweight Cryptography
Lightweight cryptography is one of the fairly new branches

of cryptography, resulting from the massive development of
cryptographic primitives that can be implemented on various
devices with constrained power, such as the RFID and
Wireless Sensor Network ([16], [17]). Generally, lightweight
cryptography is divided into two categories: symmetric and
asymmetric [17]. Over the last decade, a lot of research has
yielded symmetric lightweight cryptography. The algorithms
PRESENT [4], CLEFIA [5], SIMON and SPECK [6],

RM70 : A Lightweight Hash Function
Benardi Widhiara, Yusuf Kurniawan, and Bety Hayat Susanti, Member, IAENG

T

Manuscript received March 27th, 2022; revised November 22th, 2022.
This research is supported by the Research and Development Unit of

Institut Teknologi Bandung, West Java, Indonesia and Politeknik Siber dan
Sandi Negara, Bogor, West Java, Indonesia.

B. Widhiara is a postgraduate student in the School of Electrical
Engineering and Informatics, Institut Teknologi Bandung, Indonesia. e-mail
(23220093@std.stei.itb.ac.id, benardi.widhiara@bssn.go.id)

Y. Kurniawan is an Assistant Professor of School of Electrical
Engineering and Informatics, Institut Teknologi Bandung, Indonesia. e-mail
(yusufk@stei.itb.ac.id)

B. H. Susanti is an Assistant Professor of Cryptography Engineering
Department, Politeknik Siber dan Sandi Negara, Bogor, Indonesia. e-mail
(bety.hayat@poltekssn.ac.id, bety.hayat@bssn.go.id)

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_12

Volume 53, Issue 1: March 2023

__

SIMECK [7], DLBCA [8], and SLIM [9] are all lightweight
block ciphers that have emerged steadfastly over the years.
Research on lightweight stream ciphers also yielded some
algorithms such as Grain v1 [1], MICKEY v2 [2], and
Trivium [3]. Furthermore, many have also proposed
lightweight hash function algorithms such as, ARMADILLO
[11], PHOTON [12], QUARK [13], SPONGENT [14], and
NEEVA [15].

B. Sponge Construction
The sponge construction is a simple iteration construction

that processes input to certain length variable into an output
with arbitrary length, which is based on a transformation or
permutation function with fixed length in a state with fixed
number of bits [14],[18]. In its structure, sponge construction
has several parameters such as rate r, capacity c, and output
n. The width of a sponge construction is called state s with s
= r + c. Sponge construction processed in three phases as
follows:
1) Initialization Phase

The padding process and the division of messages into
message blocks are carried out in this phase. Padding is
only performed on messages that are not multiples of the
rate because the input message can be of any length. The
padded message must be a multiple of rate in length, so
the message can be divided into message blocks.

2) Absorbing Phase
The first message block is XOR-ed with r most

significant bits of the initial state. Afterward, the state is
processed into the permutation function of the sponge
construction. This process is carried out continuously
until the last message block. The output of this phase will
be the input for the squeezing phase.

3) Squeezing Phase
The hash value generation occurs in the squeezing

phase by taking the first r-bit of the state as partial output,
interleaved with the application of the permutation
function f until an n-bit output is generated. The n-bit
output is obtained by merging all partial hash values.

III. THE DESIGN OF RM70
RM70 is a lightweight hash function with a sponge

construction builder. This algorithm processes arbitrary input
and produces output with an 88-bit length. The parameters
used in this algorithm include 96-bit state s with an 8-bit rate
r and an 88-bit capacity c. In order to gain a clear picture of
the RM70 algorithm, the general scheme is presented in
Fig.1.

RM70 processes message input into a hash value in three
phases:
1) Initialization Phase

The initialization phase consists of the padding
process and dividing the message input into message
blocks. Message input, X can be of arbitrary length and
the padded message should be a multiple of 8-bit. That is
why padding on messages which are not a multiple of 8-
bit is required. The padding process is done by adding
one bit 1 followed by k bit 0 at the end of the message.
Before being processed in the absorbing phase, the

padded message will be divided into message blocks of
8-bit length.

2) Absorbing Phase
This phase starts by XOR-ing the first block message

to the 8 most significant bits of the initial state (i.e., a 96-
bit state of all zeros) and then the permutation function f
is applied to the state. This process is done repeatedly
until the last message block. The permutation function f
is the twenty times composition of permutation g which
can be formulated as 𝑓	 = 	𝑔! ∘ 𝑔" ∘ 		…	∘ 	𝑔"#. The
function 𝑔 is an ARX-SPN structure permutation
consisting of a 28-modulus sum layer, substitution box
layer, mix word layer, and rotation bit layer.

3) Squeezing Phase
The first 8-bit of the state is taken as the partial hash

value, interleaved with the application of the permutation
function f. This process is done repeatedly until 88-bit
output hash value is generated. The final hash value H is
obtained by merging all partial hash values generated
previously. The final hash value can be formulated by
𝐻(𝑋) = ℎ! ∥ ℎ" ∥ ⋯ ∥ ℎ!# ∥ ℎ!!.

A. Permutation Function
The permutation function f of RM70 algorithm consists of

function g which operates twenty times. The function g
comprises several layers such as 28-modulus sum layer,
substitution box layer, mix word layer, and rotation bit layer.
The permutation function f of RM70 is presented on Fig. 2.
1) 28-Modulus Sum Layer

The 28-modulus sum layer (as shown on Fig. 3) is the first
layer in function 𝑔. This layer will operate 8-bit of state s with
8-bit of a round number rN. Thus, to process a state with the
size of 96-bits, there will be twelve 28-modulus sum
operations that run simultaneously. Each iteration of function
g uses different round number value. Hence, for one
permutation function f, there will be twenty different round
number values. Table I presents the round number value for
each iteration of function g.

Fig. 3. 28-modulus sum layer

2) Substitution Box Layer

The substitution box (sB) is a function that maps input
bits into determined output bits. The RM70 algorithm
uses substitution box AES [19] which maps 8-bit input
into 8-bit output. Therefore, twelve substitution box
operations will be conducted simultaneously to process a
96-bit state s. The substitution box used in RM70 is
presented on Fig. 4.

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_12

Volume 53, Issue 1: March 2023

__

TABLE I
ROUND NUMBER VALUE

Iteration Round Number rN (in hexadecimal)
1 8940fc56e0df0f7d80821fe7
2 51e64cb2dc26db6210d108a0
3 b97f2fcb3e987b4def3c7b1e
4 40d11dd80a72cd0da6650aae
5 ef9ec7a9bc506b0cda83aa81
6 42bde00aa5ce0d217aa1d504
7 ac220a881cf0249a9c22ce60
8 f7038a6bb68576220c316506
9 f6b87607d0b40ca4b90e5594

10 f6855096f6eb2a40f8b97371
11 855bd9516201c7fe464e6fa1
12 ccf178dae6ecbba10ad15143
13 dd7d0baa1a8696f99065cc36
14 ad7d188e37e3804182193c78
15 7821f9cf5c15e99cf1bea557
16 4e1808b5b002e30221208020
17 fb22a00e9a75eabcc4576674
18 4ef5ed7b84d56f49419555fe
19 4405bdb750344a2926a35878
20 b4dabdf3db27cd49122ca1dd

3) Mix Word Layer

The 96-bit state s will be divided into three groups of
words gw of 32-bits so there will be gw1, gw2,	and	gw3.
Each group-word consists of four words w of 8-bit which
is denoted by w(i,j) with i = 1, 2, 3, 4 and j = 1, 2, 3. Each
word in group-word will be XOR-ed one to another. The
second word will be XOR-ed with the first word
(𝑤!,%⨁𝑤",%), the third word will be XOR-ed with the first
word (𝑤!,%⨁𝑤&,%), and the fourth word will be XOR-ed
with the first word (𝑤!,%⨁𝑤',%). Mix word layer (mW) is
shown in Fig. 5.

4) Rotation Bit Layer
After obtaining the output of the mix word layer, the 8

most significant bits of it is rotated to the left. This
process sums up the rotation bit layer, as shown in Fig.
6.

Fig. 5. Mix word layer

Fig. 6. Rotation bit operation

B. Design Rationale
The design of the RM70 algorithm has weighed various

considerations, from the selection of building construction,
the selection of function type, and the operations composing
the function of the sponge construction. The sponge
construction is chosen to be the building construction of the
RM70 algorithm because of these following reasons:

1) Sponge construction is a simple construction and has a
good level of security compared to other hash function
constructions such as the Merkle-Damgard, the Hirose,
and the Davies-Meyer constructions [20].

2) Sponge construction with one permutation or
transformation function can be used to generate hash
values of any length [20].

3) Sponge construction has a flexible nature where various
levels of security of an algorithm can be achieved by
adjusting to the parameters rate 𝑟, capacity c, and output
𝑛 [13].

4) The computation on sponge construction does not
require memory to store message blocks and feedforward
as the case of the Davies-Meyer and the Hirose
constructions [13],[14].

5) Sponge construction can be used to achieve the full
security level of hash function [13], [21].

6) Sponge construction can be used for various functions
such as a deterministic pseudorandom number generator,
message authentication codes (MAC), salted hashing,
plain hashing, and stream encryption [20],[22].

Sponge construction has at least one function, be it a
permutation or transformation function. The iterated
permutation function was chosen as a function in the sponge
construction algorithm RM70 with the consideration that the
iterated permutation function is difficult for attackers to
exploit in cryptographic attacks. In addition, the computation
of the iterated permutation function does not require memory
to store messages [20].

The permutation function f which is built from the
Addition-Rotation-XOR (ARX) and Substitution
Permutation Network (SPN) is intended to achieve efficiency
in processing but still possesses the security of the function.
The ARX structure is known as an efficient and fast structure,
but its security is not so well fortified compared to other
structures such as SPN or Feistel [23]. The permutation
function f is also designed to process 8-bit input with the aim
of speeding up the processing.

The 28-modulus sum operation between state s and the
round number rN is intended to change the pattern of the input
bits so that no bits with a constant pattern are found to achieve
confusion property. Similar to the 28-modulus sum operation,
substitution box is used to achieve good confusion property.
Other than that, the AES substitution box is used because it
has adequate security and resistant toward cryptanalysis
attack such as differential cryptanalysis, linear cryptanalysis,
impossible differential cryptanalysis, and others [19].
Furthermore, the low correlation between the input and the
output bits of the AES substitution box is another good reason
as to why we chose it.

Other than confusion property, an algorithm must also
satisfy the diffusion property. To achieve this, a mix word
operation is performed which processes the input in word
groups as shown in section III.A. However, the output of this
layer has a weakness for which the first word of each word
group has a fixed value. To overcome this weakness, rotation
bit operation is therefore conducted. This operation will rotate
the 8 most significant bits of mix word layer output.
Moreover, all components of the permutation function 𝑓 use
basic operation that will make it easier to write the source
code both in software and hardware applications.

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_12

Volume 53, Issue 1: March 2023

__

C. Test Vector
We performed a test vector for every intermediate step of

RM70 hashing process. A 28-bit message (X = 0x1234567)
will be hashed to generate 88-bit hash value. Table II shows
the test vector of the RM70 algorithm.

TABLE II

TEST VECTOR OF RM70
Initialization Phase
X = 0X1234567
X + PAD(X) = 0X12345678 	
X1 = 0X12,	X2 = 0X34,	X3 = 56,	X4 = 78
Absorbing Phase

Input Process Output

0x120000000000000000000000 Absorb 0 0xa24be532d286cd786a1a5ca5

0x964be532d286cd786a1a5ca5 Absorb 1 0xc4d5036be13ee0422ff8f697

0x92d5036be13ee0422ff8f697 Absorb 2 0x8f0afe2ef2c3aecaf05f3c0c

0xf70afe2ef2c3aecaf05f3c0c Absorb 3 0xc8dac54a8a1cb906b64fe64f

Squeezing Phase

Input Process Output

0xc8dac54a8a1cb906b64fe64f Squeezing 0 0xca3b9b3177db4ffd0a80c10f

0xca3b9b3177db4ffd0a80c10f Squeezing 1 0x41e9d515f779b492f86ddd13

0x41e9d515f779b492f86ddd13 Squeezing 2 0xa9f6fb02b8a306c15bbe0eec

0xa9f6fb02b8a306c15bbe0eec Squeezing 3 0xbc6803a559d3c0c9c3bba207

0xbc6803a559d3c0c9c3bba207 Squeezing 4 0xa8aa52e9f9fd3ec3b59fbb20

0xa8aa52e9f9fd3ec3b59fbb20 Squeezing 5 0x2a2b8307283ec9322d3dad80

0x2a2b8307283ec9322d3dad80 Squeezing 6 0xca8d68428ac2e390c6d55849

0xca8d68428ac2e390c6d55849 Squeezing 7 0xea31f8a07b35503fd97fa5d9

0xea31f8a07b35503fd97fa5d9 Squeezing 8 0xdf8eafa1c2e04c1e911acf14

0xdf8eafa1c2e04c1e911acf14 Squeezing 9 0x58c1d3ca3ca00f94d7bef4e6

0x58c1d3ca3ca00f94d7bef4e6 Squeezing 10 0x8124348a7be7855284c31cc4

Hash Value

RM70(X) = 0xc8ca41a9bca82acaeadf58

IV. RANDOMNESS EVALUATION
Randomness is one of the generic properties of

cryptographic primitives, including hash functions [24]. A
hash function is expected to behave in the manner of random
map. Besides randomness, the hash function also needs to
satisfy other generic cryptographic properties such as strict
avalanche criterion (SAC) and collision resistance. Hence,
evaluation of the output of a hash function is compulsory.
One way to evaluate the randomness of a hash function output
is with a method proposed in [24].

The cryptographic randomness testing explored in [24] is a
statistical randomness test evaluating a function by
investigating its cryptographic properties. In this paper, we
conducted three cryptographic randomness tests, namely the
Strict Avalanche Criterion (SAC) Test, the Collision Test,
and the Coverage Test. Each test that we performed utilized
220 independent input samples of 32-bits with a significance
level parameter 𝛼 = 0.01. Each test is carried out five times
to avoid biased results.

A. SAC Test
The SAC test aims to evaluate whether an algorithm has

satisfied the SAC property. The nature of the SAC in question
is that a change of one input bit, will cause a change in the
output bits with a probability of 0.5. In other words, the SAC
test will evaluate an algorithm whether there is a correlation
between the input bits and the output bits.

Two approaches are used to conduct an SAC test to the

RM70. The first approach uses the chi square goodness of fit
test and the second approach uses the expected interval. The
second approach is used to determine whether or not the
results of the evaluation of the first approach are
coincidences, considering that the evaluation of the
correlation between the input bits and the output bits is
carried out thoroughly. Either the first or second approach
will evaluate the SAC matrix formed during the testing
process.

Table III shows that the resulting p-value from all five tests
with the first approach is bigger than its significance level. It
can therefore be concluded that the algorithm has passed the
SAC test with the chi-square goodness of fit test approach.
Further evaluation is carried out using the expectation
interval approach. This evaluation expects each entry in the
formed SAC matrix to be in the interval of [519,279,
529,297]. The results presented in Table IV show that from
the first to the fifth test, there are 2,816 SAC matrix entries
that are in the interval and none of them are outside the
interval. Thus, the proposed algorithm passes the SAC test
through the second approach.

The evaluation of the proposed algorithm for the SAC test
shows that the algorithm passed both approaches of the SAC
test. In other words, the algorithm has a random mapping that
satisfies cryptographic properties of the strict avalanche
criterion.

TABLE III

SAC TEST RESULT WITH FIRST APPROACH
SAC Test Chi-square value p-value

I 4.1694 0.3836
II 3.2473 0.5173
III 1.6235 0.8046
IV 6.0274 0.1971
V 6.0145 0.1981

TABLE IV

SAC TEST RESULT WITH SECOND APPROACH
SAC Test Inside interval Outside interval

I 2,816 0
II 2,816 0
III 2,816 0
IV 2,816 0
V 2,816 0

B. Collision Test
The purpose of a collision test is to evaluate the

randomness of a function by considering the nature of the
collision resistance. This collision test focuses on the number
of collisions that occur on certain output bits (near collision).
In other words, the collision test evaluates an input of size n
through the function f and evaluates the number of collisions
b found in the t-bit output.

The parameters n = 212 and m = 216 are used in conducting
the test, where n is the number of messages modified by the
message sample and m is the number of output bits observed
for collisions. In other words, the message sample will be
modified to the 12 most significant bits and collision
observations will be performed on the 16 most significant bits
of the resulting output.

The result of the five times collision test stated in Table V
shows that none of the five tests has a p-value less than 0.01.
It can therefore be concluded that the RM70 algorithm passed
the collision test and has a random mapping based on the
collision resistance property.

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_12

Volume 53, Issue 1: March 2023

__

TABLE V
COLLISION TEST RESULT OF RM70

Collision Test Chi-square value p-value
I 6.1869 0.1856
II 8.2074 0.0843
III 6.1097 0.1911
IV 6.6557 0.1552
V 12.2189 0.0158

C. Coverage Test
The coverage test is used to evaluate the randomness of a

function by observing the size of the output set formed from
the input set (coverage). The hash function is said to have a
random map if its coverage reaches 63%. The coverage test
carried out on the proposed algorithm was performed by
observing the coverage of the 12 most significant bits output
formed. We observed the output generated from every
modified message of the 12 most significant bits of each
message sample. The results of the observations are presented
in Table VI, from which we can infer that all the p-values of
the coverage tests are greater than 0.01. This shows that the
proposed algorithm has coverage of at least 63% and passed
the coverage test. Thus, we can safely claim that the proposed
algorithm is an algorithm with a one-way function that has a
random mapping.

TABLE VI

COVERAGE TEST RESULT OF RM70
Coverage Test Chi-square value p-value

I 4.6160 0.3290
II 7.3611 0.1179
III 5.3991 0.2487
IV 12.6324 0.0132
V 8.4196 0.0774

V. SECURITY EVALUATION
We conducted several security evaluations on the proposed

algorithm including second preimage resistance, collision
resistance, and preimage resistance properties. These
evaluations are meant to determine whether or not the
proposed algorithm has a decent cryptographic security.

A. Theoretical Security
In an iterated variable-output length hash function

(sponge-based hash function), the required resistance against
attacks is expressed relative to a single-parameter called
capacity [20]. An 𝑛-bit sponge-based hash with capacity 𝑐
and rate 𝑟, can obtain min(2)/", 2+/") of collision resistance
bound and min(2), 2+/") of second preimage resistance and
preimage resistance bounds [12]. The design of RM70 uses
half of the actual state size, resulting in the reduction of
second preimage security bound to 2+/" and preimage
security bound to 2),-. The bound reduction is not an issue,
considering the fact that full second preimage security is not
a mandatory requirement in many embedded scenarios
implementing lightweight hash functions. Moreover, the
reduction of the preimage security bound to 2),- does not
significantly affect the preimage resistance of the algorithm,
considering the small value of 𝑟. Table VII shows the security
bounds of RM70 and other sponge-based lightweight hash
functions with similar output size.

TABLE VII
SECURITY BOUND

Algorithm Preimage
Resistance

Second Preimage
Resistance

Collision
Resistance

RM70 2#$ 2%% 2%%
SPONGENT-88/80/8 [14] 2#$ 2%$ 2%$
PHOTON-80/20/16 [12] 2&% 2%$ 2%$

B. Second Preimage Resistance
Second preimage resistance can be interpreted by a

condition which is hard to find a different message with the
same hash value from a given message [25]. The evaluation
of the second preimage resistance property of RM70 is
performed by applying the second preimage attack method
proposed by [26]. We developed the attack method by
changing the position of the modified message block. In [26],
they used the first-second pair of message blocks to conduct
a second preimage attack. In the method that we developed,
we used the first-third, first-fourth, second-third, second-
fourth, and third-fourth message block pairs. Thus, there are
six different scenarios of the attack. All these attack scenarios
were performed on 32-bits length of 10,000 independent
sample messages. In general, second preimage attacks are
carried out as mentioned in Algorithm 1.

After carrying out six different scenarios of second
preimage attack against the proposed algorithm, we obtained
the results as stated in Table VIII. The data shown in Table
VIII bring us the information that no collision was found from
the second preimage attack with a message modification of
2()/!)/" which was carried out on the proposed algorithm in
attack scenarios 1, 2, 3, 4, 5, or 6. Henceforth, it can be
claimed that the proposed algorithm satisfies the property of
second preimage resistance.

Algorithm 1. Second preimage attack
INPUT : 𝑥', 𝑥(, 𝑓
OUTPUT : 𝑥') , 𝑥()
1. 𝑆' → ∅
2. For 𝑖 ← 0 to 2(+,')/(do

Choose 𝑥'/ ∉ +𝑥', 𝑥'$, … , 𝑥'/0'. at random and compute 𝑦'/ ← 𝑓0𝑥'/ , 𝑥(1
𝑆' ← 𝑆' ∪ +0𝑥'/ , 𝑦'/1.

End looping
3. For 𝑖 ← 0 to 2(+,')/(do

Choose 𝑥(/ ∉ +𝑥(, 𝑥($, … , 𝑥(/0'. at random and compute 𝑦(/ ← 𝑓0𝑥', 𝑥(/1
If 𝑦(/ = 𝑦'1 where 𝑦'1 is the second component of an element of 𝑆'

Return 0𝑥'1, 𝑥(/ 1
End Looping

TABLE VIII

RESULT OF SECOND PREIMAGE ATTACK
Scenario Blocks modified Total Collision

S1 1 and 2 0
S2 1 and 3 0
S3 1 and 4 0
S4 2 and 3 0
S5 2 and 4 0
S6 3 and 4 0

C. Collision Resistance
Collision resistance is a condition of the hash function such

that it is very hard to find two different messages with the
same hash value [27]. To evaluate the collision resistance
properties of the RM70 algorithm, we used Yuval’s birthday
attack [26]. As the name implies, this attack uses the birthday
paradox approach. In general, a collision attack is carried out
as mentioned in Algorithm 2.

In the attack, we modified the 20 first bits of the message

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_12

Volume 53, Issue 1: March 2023

__

resulting in 2"# (1,048,576) modifications. Furthermore, the
attack was carried out five times with five different pairs of
message samples. The pair of message samples used in the
attack is called legitimate message and fraudulent message.
The five pairs of message samples are presented in Table IX.

After five collision attacks were applied, we obtained the
results of the attacks as listed in Table X. The data from the
attack were then analyzed to determine whether the collision
attack was successfully carried out against the RM70
algorithm. From Table X, we know that there is no collision
from the first, second, third, fourth, and fifth attacks.

A collision attack fails to perform against an algorithm
when no collision is found. From the evaluation conducted, it
can be concluded that the RM70 algorithm meets the collision
resistance property with 𝑂(2"#).

Algorithm 2. Collision attack
INPUT : 𝑥', 𝑥(, ℎ
OUTPUT : 𝑥') , 𝑥()
1. Generate 𝑡 = 2+/(minor modifications 𝑥') of 𝑥'.
2. Hashed every modified message 𝑥') and store the hash value ℎ(𝑥')) with the

corresponding modified message.
3. Generate 𝑡 = 2+/(minor modifications 𝑥() of 𝑥(and hashed every modified

message 𝑥() to get hash value ℎ(𝑥()).
4. Check every hash value ℎ(𝑥()) to ℎ(𝑥')). Collision is found when ℎ(𝑥()) =
ℎ(ℎ(𝑥')).

TABLE IX

MESSAGE SAMPLES OF COLLISION ATTACK
Collision
Attack

Legitimate Message
(in hexadecimal)

Fraudulent Message
(in hexadecimal)

I 1111111111111111111111 f30a75caaef2371bbb9ad9
II 2222222222222222222222 e6370ca76d364986caa6a6
III 3333333333333333333333 5938a4e0c0db6296f656fc
IV 4444444444444444444444 3b7fce2ebd894147ea11ca
V 5555555555555555555555 15ba3b790033a27e6234ed

TABLE X

COLLISION ATTACK OF RM70
Collision Attack Total Collision

I 0
II 0
III 0
IV 0
V 0

D. Preimage Resistance
The meet-in-the-middle attack approach is used to evaluate

the preimage resistance property. Basically, this attack tries
to find the middle value by calculating backwards and
forwards. The meet-in-the-middle attack is carried out in two
stages, namely pre-computation (looking for the value of 𝑑!)
and matching (looking for preimage). The attack scheme on
the RM70 algorithm can be seen in Fig. 7.

In carrying out a meet-in-the-middle attack, the attacker
already knows the original message 𝑋, hash value 𝐻(𝑋) =
ℎ! ∥ ℎ" ∥ ⋯ ∥ ℎ1, and the number of iterations in the
squeezing phase (𝑛/𝑟 iterations). This attack was carried out
as follows:
1) Pre-computation Step

It is known that 𝑓,!(ℎ1/!, 𝑣1/!) = (ℎ1 , 𝑣1) for 𝑖 =
1,2, … , 𝑛/𝑟 in squeezing phase. With the knowledge of
the value of ℎ1 with size 𝑟 bit, the probability of finding
the value is ½. Thus, the search for the value (ℎ!, 𝑣!) in
the squeezing phase is performed by counting backwards
using 2(()/-),!).- = 2),- 𝑣1 value which is different with

𝑖 = 1,2, … , 𝑛/𝑟, with 𝑛 is the length of the hash value,
and 𝑟 is the rate.

2) Matching Step
This stage is carried out in the absorbing phase after

the value (ℎ1 , 𝑣1) from the pre-computation step. The
matching step is done in the following way:
a. Choose 𝑘 parameter so that 𝑘 ⋅ 𝑟 ≥ 𝑐/2 with 𝑐 is the

capacity and 𝑟 the rate.
b. Generate 2+/" messages which allows for

𝑥3/", 𝑥3/&, … , 𝑥"3/! and do the backward calculation
with (ℎ!, 𝑣!). Store both values as the elements of the
set 𝐺!.

c. Generate 2+/" which allows for 𝑥!, 𝑥", … , 𝑥3 and do
the forward calculation with an initial state value
𝑠# = 0- ∥ 0+.

d. Compare each value from the forward calculation
process with all elements in 𝐺! to find the same 𝑐
least significant bit. The calculated value is the
capacity 𝑐 from 𝑥3/!.

e. In 𝑥3 and 𝑥3/" with the same 𝑐 least significant bit,
perform the XOR operation between the 𝑟 most
significant bit 𝑥3 with 𝑥3/" to obtain the value of
𝑥3/!.

Based on the attacks carried out, it is known that the
precomputation step has a complexity of 2),- to obtain 𝑑!
while the matching step has a memory complexity of 2+/" and
a time complexity of 2+/". Furthermore, it can be inferred that
the meet-in-the-middle attack has a time complexity of
max	(2),- , 2+/") and a memory complexity of 2+/".

VI. PERFORMANCE EVALUATION
Performance evaluation is conducted by comparing and

analyzing the processing time and memory consumption of
the proposed algorithm to other similar algorithms in
software and hardware applications. SPONGENT-88 [14], a
sponge-based algorithm with great time and memory
efficiency, is chosen as a comparison in this evaluation. In
order to gain a fair comparison, the performance evaluation
of both algorithms is carried out under the same conditions
and environments.

A. Software-Based Evaluation
There are two approaches used in this software-based

evaluation. The first approach is done by measuring the
algorithm’s processing time with several variations of
message size once, while the second approach is done by
measuring the algorithm's processing time of a determined
message with several iteration variations. These two
approaches are carried out several times to gain a less biased
result.

The results of the software-based evaluation of RM70,
either with the first or the second approach show that RM70
takes less processing time compared to its competitor,
SPONGENT-88. Based on the result of the evaluation using
the first approach stated in Table XI, RM70 has a processing
time efficiency up to 32.82% compared to SPONGENT-88.
In addition, RM70 can get up to 93.03% of processing time
efficiency based on the second approach evaluation as
presented in Table XII.

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_12

Volume 53, Issue 1: March 2023

__

TABLE XI
RESULT OF RM70 EVALUATION ON SOFTWARE WITH THE FIRST APPROACH

Data
(in KB)

Time Needed (in second)
RM70 SPONGENT-88

32 0.0323 0.5189
64 0.0531 0.0777

128 0.1072 0.1527
256 0.2084 0.2915
512 0.3902 1.1771

TABLE XII

RESULT OF RM70 EVALUATION ON SOFTWARE WITH THE SECOND
APPROACH

Iterations
Time Needed (in second)

RM70 SPONGENT-88
1,000 0.0539 0.7716
2,000 0.1038 1.5091
3,000 0.1554 2.2274
4,000 0.2037 2.9359
5,000 0.2537 3.6162

B. Hardware-Based Evaluation
The hardware-based evaluation of the proposed algorithm

focuses on the processing time and memory consumption of
the algorithm implemented on a small computing device, like
the Arduino. The Arduino Uno R3 with its 8-bit processor is
considered capable of representing small computing devices
implementing a lot of lightweight cryptography algorithms.
In conducting this evaluation, a 96-bit message was chosen
as the input to the algorithms.

As per shown in Table XIII, RM70 has a better processing
time than its competitor, SPONGENT-88, with an efficiency
of 97.86%. In terms of memory consumption, RM70 requires
1% more flash memory and 25% more SRAM compared to
SPONGENT-88. The amount of memory consumed in
hardware is greatly influenced by the efficiency of the source
code.

TABLE XIII
RESULT OF RM70 EVALUATION ON HARDWARE

Aspect RM70 SPONGENT-88
Time 40 milliseconds 1,872 milliseconds
Flash

memory
3,362 bytes

(10% of max capacity)
3,074 bytes

(9% of max capacity

SRAM 1,248 bytes
(60% of SRAM’s capacity)

732 bytes
(35% of SRAM’s capacity)

VII. CONCLUSION
In this research, we proposed a sponge-based lightweight

hash function named RM70, which uses an ARX-SPN based
permutation. This algorithm processes arbitrary input and
produces output with an 88-bit length. We evaluated the
proposed algorithm on a number of parameters, including
randomness, security, and performance. The evaluation of
randomness was performed by evaluating the randomness of
the algorithm’s permutation using cryptographic randomness
testing (strict avalanche criterion test, collision test, and
coverage test). We also conducted security evaluation in
terms of preimage resistance, second preimage resistance,
and collision resistance. We also performed software-based
and hardware-based performance evaluations by comparing
the processing time and memory consumption of the RM70
to its competitor, the SPONGENT-88. From all the
evaluations that have been carried out, it is shown that the
proposed algorithm has a random mapping and meets the
preimage resistance, the second preimage resistance, and the
collision resistance properties. In addition, the algorithm also
has better processing time compared to SPONGENT-88, as
well as lower memory consumption. This algorithm emerges
to be a good option for a lightweight hash function, which can
be used in many applications.

Fig. 1. General scheme of RM70 algorithm

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_12

Volume 53, Issue 1: March 2023

__

Fig. 2. Permutation function 𝑓

Fig. 4. Substitution box

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_12

Volume 53, Issue 1: March 2023

__

Fig. 7. Meet-in-the-middle attack scheme of RM70

REFERENCES
[1] M. Hell, T. Johansson, and W. Meier, “Grain - A Stream Cipher for

Constrained Environments,” International Journal of Wireless and
Mobile Computing, vol. 2, pp. 86–93, 2007.

[2] S. Babbage and D. Matthew, “The stream cipher MICKEY 2.0,”
ECRYPT Stream Cipher Project Report, 2006. Available:
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf

[3] Y. Tian, G. Chen, and J. Li, “On the Design of Trivium,” Cryptology
ePrint Archive (Online), Paper 2009/431, 2009. Available:
https://eprint.iacr.org/2009/431

[4] A. Bogdanov et al., “PRESENT: An Ultra-Lightweight Block Cipher,”
Cryptographic Hardware and Embedded System - CHES 2007, pp.
450-466, 2007.

[5] T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata, “The 128-
bit Blockcipher CLEFIA (Extended Abstract),” Fast Software
Encryption – FSE 2007, pp. 181-195, 2007.

[6] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L.
Wingers, “The Simon and Speck families of lightweight block
ciphers,” 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1-6, 2015.

[7] G. Yang, B. Zhu, V. Suder, M. D. Aagaard, and G. Gong, “The Simeck
Family of Lightweight Block Ciphers,” Cryptographic Hardware and
Embedded System - CHES 2015, pp. 307-329, 2015.

[8] S. Salim and M. Aldabbagh, “Design 32-bit Lightweight Block Cipher
Algorithm (DLBCA),” International Journal of Computer
Applications, vol. 166, no. 8, pp. 17-20, 2017.

[9] B. Aboushosha, R. A. Ramadan, A. D. Dwivedi, A. El-Sayed, and M.
M. Dessouky, “SLIM: A lightweight block cipher for internet of health
things,” IEEE Access, vol. 8, pp. 203747–203757, 2020.

[10] A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw,
and Y. Seurin, “Hash functions and RFID tags: mind the gap,”
Cryptographic Hardware and Embedded System - CHES 2008, pp.
283-299, 2008.

[11] S. Badel et al., “ARMADILLO: a Multi-Purpose Cryptographic
Primitive Dedicated to Hardware,” Cryptographic Hardware and
Embedded System - CHES 2010, pp. 398-412, 2010.

[12] J. Guo, T. Peyrin, and A. Poschmann, “The PHOTON Family of
Lightweight Hash Functions,” Advances in Cryptology – CRYPTO
2011, pp. 222-239, 2011.

[13] J. P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia, “Quark:
A lightweight hash,” Journal of Cryptology, vol. 26, no. 2, pp. 313–
339, 2013.

[14] A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varici, and I.
Verbauwhede, “SPONGENT: The design space of lightweight
cryptographic hashing,” IEEE Transactions on Computers, vol. 62, no.
10, pp. 2041–2053, 2013.

[15] K. Bussi, D. Dey, M. Kumar, and B. K. Dass, “Neeva: A Lightweight
Hash Function,” Cryptology ePrint Archive, Paper 2016/042, 2016.
Available: https://eprint.iacr.org/2016/042

[16] S. B. Sadkhan and A. O. Salman, “A survey of lightweight-
cryptography status and future challenges,” 2018 International
Conference on Advance of Sustainable Engineering and its Application
(ICASEA), pp. 105-108, 2018.

[17] A. Shah and M. Engineer, “A Survey of Lightweight Cryptographic
Algorithms for IoT-Based Applications,” in Advances in Intelligent
Systems and Computing, vol. 851, pp. 283–293, 2019.

[18] G. Bertoni, J. Daemen, M. Peeters, and G. van Assche, “Cryptographic
sponge functions,” 2011. Available: https://keccak.team/files/CSF-
0.1.pdf

[19] J. Daemen et al., “The Design of Rijndael: AES-The Advanced
Encryption Standard,” 2001.

[20] G. Bertoni, J. Daemen, M. Peeters, and G. van Assche, “Keccak sponge
function family main document,” 2009. Available:
https://keccak.team/obsolete/Keccak-main-2.1.pdf

[21] D. N. Gupta and R. Kumar, “Sponge based Lightweight Cryptographic
Hash Functions for IoT Applications,” in 2021 International
Conference on Intelligent Technologies (CONIT), pp. 1–5, 2021.

[22] M. Borowski, “The sponge construction as a source of secure
cryptographic primitives,” 2013 Military Communications and
Information Systems Conference - MCC, pp. 1–5, 2013. Available:
https://www.researchgate.net/publication/261051558

[23] V. A. Thakor, M. A. Razzaque, and M. R. A. Khandaker, “Lightweight
Cryptography for IoT: A State-of-the-Art,” 2020.

[24] F. Sulak, “Statistical Analysis of Block Ciphers and Hash Functions,”
Ph.D. dissertation, Dept. Cryptography, Middle East Technical
University, 2011.

[25] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. 1997.

[26] K. Jia, X. Wang, Z. Yuan, and G. Xu, “Distinguishing Attack and
Second-Preimage Attack on the CBC-like MACs,” Cryptology and
Network Security – CANS 2009, pp. 349-361, 2009.

[27] B. H. Susanti, M. H. N. Ilahi, Amiruddin, S. S. Carita, “Finding
Collisions in Block Cipher-based Iterative Hash Function Schemes
Using Iterative Differential,” IAENG International Journal of
Computer Science, vol. 48, no. 3, pp. 634-645, 2021.

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_12

Volume 53, Issue 1: March 2023

__

