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Abstract—In this paper, we study the prescribed-time sta-
bilization (PTS) problem of a class of stable double integrals
System. A scale-free design scheme of state feedback is proposed
to ensure the time stability of the closed loop system by
appropriately introducing a time-varying function into the
virtual (real) controller. Finally, a wheeled mobile robot is taken
as an example to verify the effectiveness of this method.

Index Terms—double integrator systems, time-varying func-
tion, non-scaling design, prescribed-time stabilization, wheeled
mobile robot

I. INTRODUCTION

STABILIZATION and control design of linear/nonlinear
systems has recently received extensive attention due

to its theoretical and practical significance. Sports from
the perspective of convergence rate, The current results are
divided into finite-time stabilization (FTS) and infinite-time
stabilization. By comparison, the former is more attractive
because of its good features of convergence and disturbance
rejection [1-6]. However, the existing FTS results suffer from
the shortcoming that the convergence time relies on the
system initial conditions.

To deal with this, the fixed-time stability is proposed in [7],
by requiring the upper boundedness of system convergence
time irrespective of initial condition. Soon afterwards, the
research on fixed-time stabilization (FixTS) of nonlinear
system has become a popular topic. [8-15]. It must be said
that in the existing resutls, the upper boundedness of system
convergence time even is bounded, but it is hard to adjust
according the different needs [16].

However, quite a few engineering applications require
that the system has a prespecifiable convergence time. This
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impels that the prescribed-time stability has been proposed
to research on the problem of system stabilization [17-
22], where the upper boundedness of system convergence
time is chosen by user. Especially, the scaling technique,
i.e.,scaling the states by a function that grows unboundedly
to the terminal time, was given in [17] to solve the PTS
of Brunovsky systems. However, this technique may result
in the computationally singular appearing in the designed
controller.

To address the above problem, this paper studies the
PTS problem of stable double integrator systems. The main
contributions are twofold: (i) We introduce a witched scaling
function in which the switching rule is dependent on time
and system states to overcome the computationally singular
problem of the scaling-based controller of [17]. (ii) For
double integrator systems, a non-scaling design is given. Dif-
ferent from the scaling-based design of [17], where the time-
varying function scales the states in all the transformations,
we employs the given switched function scaling the virtual
(scaling) controllers to achieve the PTS. In this way, the
computation burden is reduced and thus the proposed method
leads to a simpler controller.

The rest of this paper is organised as follows. Section II
elaborates the problem to be investigated. Section III gives
the design and analysis. Section IV where an application of
the presented scheme to a wheeled mobile robot is provided.
Finally, some concluding remarks are given in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem formulation
Consider a stable double integrator as

ẋ1 = x2,
ẋ2 = −ax1 − bx2 + u,

(1)

where x = (x1, x2)
T ∈ R2, u ∈ R are the system state and

input respectively.
Assumption 1: The linear plant (1) is globally stabilizable

from u, i.e., a, b ≥ 0.
The control object is to design a state feedback controller

via non-scaling technique to stabilize system (1) within any
prescribed time T > 0.

Remark 1: It is clear that there is a smooth function
φ2 ≥ 0 and a constant τ ∈ (0, 1) such that |f2(·)| ≤
φ2(·)

∑i
j=1 |xj |

λi−τ

λj , where λi = 1− (i− 1)τ > 0, i=1,2,3.

B. Preliminaries
Consider the nonlinear system

ẋ = f(t, x), x(0) = x0 ∈ Rn, (2)
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where f(·) is a (discontinuous) nonlinear vector field satis-
fying f(t, 0) = 0.

The following results can found in [1,5,10].
Definition 1: The origin of system (2) is fixed-time stable

if it is asymptotically stable and the settling-time function
T (x0) exists and is bounded, that is, x(t, x0) = 0, ∀t ≥
T (x0) and ∃ Tmax > 0, s.t. T (x0) ≤ Tmax, ∀x0 ∈ Rn.

Definition 2: The origin of system (2) is prescribed-time
stable if it is fixed-time stable and for any prescribed time
Tc > 0, a tunable parameter θ ∈ R exists such that T (x0) ≤
Tc, ∀x0 ∈ R.

Lemma 1: For system (2), there exists a C1, positive
definite function V (x) and real numbers c > 0, 0 < α < 1
such that

V̇ (x) ≤ −cV α(x).

Then, the origin of system (2) is finite-time stable with the
setting time T (x0) satisfying

T (x0) ≤
V 1−α(0)

c(1− α)
.

Lemma 2: For ζ1 ∈ R, ζ2 ∈ R, and a constant m ≥ 1, one
has (i)|ζ1 + ζ2|m ≤ 2m−1|ζm1 + ζm2 |; (ii)(|ζ1| + |ζ2|)1/m ≤
|ζ1|1/m + |ζ2|1/m ≤ 2(m−1)/m(|ζ1|+ |ζ2|)1/m.

Lemma 3: If c, d are positive constant and γ(ζ1, ζ2) > 0
are real-valued function, then

|ζ1|c|ζ2|d ≤ c

c+ d
γ(ζ1, ζ2)|ζ1|c+d+

d

c+ d
γ− c

d (ζ1, ζ2)|ζ2|c+d.

Lemma 4: For ζ1 ∈ R, ζ2 ∈ R and constant 0 < m ≤ 1
and a > 0, one has

|⌈ζ1⌉am − ⌈ζ2⌉am| ≤ 21−m|⌈ζ1⌉a − ⌈ζ2⌉a|m.

III. PRESCRIBED-TIME STABILIZATION

A. Scaling function

For the control object of this paper, we introduce the
following switched scaling function:

z =

{
Γ, x ∈ {R2 − Ξ} & t < T1,
1, otherwise, (3)

where Ξ is a small closed neighborhood of origin and

Γ =
T1

T1 − t
, (4)

with 0 < T1 < T .

B. Controller design

The controller is developed by the recursive idea.
Step 1: Take

V1 =
1

2
x2
1, (5)

as the Lyapunov function for this step. Then the derivative
of V1 arrives

V̇1 ≤ x1(x2 − x∗
2) + x1x

∗
2, (6)

where x∗
2 is the virtual controller of x2.

Select

x∗
2 = −z (1 + c+ φ1) ⌈x1⌉λ2

:= −zβ1⌈x1⌉λ2 ,
(7)

where c is a positive constant. Then, by substituting (7) into
(6), one has

V̇1 ≤ −(1 + c)z|x1|2−τ + x1 (x2 − x∗
2) . (8)

Step 2: Define

z2 = ⌈x2⌉
1
λ2 − ⌈x∗

2⌉
1
λ2 , (9)

and take the Lyapunov function V2 = V1 +W2 with

W2 =

∫ x2

x∗
2

⌈
⌈s⌉

1
λ2 − ⌈x∗

2⌉
1
λ2

⌉2−λ2

ds. (10)

From

∂W2

∂x2
= ⌈z2⌉2−λ2 ,

∂W2

∂ϑ
= −(2− λ2)

∂
(
⌈x∗

2⌉
1
λ2

)
∂ϑ

×
∫ x2

x∗
2

∣∣∣⌈s⌉ 1
λ2 − ⌈x∗

2⌉
1
λ2

∣∣∣1−λ2

ds,

(11)

where ϑ = t or ϑ = x1, a direct calculation gives

V̇2 ≤ −(1 + c)z|x1|2−τ + x1 (x2 − x∗
2) + ⌈z2⌉2−λ2u

+⌈z2⌉2−λ2f2 +
∂W2

∂x1
(x2 + f1) +

∂W2

∂t
.

(12)
We gives the estimates of some terms of (12) in the

following inequalities and their proofs are listed in Appendix.

x1 (x2 − x∗
2) ≤

1

4
|x1|2−τ + |z2|2−τϱ21, (13)

⌈z2⌉2−λ2f2 ≤ 1

4
|x1|2−τ +z

2−τ
1+τ |z2|2−τϱ22, (14)

∂W2

∂x1
(x2 + f1) ≤

1

4
|x1|2−τ +z

(2−τ)2

(1−τ)2 |z2|2−τϱ23, (15)

∂W2

∂t
≤ 1

4
|x1|2−τ +z

(2−τ)2

(1−τ)2 |z2|2−τϱ24, (16)

where ϱ21, ϱ22, ϱ23 and ϱ24 are nonnegative smooth func-
tions.

Substituting (13), (14), (15) and (16) into (12) yields

V̇2 ≤−cz|x1|2−τ + ⌈z2⌉2−λ2u

+|z2|2−τ

(
ϱ21 +z

2−τ
1+τ ϱ22 +z

2−τ
1−τ ϱ23 +z

(2−τ)2

(1−τ)2 ϱ24

)
.

(17)
Therefore, one can design the actual controller

u = −z
(2−τ)2

(1−τ)2 ⌈z2⌉λ2−τβ2, (18)

with

β2 = (c+ ϱ21 + ϱ22 + ϱ23 + ϱ24) , (19)

is a smooth function, which together with the fact that z ≥ 1
for all t ≥ 0 is such that

V̇2 ≤ −cz|x1|2−τ − cz|z2|2−τ . (20)
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Fig. 1. System state x0.

C. Stability analysis

We give the main result in this paper.
Theorem 1: For system (1) under Assumption 1, the con-

troller (18) with properly choosing the design parameters
renders the origin is prescribed-time stable within any given
settling time T .

Proof: The main proof is divided into three steps.
Step 1: From Lemma 4, it is obtained that

W2 =
∫ x2

x∗
2

⌈
⌈s⌉

1
λ2 − ⌈x∗

2⌉
1
λ2

⌉2−λ2

ds.

≤ |z2|2−λ2 |x2 − x∗
2|

≤ 21−λ2 |z2|2.
(21)

As a result, we have the following estimation.

V
2−τ
2

2 = (V1 +W2)
2−τ
2

≤
(
1

2
|x1|2 + 21−λ2 |z2|2

) 2−τ
2

≤ |x1|2−τ + |z2|2−τ .

(22)

which together with (20) renders

V̇2 ≤ −cz|x1|2−τ − cz|z2|2−τ

≤ −czV
2−τ
2

2 .
(23)

When z = Γ, (23) means Ξ is prescribed-time attractive
and the convergence time satisfies

Ta ≤ T1

(
1− exp

(
−2V

τ
2

2 (0)

cτ

))
< T1. (24)

Step 2 : When z = 1, set M = max
ζ∈Ξ

V2(ζ). Then from

(23), we know that the CLS is locally finite-time stable in
the domain Ξ with

Tl ≤
2V

τ
2

2 (0)

cτ
≤ 2M

τ
2

cτ
. (25)

Therefore, by choosing c ≥ (2M
τ
2 )/(τT − τT1), one has

Tl ≤ T − T1.
Step 3: (23) indicates that system (1) under controller

(18) is Lyapunov asymptotically convergent (stable) in both
operational domains. By the properties of existence and
continuation of the solutions, the whole system is Lyapunov
asymptotically stable. Therefore, the origin of the CLS is
prescribed-time stable within Tp < Ta + Tl < T .
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IV. AN APPLICATION EXAMPLE

Consider a tricycle-type wheeled mobile robot whose
kinematic equations are represented by

ẋ0 = u0,
ẋ1 = u0x1,
ẋ2 = u1 − u0x1.

(26)

For the x0-subsystem, if we take

u0 = 1, (27)

then the x-subsystem becomes

ẋ1 = x2,
ẋ2 = u1 − x1,

(28)

Note that this system is a special case of system (1) with
f2 = −x1. Hence, the proposed control design can be em-
ployed. For the x-subsystem, the prescribed-time controller
u1 is designed as (18) with τ = 1/3, c = 0.5, T1 = 1.8,
Ξ = {x : x2

1 + x2
2 ≤ 0.01} to drive the states to zero within

the prescribed time Ts = 2s.
Then when t ≥ Ts, switch u0 to

u0 = −z̄⌈x0⌉
1
2 (29)

where

z̄ =


T2 − Ts

T2 − Ts − t
, x0 ∈ {R− Ξ0} & Ts ≤ t < T2,

1, t ≥ T2,
(30)
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with Ξ0 = {x2
0 ≤ 0.01} which regulates the state x0 to zero

within a prescribed time T2 = 4s.
For different initial conditions: (a) (x0(0), x1(0), x2(0))=

(0.2, 0.1,−1) and (b) (x0(0), x1(0), x2(0))= (2, 0.9,−10),
Figs.1–5 are given to depict the responses of the CLS, which
confirm the effectiveness of the proposed scheme.

V. CONCLUSION

In this paper, a switched, non-scaling design has been
developed for the PTS of double integrator systems. The
suitable switching mechanism renders the proposed control
scheme ensuring the prescribed-time stability of the origin
of the CLS. At the same time it solves the computationally
singular problem effectively and leads to a simpler controller.
Extension of the result to more general systems is one of our
future research topics.

APPENDIX

Based on the fact z ≥ 1 for all t ≥ 0, we given the proofs
of (13), (14), (15) and (16).

Proof of (13): Based on the definitions of z2 and x∗
2 and

Lemma 2.3, one has

|x2 − x∗
2| ≤ 21−λ2

∣∣∣⌈x2⌉
1
λ2 − ⌈x∗

2⌉
1
λ2

∣∣∣λ2

= 21−λ2 |z2|λ2 .
(31)

Thus, from Lemma 4, it is obtained that

⌈x1⌉2−λ1 (x2 − x∗
2) ≤

1

4
|x1|2−τ + |z2|2−τϱ21, (32)

where ϱ21 ≥ 0 is a smooth function.
Proof of (14): Firstly, from Remark 1 and Lemma 2, one

gets

|f2| ≤ φ2

(
|x1|

λ2−τ
λ1 + |x2|

λ2−τ
λ2

)
≤ φ2

(
|x1|λ2−τ + |z2|λ2−τ +zβ1|x1|λ2−τ

)
.

(33)

Using (33) and Lemma 3 yields

⌈z2⌉2−λ2f2 ≤ 1

4
|x1|2−τ +z

2−τ
1+τ |z2|2−τϱ22, (34)

where ϱ22 ≥ 0 is a smooth function.
Proof of (15) and (16): Notice that∫ x2

x∗
2

∣∣∣⌈s⌉ 1
λ2 − ⌈x∗

2⌉
1
λ 2

∣∣∣1−λ2

ds ≤ 2ρ− λ2

ρ
|z2|

ρ−λ2
ρ |x2 − x∗

2|

≤ 21−λ2 |z2|,
(35)∣∣∣∣∣∣

∂
(
⌈x∗

2⌉
1
λ2

)
∂x1

∣∣∣∣∣∣ ≤ z
1
λ2

∣∣∣∣∣∣∂β
1
λ2
1

∂x1

∣∣∣∣∣∣ |x1|+z
1
λ2 β

1
λ2
1

≤ z
1
λ2 γ21,

(36)

∣∣∣∣∣∣
∂
(
⌈x∗

2⌉
1
λ2

)
∂t

∣∣∣∣∣∣ ≤ 2

T1λ2
z

1+λ2
λ2 β

1
λ2
1 |x1|

≤ z
1+λ2
λ2 |x1|γ22,

(37)

where γ21 and γ22 are some nonnegative smooth functions.
Then, from (35), (36), (37) and Lemma 3, one arrives

∂W2

∂x1
(x2 + f1) ≤

1

4
|x1|2−τ +z

2−τ
1−τ |z2|2−τϱ23, (38)

∂W2

∂t
≤ 1

4
|x1|2−τ +z

(2−τ)2

(1−τ)2 |z2|2−τϱ24, (39)

where ϱ23 ≥ 0 and ϱ24 ≥ 0 are smooth functions.
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