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Abstract—In this paper, we evaluate certain type superlinear
nonlocal problems that are a class of parabolic equations with
the second-type integral condition. We use the Fadeo-Galarkin
method to establish the existence of the weak solution and we
prove the uniqueness of this solution for the problem by using
an a priori estimate. In addition, we study the theoretical blow-
up solution and perform several numerical simulations of finite-
time blow-up of a particular example of the main problem.

Index Terms—Parabolic equation, Nonlinear equations, In-
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I. INTRODUCTION

THE nonlinear diffusion equations are a type of parabolic
equations that originates from a diverse variety of

diffusion phenomena extensively in nature [1]–[4]. The com-
plexity of the nonlinear evolution equations, including the
difficulties in analyzing them theoretically, brings the atten-
tion of many scientists and mathematicians in the field of
nonlinear sciences [5]–[9]. The partial differential equations
with nonlocal conditions can be used to simulate a variety
of natural phenomena [10]–[12]. Many phenomena, on the
other hand, are usually studied by integral conditions [13],
[14]. The nonlocal and the integral formulations are used to
describe the most of contemporary physics and technology
problems conditions for the partial differential equations (see
[15]–[22]). The first type of these formulations is given by:∫

Ω

N(x, t)y(x, t)dx = E(t),

where t ∈ (0, T ), Ω ⊂ Rn and N is a given function.
The second type, where the Dirichlet or Neumann condition
modeling by integral condition, is given by:

y(x, t)|∂Ω =

∫
N(x, t)y(x, t)dx.
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This type can be used when it is impossible to directly
measure the sought quantity on the border, where the total
value or the average is known. The study of the nonlinear
evolution equations with different boundary conditions types
(classical and non-classical conditions) has been solved by
many powerful and different methods in the nonlinear anal-
ysis, (i.e., fixed-point theorem, semigroup method, Galerkin
and monotone operator method, see [23]–[27]). This, how-
ever, inspired us to study the superlinear parabolic equation
with a classical Dirichlet condition coupled with an integral
condition of the second type, more than any classical integral
condition. In this paper, we explore the existence and the
uniqueness of the weak solution for the linear problem by
the Faedo-Galerkin method. Besides we apply an iterative
process based on the results obtained for the linear problem
to explore the existence and the uniqueness of the weak
solution of the semilinear problem. Finally, we study the
blow-up solution theoretically and numerically as a special
case of the main problem.

II. FORMULATION OF THE PROBLEM

In this section, we consider the function y = y (x, t) for
x ∈ Ω and t ∈ [0, T ], where Ω = (0, l) is a bounded open
of R and Q = Ω × (0, T ). In this regard, we concern with
the following main problem (P1):

∂y
∂t − a ∂2y

∂x2 + yp − by = f (x, t) ∀ (x, t) ∈ Q
y (x, 0) = φ(x) ∀x ∈ (0, l)
y(0, t) = 0 ∀t ∈ [0, T ]

∂y
∂x (l, t) =

∫ l

0
N(x, t)y(x, t)dx ∀t ∈ [0, T ]

,

(P1)

where a, b and p are positive odd integers and p ≥ 1. In
order to solve the problem (P1), we need to introduce the
following hypothesis and functional spaces that we will use
later. Define the following hypothesis H as follows:

(H) :

{
f ∈ L2

(
0, T ; L2 (Ω)

)
(H.1)

φ ∈ H1 (Ω) ∩ Lp+1 (Ω) (H.2)

Define the functional space V by:

V =
{
y ∈ H1 (Ω) ∩ Lp+1 (Ω) : v(0) = 0

}
,

provided with the norm:

∥v∥V = ∥v∥H1(Ω) + ∥v∥Lp+1(Ω).

Definition 1: The weak solution to the problem (P1) is
a function that verifies the following properties: (i) y ∈
L2
(
0, T ; H1 (Ω)

)
∩ L∞ (0, T ; H1 (Ω)

)
. (ii) y admits a
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strong derivative ∂y
∂t ∈ L2

(
0, T ; H1 (Ω)

)
. (iii) y (0) = φ.

(iv) The identity property, i.e.,

(yt, v) + a (yx, vx) + (yp, v)− b (y, v)

= (f, v) + av(l)

∫ l

0

N(x, t)y(x, t)dx,

for all v ∈ V and t ∈ [0, T ].

III. SOLVABILITY OF THE NONLINEAR PROBLEM

Herein, we aim to study the solvability of problem P1 so
that this section is divided into two parts; the existence of the
solution of problem P1 and the uniqueness of that solution.

A. The existence of the solution

In this subsection, we intend to derive a variational for-
mulation and find the solution of problem P1.

1) Variational formulation: In the beginning, we will de-
rive a variational formulation of problem P1 via multiplying
the equation:

∂y

∂t
− a

∂2y

∂x2
+ yp − by = f (x, t) , (1)

by an element v ∈ V , and then integrating it over Ω to obtain:∫
Ω

∂y

∂t
· vdx+ a

∫
Ω

∂y

∂x
· ∂v
∂x
dx+

∫
Ω

yp · vdx

− b

∫
Ω

y · vdx− av(l)yx(l, t) =

∫
Ω

f · vdx.

(2)
By using the boundary conditions and Green’s formula on
(2), we get:

(yt, v)+a (yx, vx)+(yp, v)−b(y, v)−av(l)y(l, t) = (f, v) ,
(3)

for all v ∈ V , where (·, ·) denotes the scalar product in
L2 (Ω).

2) Study the existence of solution of problem (P1): In
this part, we prove the existence of the solution to problem
(P1) by using the Faedo-Galerkin method that assumes
the space V is separable, and so there exists a sequence
w1, w2, · · · , wm having the following properties: wi ∈ V, ∀i,

∀m,w1, w2, ..., wm are linearly independent,
Vm = ⟨{w1, w2, ..., wm}⟩ is dense in V.

(4)
In particular, we have:

∀φ ∈ V, =⇒ ∃(αSm)m ∈ IN∗

such that

φm =
m∑

S=1

αSmwS −→ φ, as m −→ +∞.

Define the following function:

t 7→ ym (x, t) =
m∑
i=1

gim (t)wi (x) .

The approximate solution for the previous function satisfies
the following identities: ((ym(t))t , wS) + a (∆ym(t), wS) + (ypm(t)− bym(t), wS)

= (f(t), wS)
(ym(0), wS) = αSm,∀S = 1,m.

(P2)

Note that (·, ·) denotes the inner product in L2(Ω). So, we
have:

((ym(t))t , wS) =
m∑
i=1

(wi, wS)
∂gim
∂t

(t) , (5)

and

a (∆ym(t), wS) =−
m∑
i=1

a ((wi)x , (wS)x) gim (t)

+ a
m∑
i=1

gim (t)
∂wi

∂x
(l)wS(l).

(6)

Also, we have:

ym(0) =
m∑

S=1

αSmwS(x).

The existence of αSm follows from y0 ∈ V ∩ LP+1 (Ω)
and the fact that {wS , S ∈ N} is the base in V ∩LP+1 (Ω).
Thus, (P1) is reduced to the initial value problem for a system
of the first-order differential equations with respect to gim,
which has the form:

m∑
i=1

(wi, wS)
∂gim
∂t

(t) + a
m∑
i=1

((wi)x , (wS)x) gim (t)

−a
m∑
i=1

gim (t)
∂wi

∂x
(l)wS(l) + (ypm − bym, wS)

= (f(t), wS)
gSm (0) = αSm ∀S = 1,m.

(P3)
Now, consider the following vector:

gm = (g1m(t), · · · , gmm(t)) , fm = ((f, w1) , · · · , (f, wm)) ,

as well as the matrices:

Bm = ((wi, wj))1≤i≤m
1≤j≤m

, Am =

((
∂wi

∂x
,
∂wj

∂x

))
1≤i≤m
1≤j≤m

,

Cm =

(
∂wi

∂x
(l) · wj(l)

)
1≤i≤m
1≤j≤m

,

and

G (g) =

(((
m∑
i=1

gim (t)wi

)p

, wj

))
1≤i≤m
1≤j≤m

.

Define the problem (P4) in the matrix form as follows: Bm
∂gm
∂t (t) + aAmgm − bBmgm +G (g)

= fm + aCmgm,
gm (0) = (αim)1≤i≤m .

(7)

With the help of using the Carathéodory’s existence theorem
for the ordinary differential equations, we can conclude that
there exists tm depends only on |αim| in the interval [0, tm].
Thus, problem (7) admits a unique local solution gm (t) ∈
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C [0, tm] and g
′

m (t) ∈ L2 [0, T ] . Now, we can study the a
priory estimates for the approximate solution ym(x, t).

Theorem 1: For all m ∈ N∗, and p
2 ≥ b. Suppose that

φ ∈ H1 (Ω) ∩ Lp+1 (Ω) and f ∈ L2
(
0, T, L2 (Ω)

)
. Then

problem (P1) has a solution y such that:

y ∈ L2 (0, T ; V ) ∩ L∞ (0, T ; H1 (Ω)
)
,

and
y′ ∈ L2(0, T ; L2(Ω)).

Proof: By multiplying both sides of the equations in (P2) by
gim(t), and then by taking the summation with respect to S,
we get:
m∑

S=1

((ym)t , wS) · gSm(t)− a
m∑

S=1

(∆ym, wS) · gSm(t)

+
m∑

S=1

(ypm − bym, wS) · gSm(t)
m∑

S=1

(f, wS) · gSm(t).

Thus, we find:

((ym)t , ym)− a (∆ym, ym) + (ypm − bym, ym) = (f, ym) .

Taking the integrating from 0 to t for the above equality
yields:

1

2
∥ym∥2L2(Ω) + a

t∫
0

∥∥∥∥∂ym∂x
∥∥∥∥2
L2(Ω)

dτ +

t∫
0

∥ym∥p+1
Lp+1(Ω) dτ

=

t∫
0

(f, ym)dτ + b

t∫
0

∥ym∥2L2(Ω) dτ

+ a

t∫
0

∂ym
∂x

(l, τ) · ym(l, τ)dτ +
1

2
∥φm∥2L2(Ω) .

By using the Cauchy inequality with ε, we obtain:
t∫

0

(
∂ym
∂x

(l, τ) · ym (l, τ)

)
dτ

<
ε

2

∫ t

0

y2m (l, τ) dτ +
1

2ε

∫ t

0

y2mx (l, τ) dτ.

To evaluate the estimate, we use the following inequality:

y2 (l, t) ⩽ 2

∫ l

x

y2xdx+ 2y2.

By using Gronwell’s inequality, we get:

1

2
∥ym∥2L2(Ω) + (a− aε)

t∫
0

∥∥∥∥∂ym∂x
∥∥∥∥2
L2(Ω)

+

t∫
0

∥ym∥p+1
Lp+1(Ω) ≤ exp

((
1

2
+
ε

l
+
N

2ε
+ b

)
T

)

×

1

2

t∫
0

∥f∥2 + 1

2
∥φm∥2L2(Ω)

 .

Then by putting ε = 1
2 , we get:

CT =
1

2

t∫
0

∥f∥2 + 1

2
∥φm∥2L2(Ω) . (8)

Consequently, we have:

1

2
∥ym (t)∥2L2(Ω) +

a

2

t∫
0

∥∥∥∥∂ym∂x
∥∥∥∥2
L2(Ω)

dτ

+

t∫
0

∥ym∥p+1
Lp+1(Ω) dτ ≤ CT ,

(9)

where CT is a positive constant depending only on
T∫
0

∥f (τ)∥2L2(Ω), ∥φm∥2L2(Ω) and T . This implies that the

solution of the initial value problem for the system of the
ODE given in (7) can be extended to [0, T ]. Thus, we have
the following uniform priory estimates: ym uniformly bounded in L∞(0, T ; L2 (Ω) )

ym uniformly bounded in L2(0, T ; H1 (Ω))
ym uniformly bounded in Lp+1

(
0, T ; Lp+1 (Ω)

)
.

To get more a priory estimates, we multiply the formulation
variational in (7) by g

′

Sm(t), and then take bake the summa-
tion over k. This implies the following equality:

((ym)t , (ym)t)− a

(
∂2ym
∂x2

, (ym)t

)
+ (ypm − bym, (ym)t)

= (f, (ym)t) .

By integration on (0, t), it comes:

∥(ym)t∥2L2(Q) +

(
a

2
− 2

l

ε

)
∥(ym)x∥

2
L2(Ω)

+
1

p+ 1
∥ym∥p+1

Lp+1(Ω) ≤
t∫

0

(f + bym, (ym)t)

+ a

(
1

2
− 2

l

ε

)
∥(φm)x∥

2
L2(Ω) +

1

p+ 1
∥φm∥p+1

Lp+1(Ω)

+ a

(
εl

2
K +

2

ε

)
∥um∥2L∞(0,T,L2(Ω)) .

By putting

C =
max{ 1

2 ,a(
1
2−l),a(lN+1+ b

2 ),−
b
2}

min{ 1
2 ,

a
T (

1
2−l), 1

(p+1)T }
,

we find

∥(ym)t∥
2
L2(Q) + ∥(ym)x∥

2
L2(Q) +

∫ t

0

∥ym∥p+1
Lp+1(Ω) ≤ C×[

∥f∥2L2(Q) + ∥(φm)x∥
2
L2(Ω) + ∥φm∥p+1

Lp+1(Ω) + ∥φm∥2L2(Ω)

]
Then, we get the following further priory estimates: ym uniformly bounded in Lp+1(0, T ; LP+1 (Ω))

ym uniformly bounded in L2(0, T ; H1 (Ω))
(ym)t uniformly bounded in L2

(
0, T ; L2 (Ω)

) .

(10)
There is a subsequence of ym (see [23]), defined as follows: ym −→ y weakly in Lp+1(0, T ; LP+1 (Ω))

ym −→ y weakly in L2(0, T ; H1 (Ω))
ym −→ y weakly in L2

(
0, T ; L2 (Ω)

) . (11)

Consequently, there are subsequences denoted by
(ymS

) and
(

∂ymS

∂t

)
of (ym) and (ym)t respectively,

such that:

ymS
⇀ y in L2(0, T ; H1 (Ω)), (12)
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∂ymS

∂t ⇀ w in L2
(
0, T ; L2 (Ω)

)
. (13)

By Relikh-Kondrachoff’s theorem, the injection of H1 (Q)
into L2 (Q) will be compact. Depends on Rellich’s theorem,
any weakly convergent sequence in H1 (Q) has a subse-
quence that converges strongly in L2 (Q) . So, we have:

ymS
−→ y in L2(Q). (14)

On the other hand, there is a subsequence of (ymS
)S denoted

by ymS
converges almost everywhere to y such that:

ymS
−→ y almost everywhere Q. (15)

Also, there is a subsequence of ym, denoted by (ym)p such
that (ym)p converges almost everywhere to y in QT = Ω×
[0, T ]. It turns out that

(ym)
p almost everywhere converges to yp in QT .

On the other hand, (10) implies that (ym)
p is bounded in

L
p+1
p (QT ). Therefore, we get:

ypm ⇀ yp is weakly in L
p+1
p

(
0, T , L

p+1
p (Ω)

)
.

Let w = ∂y
∂t , we prove that:

y(t) = φ+

t∫
0

w(τ)dτ. (16)

In fact, as we have:

ymS
⇀ y in L2(0, T ; L2 (Ω)).

Then we get:

ymS
⇀ φ+ χ in L2(0, T ; L2 (Ω)).

This means:

lim (ymS
− φ− χ, v)L2(0,T ; L2(Ω)) = 0,

∀v ∈ L2(0, T ; L2 (Ω)). This is because of

χ (t) =

t∫
0

w(τ)dτ.

Now by using the equality:

ymS
− φmS

=

t∫
0

∂ymS

∂τ
dτ,∀t ∈ [0, T ] ,

coupled with using ymS
∈ L2 (0, T ;VmS

) and (ymS
)t ∈

L2 (0, T ;VmS
), we can get the following assertion:(

ymS
− φ−

t∫
0

w(τ)dτ, v

)
L2(0,T ; L2(Ω))

=

 t∫
0

(
∂ymS

∂τ
− w(τ)

)
dτ, v


L2(0,T ; L2(Ω))

+ (φmS
− φ, v)L2(0,T ; L2(Ω)) ,∀t ∈ [0, T ] .

Consequently, we get:(
ymS

− φ−
t∫

0

w(τ)dτ, v

)
L2(0,T ; L2(Ω))

=

t∫
0

(
∂ymS

∂τ
− w(τ), v

)
L2(0,T ; L2(Ω))

dτ

+ (φmS
− φ, v)L2(0,T ; L2(Ω)) ,∀t ∈ [0, T ] .

On the one hand, we have:

lim
S−→∞

t∫
0

(
∂ymS

∂τ
− w(τ), v

)
L2(0,T ; L2(Ω))

dτ = 0, (17)

for t ∈ [0, T ]. In addition, we have:

lim
S−→∞

(φm − φ, v)L2(0,T ; L2(Ω)) = 0. (18)

So, we can get:

lim
S−→∞

(ymS
− φ− χ, v)L2(0,T ; L2(Ω)) = 0,

for all v ∈ L2
(
0, T ;L2 (Ω)

)
. Finally, from (17) and (18),

we get:

lim
k−→∞

(ymS
− φ− χ, v)L2(0,T ; L2(Ω)) = 0,

for all v ∈ L2
(
0, T ;L2 (Ω)

)
. Now, by passing to the limit

in (P2) and since each term on the left side of (P2) is
weakly convergent in L

p+1
p (Ω), we obtain that the following

assertion:

((ym(t))t , wS) + a (ym(t), wS) + (ypm(t)− bym(t), wS)

= (f(t), wS) ,
(19)

for all S = 1,m. In fact, the above state holds in L
p+1
p (Ω).

Since {wj , j ∈ N} is a base in L
p+1
p (Ω), we infer from

(19) the following assertion:

y′ − a∆y + yp − by = f, (20)

which holds in L
p+1
p

(
0, T , L

p+1
p (Ω)

)
. Since all y′,∆y,

and f belong to L2
(
0, T ;L2 (Ω)

)
, yp also belongs to

L2
(
0, T ;L2 (Ω)

)
, and (20) also holds in L2

(
0, T ;L2 (Ω)

)
,

then we get the desired results.

B. The uniqueness of the solution of the problem (P1)

In this section, we aim to study the uniqueness of the
solution of problem (P1), where p is assumed here to be odd.
This would be achieved by starting with the next theorem.

Theorem 2: Suppose that φ ∈ H1 (Ω) ∩ Lp+1 (Ω) and
f ∈ L2

(
0, T ;L2 (Ω)

)
. Then problem (P1) admits a unique

solution y such that:

y ∈ L2
(
0, T, H1 (Ω)

)
∩ Lp+1(0, T ; LP+1 (Ω)),

and
y′ ∈ L2(0, T, L2(Ω)).

Proof: Suppose p is odd, and then multiply the equation of
the problem (P1) by My, we get:

My = y.
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By integrating the garbed result over the domain Ω = (0, l),
where yx and yt denote the partial derivative with respect
to x and t respectively, we get:

1

2

∂

∂t
∥y∥2L2(Ω) + a

∫
Ω

(
∂y

∂x

)2

dx+

∫
Ω

yp+1dx− b

∫
Ω

y2dx

=

∫
Ω

fydx.

Then, by integrating on (0, τ), where τ ∈ (0, T ), and putting:

CT =

1
2

T∫
0

∥f (τ)∥2
L2(Ω)

dτ + 1
2

∥φm∥2
L2(Ω)

+
(
1
2

+ ε
l

+ N
2ε

+ b
)

(p+1)mes(Ω)T
p−1

min
(
1
2
, (a − aε) ,

(
1 −

(
1
2

+ ε
l

+ N
2ε

+ b
)

2
p+1

)) ,

(21)

we get:

∥ym (t)∥2L2(Ω) +

t∫
0

∥∥∥∥∂ym∂x
∥∥∥∥2
L2(Ω)

dτ

+

t∫
0

∥ym∥p+1
Lp+1(Ω) dτ ≤ CT .

(22)

Consequently, we put:

∥y∥2L∞(0,T ;L2(Ω)) + ∥y∥2L2(0,T ;L2(Ω))

+ ∥y∥p+1
Lp+1(0,T ;Lp+1(Ω)) ≡ ∥y∥B .

Let y1 and y2 be two solutions to problem (P1) such that:{
Ly1 = F
Ly2 = F =⇒ Ly1 − Ly2 = 0,

where L is the differential operator of the main semilinear
problem. Then, we have:

L (y1 − y2) = 0.

This leads to the following assertion:

∥y1 − y2∥B ≤ c ∥0∥F = 0,

which gives:
y1 = y2.

IV. BLOW-UP SOLUTIONS TO SOME FUJITA PROBLEMS

In this section, we study the finite-time blow-up solution
theoretically for a special case of the main problem:

∂y
∂t − a ∂2y

∂x2 − by = yp ∀ (x, t) ∈ Q, (P4.1)
y (x, 0) = φ(x) ∀x ∈ (0, l) , (P4.2)
y(0, t) = 0 ∀t ∈ [0, T ] , (P4.3)

∂y
∂x (l, t) =

∫ l

0
N(x, t)y(x, t)dx ∀t ∈ [0, T ] , (P4.4)

.

(P4)

A. Theoretical study of blow-up

Let we have the following Sturm Liouville problem: −∆ψ = λ2ψ,
ψ(0) = 0,
ψx(l) = 0.

Consequently, we get:

λ = (2k + 1)
π

2l
and ψ(x) = B sin

(
(2k + 1)

π

2l
x
)
.

Herein, we use only for k = 0 coupled with using the
following assumption:

Π(t) =

∫ l

0

ψ(x)y(x, t)dx.

Immediately, we multiply the equation (P4) by ψ, and then
integrate the result over the domain Ω = (0, l) to get:∫ l

0

ψ(x)
∂y

∂t
dx− a

∫ l

0

ψ(x)
∂2y

∂x2
dx

− b

∫ l

0

ψ(x)ydx =

∫ l

0

ψ(x)ypdx.

Thus, we have:

Π′(t)− bΠ(t)− a

∫ l

0

y∆ψdx

= a

[∫ l

0

N(x, t)y(x, t)dx

]
ψ(l) +

∫ l

0

ψ(x)ypdx

≥ a min
x,y∈Q

(N(x, t))

∫ l

0

ψ(x)y(x, t)dx+

∫ l

0

ψ(x)ypdx.

(23)
Then, by applying the Jensen inequality, we obtain:

π

2l

∫ l

0

ψ(x)ypdx ≥

(
π

2l

∫ l

0

ψ(x)ydx

)p

.

So, it comes:

Π′(t) +
(
− b+ aλ2 − a min

x,y∈Q
(N(x, t))

)
Π(t)

≥
( π
2l

)p−1

(Π(t))
p
.

Consequently, we gain the following equation:

Π′(t) + CΠ(t) +
( π
2l

)p−1

(Π(t))
p
= 0, (24)

where
C = −b+ aλ2 − a min

x,y∈Q
(N(x, t)).

To solve this equation, we use the following variable v =
Π1−p. Finally, we get:

Π(t) =

 1(
(Π(0))1−p + 1

C

(
π
2l

)p−1
)
e−(p−1)Ct − 1

C

(
π
2l

)p−1

 1
p−1

.

(25)

Like 1
p−1 > 0, then we have Π → ∞, if(

(Π(0))
1−p

+
1

C

( π
2l

)p−1
)
e−(p−1)Ct − 1

C

( π
2l

)p−1

→ 0,

which implies:

T∗ =
−1

(p− 1)C
ln

(
1
C

(
π
2l

)p−1

(Π(0))
1−p

+ 1
C

(
π
2l

)p−1

)
.

B. Numerical study of blow-up solution
In this section, we will study the problem at hand in

numerical way. Let M be a positive integer, and divide the
interval [0, l] into M subintervals of equal lengths h = 1/M .
The grids (xi, tn) will given by xi = ih, i = 0, 1, 2, ...,M
and t0 = 0, tn+1 = tn + τn, n = 0, 1, 2, ..., where τn > 0
is the time steps. The reason for studying this type of time-
steps as opposed to constant time-steps is to make sure that
the time-step approaches zero as time is drawing close to the
blow-up time. The notations uni , kni are used for the value
of u and k at point (xi, tn), respectively.
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1) Explicit Euler scheme: The forward difference quotient
method will be used to approximate the time derivative,
although the centred second-order approximation for the
spatial derivative of the second order in (P4) is used in the
form:

yn+1
i − yni
τn

− a
yni+1 − 2yni + yni−1

h2
− byni = (yni )

p
.

This scheme can be written as:

yn+1
i = τn (y

n
i )

p
+ (1− 2rnh − bτn)y

n
i + rnhy

n
i+1 + rnhy

n
i−1,
(26)

for i = 1, 2, ...,M − 1, n = 0, 1, ..., N, Y n
h =

(yn0 , y
n
1 , ..., y

n
M )t, and rnh = a τn

h2 . The stability condition of
the explicit Euler scheme given by rnh ≤ 1

2 . We will take
the time steps as follows to make sure we will get the best
convergence:

τn = min

(
h2

2
,

hα

∥Y n
h ∥p∞

)
,

where α is a fixed positive constant. From the boundary
condition of problem (P4), we get:

yn+1
0 = y(0, tn+1) = 0. (27)

To determinate yn+1
M , we approximate the first space deriva-

tive in (P4) by central finite difference operator of second-
order and the integral formulated by the trapezoidal rule. This
would obtain:

∂y

∂x
(1, tn+1) =

∫ 1

0

N(x, tn+1)y(x, tn+1)dx

⇔
yn+1
M+1 − yn+1

M−1

2h

=
h

2

(
Nn+1

0 yn+1
0 +Nn+1

M yn+1
M + 2

M−1∑
i=1

Nn+1
i yn+1

i

)
.

Thus, we can obtain the following assertion:

yn+1
M+1 − yn+1

M−1

= h2

(
Nn+1

0 yn+1
0 +Nn+1

M yn+1
M + 2

M−1∑
i=1

Nn+1
i yn+1

i

)
.

(28)
Eliminating the fictitious value yn+1

M+1 between (28) and
(26)i=M gives:

yn+1
M =

2rnhy
n
M−1 + 2τn

∑M−1
i=1 kn+1

i un+1
i

(1− τnk
n+1
M )

+
τn(y

n
M )p) + (1− 2rnh + bτn)y

n
M

(1− τnk
n+1
M )

.

(29)

2) Linearly implicit Euler scheme: With the help of using
the classical backward time-centred space finite difference
scheme, we approximate the derivative in equation (P4). In
other words, we have:

yn+1
i − yni
τn

− a
yn+1
i+1 − 2un+1

i + yn+1
i−1

h2
− byn+1

i = (yni )
p
.

(30)
After some rearrangement, the equation (30) becomes:

−rnhyn+1
i−1 +(1−2rnh +bτn)y

n+1
i −rnhyn+1

i+1 = τn (y
n
i )

p
+yni ,

(31)

for i = 1, 2, ...,M − 1, n = 0, 1, ..., N , and rnh = aτn/h
2.

Depending on (31), we have M−1 linear equations in M+1
unknowns yn+1

0 , yn+1
1 , ..., yn+1

M . In order to solve the linear
system, we need the following equations; the first equation
can be obtained from the boundary condition (P4.1):

yn+1
0 = y(0, tn+1) = 0. (32)

By eliminating the fictitious value yn+1
M+1 between (28) and

(31)i=M , we get:

τnN
n+1
0 yn+1

0 + (−2rnh − 2τnk
n+1
M−1)y

n+1
M−1

+ (1− 2rnh + bτn)y
n+1
M − 2τn

M−2∑
i=1

Nn+1
i yn+1

i

= τn(y
n
M )p) + ynM .

(33)
Thus, we put:

an+1
0 yn+1

0 + an+1
2 yn+1

2 + an+1
3 yn+1

3 + ...+ an+1
M−1y

n+1
M−1

+ an+1
M yn+1

M = τn(y
n
M )p) + ynM ,

(34)
where

an+1
0 = τnN

n+1
0

an+1
M−1 = −2rnh − 2τnN

n+1
M−1

an+1
M = 1− 2rnh + bτn

an+1
i = −2τnN

n+1
i , i = 1, 2, ...M − 2.

(35)

Consolidating (31) and (32) with (34) yields an M+1× M+
1 linear system of equations. This system can be written in
the matrix form as:

An+1Y n+1 = Bn+1, (36)

where

An+1 = 1 0 0 0 0 0
−rnh 1 − 2rnh + bτn −rnh · · 0

0 −rnh 1 − 2rnh + bτn 0 · 0

· · · · · ·
0 · · −rnh 1 − 2rnh + bτn −rnh

an
0 an

1 an
2 an

M−2 an
M−1 an

M



Y n+1 =


y
n+1
0

y
n+1
1

y
n+1
2
...

y
n+1
M−1

y
n+1
M

 , Bn+1 =


0

τn

(
yn
1

)p
+ yn

1

τn

(
yn
2

)p
+ yn

2
..

τM−1

(
yn
M−1

)p
+ yn

M−1
τn(yn

M )p) + yn
M


where an+1

0 , an+1
1 , an+1

2 , ..., an+1
M−1, a

n+1
M are the coefficients

reported in (35).

C. Numerical experiments

In this section, we present some numerical approximations
to the blow-up solution and the blow-up time using the two
discrete finite schemes derived in section (4.2.1) and (4.2.2)
(the explicit and the implicit schemes of the problem (P4)),
for p = 3, 5, 7 with φ(x) = 100x2, k(x, t) = 6, a = 1 and
b = 17

8 . For the explicit Euler scheme, the time step will be
taken as follows:

τn = min

(
h2

2
,

hα

∥Y n
h ∥p∞

)
, n ≥ 0.

Besides, for the linear implicit Euler scheme, the time-steps
will be taken as follows:

τn =
hα

∥Y n
h ∥p∞

, n ≥ 0.
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Note that α is a fixed positive constant. The numerical ap-
proximation will be terminated at the first time as ∥Y n

h ∥∞ ≥
106 and the value Tm

h =
∑m

n=0 τn is taken as a numerical
approximation to the blow-up time T∗. From Table I to III,
we present the numerical results obtained for different values
of the space-step using the explicit and the implicit schemes
with respect to α = 1. From Table IV to VI, we present
the numerical consequences acquired for the different values
of the space-step using explicit and implicit schemes with
respect to α = 2.

TABLE I: Blow-up times obtained with a explicit and
implicit schemes for p = 3 and α = 1.

h Explicit scheme Implicit scheme
1/20 5.06× 10−5 5.06× 10−5

1/40 5.055× 10−5 5.055× 10−5

1/80 5.0775× 10−5 5.0775× 10−5

1/160 5.1031× 10−5 5.1031× 10−5

TABLE II: Blow-up times obtained with explicit and implicit
schemes for p = 5 and α = 1.

h Explicit scheme Implicit scheme
1/20 2.53999× 10−9 2.53999× 10−9

1/40 2.51999× 10−9 2.51999× 10−9

1/80 2.51125× 10−9 2.51125× 10−9

1/160 2.50562× 10−9 2.50562× 10−9

TABLE III: Blow-up times obtained with a explicit and
implicit schemes for p = 7 and α = 1.

h Explicit scheme Implicit scheme
1/20 1.70499× 10−13 1.70499× 10−13

1/40 1.68749× 10−13 1.68749× 10−13

1/80 1.67750× 10−13 1.67750× 10−13

1/160 1.671875× 10−13 1.671875× 10−13

TABLE IV: Blow-up times obtained with a explicit and
implicit schemes for p = 3 and α = 2.

h Explicit scheme Implicit scheme
1/20 5.015749× 10−5 5.015749× 10−5

1/40 5.0324375× 10−5 5.0324375× 10−5

1/80 5.06465625× 10−5 5.06465625× 10−5

1/160 5.061453× 10−5 5.061453× 10−5

TABLE V: Blow-up times obtained with explicit and implicit
schemes for p = 5 and α = 2.

h Explicit scheme Implicit scheme
1/20 2.50249× 10−9 2.50249× 10−9

1/40 2.5006875× 10−9 2.5006875× 10−9

1/80 2.5001875× 10−9 2.5001875× 10−9

1/160 2.500132× 10−9 2.5001132× 10−9

TABLE VI: Blow-up times and obtained with an explicit and
implicit scheme for p = 7 and α = 2.

h Explicit scheme Implicit scheme
1/20 1.668999× 10−13 1.668999× 10−13

1/40 1.6673125× 10−13 1.6673125× 10−13

1/80 1.666828125× 10−13 1.666828125× 10−13

1/160 1.66615475× 10−13 1.66615475× 10−13

Fig. 1: Numerical solution by the explicit scheme for p = 3

Fig. 2: Numerical solution by implicit scheme for p = 3

From the tables, we can see that the numerical blow-
up times are decreasing as we increase the power of the
nonlinear term of the equation. The numerical consequences
acquired through the usage of the explicit Euler scheme are
similar to that acquired through the usage of the implicit
Euler scheme, however, the explicit Euler scheme given
requires much less computational time than the implicit
Euler scheme. Figures 1-6 present the discrete graph of the
numerical solution of the problem for different values of p
obtained from using the explicit and the implicit schemes,
respectively.
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