
Comparison of Single Server Queuing Performance 

Using Fuzzy Queuing Model and Intuitionistic 

Fuzzy Queuing Model with Finite Capacity 

 
S. Aarthi, and M. Shanmugasundari

  

 

 

Abstract—We describe a systematically confined 

single-server queuing model using triangular (TFN) and 

triangular intuitionistic fuzzy numbers (TIFN). The core 

objective of this study is to investigate the performance of a 

single-server queuing model with finite capacity in terms of 

fuzzy queuing theory and intuitionistic fuzzy queuing theory. 

The entering rate and departure rate are characterized as fuzzy 

and intuitionistic fuzzy, with fuzzy number computation 

implemented. The fuzzy queuing theory model's evaluation 

metrics are supplied as a range of values, but the intuitionistic 

fuzzy queuing theory model provides a plethora of values. An 

approach is conducted to evaluate the process metrics utilizing 

a defined methodology in which the fuzzy values are taken as-is 

without being processed into crisp values. The mathematical 

predecessor is wrapped around each type of fuzzy number to 

validate the miniature's attainability. 

 

Index terms—finite capacity, intuitionistic fuzzy 

number, queuing theory, single server, triangular fuzzy 

number. 

 

I. INTRODUCTION 

HE statistical investigation of waiting lines, or queues, is 

characterized as queuing theory. This methodology 

provides a framework for assessing the resources necessary 

to offer a service leveraging a conceptual framework. 

Whenever the present demand for a service surpasses the 

contemporary ability to supply that service, the emergence of 

long lines is a frequent occurrence. A queue forms when a 

consumer is forced to wait because the number of buyers 

outweighs the supplier. Queuing theory is used to require 

careful assessment among buyers. In a plethora of different 

scenarios, fuzzy queuing systems are more pragmatic than 

traditional queuing systems. In this article, we employ 

triangular and triangular intuitionistic fuzzy numbers to 

manage uncertain parameters in the queuing model FM/FM/1 

with constrained potential and FCFS control.  

How to look at fuzzy numbers is a crucial hurdle in 

conceptualizing the fuzzy set assertions since fuzzy numbers 

do not frame a conventional, structured approach like genuine 

numbers.  
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For positioning fuzzy numbers, various 

methodologies have been developed where researchers 

transform the fuzzy values into crisp. When a fuzzy problem 

formulation is retrofitted into a classical one, the essence of 

the actual problem is distorted. As a result, we are planning 

to retain the fuzziness till the end. Hence, we provide a 

strategy for solving the limited capacity single server fuzzy 

queuing model in both fuzzy and intuitionistic fuzzy 

environments without jeopardizing its core. This approach 

contributes more than previous methods in that it is compact, 

customized, and topical. According to the analysis, the fuzzy 

queuing model's performance measurements are within the 

ballpark of the intuitionistic fuzzy queuing model's estimated 

evaluation criteria. If you have a single-server fuzzy queuing 

model, you can use this method to look at the membership 

function of execution proportions. 

Many researchers have investigated queues in fuzzy 

domains as part of their fuzzy logic study. Li et al. [3] 

explored statistical results for two typical fuzzy queues using 

Zadeh's extension theory in 1989. Later, in 1992, Negi et al. 

[4] exploited alpha-cuts and computation offloading to 

evaluate fuzzy queues. The use of a triangular fuzzified to 

assess anthropic reasoning abilities was proposed by 

Voskoglou et al. [1]. The trapezoidal fuzzy logic model for 

the assessment programs was researched by Subbotin et al. 

[2]. Zimmermann [5] examined fuzzy and linear 

programming with a variety of objectives. Yager [6] gives an 

alternate interpretation of the fuzzy set extension principle. In 

1999, Kao et al. [7] applied the membership functions for 

fuzzy queues and offered a comprehensive way to estimate 

the participating components of the 𝐹𝑀/𝐹𝑀/1, 𝐹/𝐹/1, 

𝐹/𝑀/1, and 𝑀/𝐹/1 lines, where 𝐹 signifies fuzziness and 

𝐹𝑀 specifies exponential time. Similarly, Jau Chuan Ke et al. 

[8] used the retrial line model's aspects as well as the 

depiction of a fuzzy aspect of the admittance and monitoring 

rate to compute the framework's membership capacity. 

Especially because Kao et al. [7] used fuzzy line models in 

their derivation. Meanwhile, the exhibition proportions of the 

line were handled using a nonlinear parametric methodology. 

Several academics have explained combined IFS with 

concurrent intuitionistic fuzzy sets. R. Sethi et al. [11] used a 

systematic strategy to retrieve stable queue distributions, 

establish numerous evaluation metrics, and undertake 

empirical tests to quantify the system's behavior indices as 

various control variables are altered. F. Ferdowsi [12] 

suggested an intuitionistic fuzzy measure to deal with 

unpredictability, in which he deployed a trustworthiness 

metric to turn the fuzzy model into a crisp one. Arpita Kabiraj 

et al. [13] applied intuitionistic approaches to a linear 

programming  problem to solve a fuzzy linear  programming 

T 
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Fig. 1. The fundamental characteristics of a queuing system

 

difficulties. In their work, S. Hanumantha Rao et al. [14] 

recommended a single semi-Markov queue system with 

restricted capacity, encouraging or discouraging arrivals, and 

an adjusted client reneging policy. A. Tamilarasi [15] 

investigated the queuing model using trapezoidal 

intuitionistic fuzzy numbers. The fuzzy cost function's 

membership degree was devised by S. Hanumantha Rao et al. 

[16] to generate reliable estimates for several essential 

metrics of a customized two different service dedicated server 

Markovian gating queues with server starts and breakdown 

across N-policy. G. Chen et al. [17] looked at optimal and 

equilibria procedures in 𝑀/𝑀/1 fuzzy queues, using all 

fuzzy integers as control variables. For input parameters, S. 

Narayana Moorthy et al. [18] employed intuitionistic fuzzy 

numbers, and the main methodology is predicated on 

Atanassov's extension principle and 𝛼 - cut method. Using the 

DSW method, Noor Hidayah Mohd Zaki et al. [19] analyzed 

the queuing and the fuzzy queuing model. Muddasir Ahmad 

et al. [21] solved a solo server finite capacity queuing model 

with an encouraging arrival rate where the model's economic 

analysis is present and the cost model is being developed. 

Usha Prameela et al. [20] used the alpha cut method and DSW 

algorithm to find out the execution indicators of the single 

server fuzzy queuing model with finite capacity. Liyuan 

Zhang et al. [24] used case-based reasoning to help make 

emergency decisions with the help of triangular fuzzy 

numbers. Using fuzzy soft set algorithms, Kanwara Waraha  

et al.. [25] took an approach to the flood alerting prediction 

process. In this paper, we have presented an approach to 

resolving issues that is swift, advantageous, and 

customizable. The core principle of this approach is to 

preserve the fuzziness till the end, then use the fuzzy numbers  

in the queuing performance calculations. Achieving the 

intended effect with ease. 

             The layout of this article is as regards: Remnant 1 

gives a summary, Remnant 2 explains some basic definitions, 

Remnant 3 discusses the processable, Remnant 4 depicts the 

computational formula, Remnant 5 explains a few basic 

theorems, Remnant 6 clarifies the fuzzy queuing system, 

Remnant 7 explains the performance measures, Remnant 8 

tends to give illustrative simulations, Remnant 9 grants 

discussion of the findings, Remnant 10 shows the constraints, 

and Remnant 11 wraps up the content. 

II. PRELIMINARIES 

The motive of this division is to give some basic  

 

definitions, annotations, and outcomes that are used in our 

further calculations. 

Definition 1. [22] “A fuzzy set �̃� is defined on R, the set of 

real numbers is called a fuzzy number if its membership 

function 𝜇�̃�: 𝑅 → [0,1] has the following conditions: 

(a) �̃� is convex, which means that there exists 

𝑥1, 𝑥2 ∈ 𝑅 and 𝜆 ∈ [0,1], such that         

𝜇𝐴(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥ 𝑚𝑖𝑛{𝜇𝐴(𝑥1), 𝜇𝐴(𝑥2)}                 
(b) �̃� is normal, which means that there exists an 

𝑥 ∈ 𝑅 such that 𝜇𝐴(𝑥) = 1̃ 

(c) �̃� is piecewise continuous. 

Definition 2. [22]  A fuzzy number �̃� is defined on R, the set 

of real numbers is said to be a triangular fuzzy number 

(TFN) if its membership function 𝜇𝐴: 𝑅 → [0,1] which 

satisfies the following conditions:” 

 

        𝜇𝐴(𝑥) =

{
 
 

 
 

𝑥−�̃�1

�̃�2−�̃�1
for �̃�1 ≤ 𝑥 ≤ �̃�2

1 for 𝑥 = �̃�2
�̃�3−𝑥

�̃�3−�̃�2
 for �̃�2 ≤ 𝑥 ≤ �̃�3

0 otherwise

 

Figure 2 shows a schematic representation of the TFN. 

 

 
Fig. 2. TFN 

 

Definition 3. Let the two triangular fuzzy numbers be �̃� ≈
(�̃�1, �̃�2, �̃�3) = (�̃�1, �̃�1, 𝛽1) and �̃� ≈ (�̃�1, �̃�2, �̃�3) =

(�̃�2, �̃�2, 𝛽2) and then the arithmetic operations on TFN be 

given as follows: 

(A)Addition 
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�̃� + �̃� ≈ (�̃�1 + �̃�2, 𝑚𝑎𝑥{�̃�1, �̃�2} ,𝑚𝑎𝑥{𝛽1, 𝛽2})              (1)

 
(B)Subtraction 

   �̃� − �̃� ≈ (�̃�1 − �̃�2, 𝑚𝑎𝑥{�̃�1, �̃�2} ,𝑚𝑎𝑥{𝛽1, 𝛽2})             (2) 

(C) Multiplication   

   �̃�. �̃� ≈ (�̃�1. �̃�2,𝑚𝑎𝑥{�̃�1, �̃�2} ,𝑚𝑎𝑥{𝛽1, 𝛽2})        (3) 

(D) Division 

   
�̃�

�̃�
≈ (

�̃�1

�̃�2
, 𝑚𝑎𝑥{�̃�1, �̃�2} ,𝑚𝑎𝑥{𝛽1, 𝛽2})                     (4) 

(E) Scalar Multiplication 

   𝑘�̃� ≈     
(𝑘𝑎2, 𝛼1, 𝛽1), 𝑘 ≥ 0 

(−𝑘𝑎2, 𝛼1, 𝛽1), 𝑘 < 0
                                       (5) 

 

 Definition 4. For every triangular fuzzy number �̃� ≈
(�̃�1, �̃�2, �̃�3) ∈ 𝐹(𝑅) ranking function ℜ: 𝐹(𝑅) → 𝑅 is 

defined by graded mean as

 

ℜ(�̃�) =
(�̃�1 + 4�̃�2 + �̃�3)

6
 

For any two TFN �̃� ≈ (�̃�1, �̃�2, �̃�3) and
 
�̃� ≈ (�̃�1, �̃�2, �̃�3) we 

have the following correlations,

  

(𝑎)�̃� ≻ �̃� ⇔ ℜ(�̃�) > ℜ(�̃�) 

(𝑏)�̃� ≺ �̃� ⇔ ℜ(�̃�) < ℜ(�̃�) 

(𝑐)�̃� ≈ �̃� ⇔ ℜ(�̃�) = ℜ(�̃�) 

(𝑑)�̃� − �̃� ≈ 0 ⇔ ℜ(�̃�) − ℜ(�̃�) = 0 

A TFN �̃� ≈ (�̃�1, �̃�2, �̃�3) ∈ 𝐹(𝑅)
 
is known to be positive if  

ℜ(�̃�) > 0 and defined by  �̃� ≻ 0 

 

Definition 5. [23] Let a non–empty set be X . An 

Intuitionistic fuzzy set (IFS) �̃�′ is defined as �̃�′ =

{(𝑥, 𝜇𝐴′(𝑥), 𝛾𝐴′(𝑥)/𝑥 ∈ 𝑋)}, where 𝜇𝐴′: 𝑋 → [0,1] and 

𝛾𝐴′: 𝑋 → [0,1] denotes the degree of membership and degree 

of non–membership functions respectively, where 𝑥 ∈ 𝑋 , for 

every 𝑥 ∈ 𝑋, 0 ≤ 𝜇𝐴′(𝑥) + 𝛾𝐴′(𝑥) ≤ 1 

 

Definition 6. [23] “An intuitionistic fuzzy set described on 

R, the real numbers are said to be an Intuitionistic fuzzy 

number (IFN) if its membership function 𝜇𝐴′̃: 𝑅 → [0,1] and 

its non–membership function 𝛾𝐴′: 𝑅 → [0,1] should be 

agreeable to the following conditions: 

i) �̃�′ is normal, which means that there exists an 

x R , such that ( ) ( )1, 0x x
A A

 = =
 

 

ii)  �̃�
′ is convex for the membership functions 𝜇𝐴′̃, 

which means that there exists ,
1 2

x x R  and 

 0,1    such that 𝜇𝐴′̃(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥

𝑚𝑖𝑛{𝜇𝐴′̃(𝑥1), 𝜇𝐴′̃(𝑥2)} 

iii) �̃�′ is concave for the non–membership function     

𝛾𝐴′̃ , which means that there exists ,
1 2

x x R  and 

𝜆 ∈ [0,1] such that 𝛾𝐴′̃(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤
𝑚𝑎𝑥{𝛾𝐴′̃(𝑥1), 𝛾𝐴′̃(𝑥2)}

  

Definition 7. [23]  A fuzzy number �̃�′ on R is said to be a 

triangular intuitionistic fuzzy number (TIFN) if its 

membership function 𝜇𝐴′̃: 𝑅 → [0,1] and non-membership 

function 𝛾𝐴′̃: 𝑅 → [0,1] has the following conditions:
  

               
𝜇𝐴′̃(𝑥)=  

{
 
 

 
 

𝑥−�̃�1

�̃�2−�̃�1
for �̃�1 ≤ 𝑥 ≤ �̃�2

1 for 𝑥 = �̃�2
�̃�3−𝑥

�̃�3−�̃�2
 for �̃�2 ≤ 𝑥 ≤ �̃�3

0 otherwise

         
 

and 

                                        

             
𝛾𝐴′̃(𝑥) =

 

{
 
 

 
 
       1     for 𝑥 < �̃�1

′ , 𝑥 > �̃�3
′

�̃�2−𝑥

�̃�2−�̃�1
′  for �̃�1

′ ≤ 𝑥 ≤ �̃�2

0 for 𝑥 = �̃�2
𝑥−�̃�2

�̃�3−�̃�2
 for  �̃�2 ≤ 𝑥 ≤ �̃�3 

′

 

 

and is given by ( ), , ; , ,
1 2 3 1 2 3

A a a a a a a  =  where 

1 1 2 3 3
a a a a a     . 

Cases: Let �̃�′ = (�̃�1, �̃�2, �̃�3; �̃�
′
1, �̃�2, �̃�

′
3) be a TIFN then the 

following cases arise. 

Case:1 If �̃�1
′ = �̃�1, �̃�3

′ = �̃�3 then �̃�′ represent a triangular 

fuzzy number. 

Case:2 If  �̃�1
′ = �̃�1 = �̃�2 = �̃�3

′ = �̃�3 = �̃� then �̃�′ represent a 

real number m . The parametric form of TIFN �̃�′ is 

represented as �̃�′ = (�̃�, �̃�, 𝛽; �̃�′, �̃�, 𝛽′) where �̃�, �̃� ′&𝛽, 𝛽′ 

represents the left spread and right spread of membership 

functions and non–membership functions respectively.” 

The triangular intuitionistic fuzzy number is illustrated in 

Figure 3. 

 

 
Fig. 3. Triangular intuitionistic fuzzy number 

 

Definition 8. [23] “TIFN �̃�′ ∈ 𝐹(𝑅), (where 𝐹(𝑅) is the set 

of all TIFN) can also be represented as a pair �̃�′ =
(�̃�, �̃̄�; �̃�′, �̃̄�′) of functions �̃�(�̃�′), �̃̅�(�̃�′), �̃�′(�̃�′)&�̅�′̃(�̃�′) for 0 ≤
�̃�′ ≤ 1 which satisfies the following requirements: 

i) �̃�(�̃�′)&�̃̄�′(�̃�′) is a bounded monotonic 

increasing left continuous function for 
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membership and non–membership functions 

respectively. 

ii) �̃̄�(�̃�′)&�̃�′(�̃�′) is a bounded monotonic 

decreasing left continuous function for 

membership and non–membership functions 

respectively. 

iii) �̃�(�̃�′) ≤ �̃̄�(�̃�′), 0 ≤ �̃� ′ ≤ 1 

iv) �̃�′(�̃�′) ≤ �̃̄�′(�̃� ′), 0 ≤ �̃�′ ≤ 1” 

Definition 9. The extension of fuzzy arithmetic operations of 

Ming Ma et al. [22] to the set of triangular intuitionistic fuzzy 

numbers based upon both location indices and functions of 

fuzziness indices. The location indices number is taken in the 

regular arithmetic while the functions of fuzziness indices are 

assumed to follow the lattice rule, which is the least upper 

bound in the lattice 𝐼′. 

For any two arbitrary TIFN �̃�′ ≈
(�̃�1, �̃�2, �̃�3; �̃�1

′ , �̃�2
′ , �̃�3

′ ) ≈ (�̃�1, �̃�1, 𝛽1; �̃�1, �̃�1
′ , 𝛽1

′ ), �̃�′ ≈

(�̃�1, �̃�2, �̃�3; �̃�1
′ , �̃�2

′ , �̃�3
′ ) ≈ (�̃�2, �̃�2, 𝛽2; �̃�2, �̃�2

′ , 𝛽2
′ ) and

 , , , , + −    then the arithmetic operations on TIFN 

are defined by 

�̃�′ ∗ �̃�′ = (
�̃�1 ∗ �̃�2, �̃�1 ∨ �̃�2, 𝛽1 ∨ 𝛽2;

�̃�1 ∗ �̃�2, �̃�1
′ ∨ �̃�2

′ , 𝛽1
′ ∨ 𝛽2

′
) 

We define: 

(A) Addition 

�̃�′ + �̃�′ = (
�̃�1 + �̃�2, 𝑚𝑎𝑥{�̃�1, �̃�2} ,𝑚𝑎𝑥{𝛽1, 𝛽2} ;

�̃�1 + �̃�2, 𝑚𝑎𝑥{�̃�1
′ , �̃�2

′ } ,𝑚𝑎𝑥{𝛽1
′ , 𝛽2

′ }
)     (6) 

(B) Subtraction 

�̃�′ − �̃�′ = (
�̃�1 − �̃�2, 𝑚𝑎𝑥{�̃�1, �̃�2} ,𝑚𝑎𝑥{𝛽1, 𝛽2} ;

�̃�1 − �̃�2, 𝑚𝑎𝑥{�̃�1
′ , �̃�2

′ } ,𝑚𝑎𝑥{𝛽1
′ , 𝛽2

′ }
)           (7) 

(C) Multiplication      

 �̃�′ × �̃�′ = (
�̃�1 × �̃�2, 𝑚𝑎𝑥{�̃�1, �̃�2} ,𝑚𝑎𝑥{𝛽1, 𝛽2} ;

�̃�1 × �̃�2, 𝑚𝑎𝑥{�̃�1
′ , �̃�2

′ } ,𝑚𝑎𝑥{𝛽1
′ , 𝛽2

′ }
)       (8) 

(D) Division 

�̃�′ ÷ �̃�′ = (
�̃�1 ÷ �̃�2, 𝑚𝑎𝑥{�̃�1, �̃�2} ,𝑚𝑎𝑥{𝛽1, 𝛽2} ;

�̃�1 ÷ �̃�2, 𝑚𝑎𝑥{�̃�1
′ , �̃�2

′ } ,𝑚𝑎𝑥{𝛽1
′ , 𝛽2

′ }
)      (9)

 (E) Scalar Multiplication 

      (𝑘𝑎2, 𝛼1, 𝛽1; 𝑘𝑎2, 𝛼1
′ , 𝛽1

′), for 𝑘 ≥ 0          (10)                                                      

𝑘𝐴′̃ =         (−𝑘𝑎2, 𝛼1, 𝛽1; −𝑘𝑎2, 𝛼1
′ , 𝛽1

′), for 𝑘 < 0 

 

Definition 10. Consider an arbitrary TIFN �̃�′ =
(�̃�1, �̃�2, �̃�3; �̃�1

′ , �̃�2, �̃�3
′ ) = (�̃�, �̃�, 𝛽; �̃�, �̃�′, 𝛽′̃) and the 

magnitude of TIFN �̃�′ is given by  

𝑚𝑎𝑔(�̃�′) =
1

2
∫ (�̃� + �̃̅� + 2�̃� + 𝑎′̃ + �̅�′̃)𝑓(𝑟)𝑑𝑟
1

0

𝑚𝑎𝑔(�̃�′) =
1

2
∫ (𝛽 + 𝛽′ + 6�̃� − α − 𝛼′)𝑓(𝑟)𝑑𝑟

 

In real-life scenarios, decision-makers select the value of 

( )f r  based on their circumstances. Here for our ease, we 

choose  ( ) 2
f r r =  

∴  𝑚𝑎𝑔(�̃�′) = (
𝛽 + 𝛽′ + 6�̃� − α − 𝛼′

6
)

= (
�̃� + �̃̅� + 2�̃� + �̃�′ + �̅�′̃

6
)

 
For any two TIFN �̃�′ ≈ (�̃�1, �̃�1, 𝛽1; �̃�1, �̃�1

′ , 𝛽1
′), �̃�′ ≈

(�̃�2, �̃�2, 𝛽2; �̃�2, �̃�2
′ , 𝛽2

′) in 𝐹(𝑅), we define 

(𝑎)�̃�′ ≥ �̃�′ ⇔ 𝑚𝑎𝑔(�̃�′) ≥ 𝑚𝑎𝑔(�̃�′) 

(𝑏)�̃�′ ≤ �̃�′ ⇔ 𝑚𝑎𝑔(�̃�′) ≤ 𝑚𝑎𝑔(�̃�′) 

                   (𝑐)�̃�′ ≈ �̃�′ ⇔𝑚𝑎𝑔(�̃�′) = 𝑚𝑎𝑔(�̃�′) 

III. MODEL DESCRIPTION  

We cite a single server restricted limit with first-

come, first-served (FCFS) discipline queuing model (𝐹𝑀/
𝐹𝑀/1): (𝑁/𝐹𝐶𝐹𝑆), in which the inter-entrance period and 

the service time follow Poisson and exponential diffusion 

distributions with fuzzy parameters �̃� and �̃� respectively. 

Both TFN and TIFN are being used to compute the arrival 

and service rates. The system's utmost limit is set to a certain 

range. The main purpose is to determine evaluation criteria 

using both fuzzy and intuitionistic fuzzy numbers, and 

models are contrasted based on the average number of 

consumers in the queue and system, as well as their sojourn 

time in the queue and system. The problems are solved by 

sustaining the fuzziness values until the end, i.e., without 

switching them to crisp. As a consequence, it is more 

appropriate for specific circumstances. 

 

 
 
Fig. 4. A formal outline of the model 
 

IV. HYPOTHESES AND SYNTAXES 

A. Hypotheses 

i) The admissions to the queuing system start happening one 

by one, according to a Poisson process with a mean rate �̃�.  

ii) With a parameter �̃�, the inter-arrival times are unilaterally, 

symmetrically and exponentially distributed. 

iii) There is only one server, and each customer is served 

individually.  

iv) With a parameter �̃�, service times are dispersed 

unilaterally, predictably, and exponentially. 

v) The system's capacity is finite, say 𝑁. 

vi) Services are provided in the order in which they arrived, 

i.e., First-Come, First-Served. 

vii) The arrival rate and service rate are taken as TFN and 

TIFN. 

B. Syntaxes 

Here we are using the following notations: 

�̃�, �̃�′ → The mean No. of consumers who arrive in a 

predetermined period of time. 

𝜇, �̃�′ → The mean No. of consumers being serviced per unit 

of time. 

 →Traffic intensity 
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𝑁𝑞 , 𝑁𝑞
′ → The mean No. of consumers in the line.  

𝑁𝑠, 𝑁𝑠
′ →The mean No. of consumers in the system. 

�̃�𝑞 , �̃�𝑞
′ → The mean sojourn time of the consumers in the 

queue. 

�̃�𝑠, �̃�𝑠
′ → The mean sojourn time of the consumers in the 

system. 

�̃�, �̃�′ → Interarrival rate. 

�̃�, �̃�′ → Service rate 

𝑁 →The capacity of the system 

𝑋 → Set of the arrival time 

𝑌 →Set of the service time 

V. A SINGLE-SERVER EXPONENTIAL QUEUING 

SYSTEM HAVING FINITE CAPACITY 

In the prior model, we presupposed that the number 

of customers who could be logged into the system 

concurrently had no upper bound. However, in practice, the 

system always has a finite capacity of  𝑁, meaning that there 

can never be more than  𝑁 concurrent users. This means that 

a customer can't use the system if he/she shows up and finds 

that there are already 𝑁 people there. 

 The restricting probability that there are 𝑛 customers 

in the system is signified by �̃�𝑛, where 0 ≤ 𝑛 ≤  𝑁.  

 Consider the scenario where the system's capacity is 

𝑁 times its maximum. In any case, the number of arrivals 

won't be greater than 𝑁. The model's physical interpretation 

is as follows: 

1. The system only contains 𝑛 units. 

2. If the queue length is too lengthy, the arriving customers 

will permanently seek their service elsewhere (≤ 𝑁). 

Theorem 5.1 

In the (𝐹𝑀/𝐹𝑀/1): (𝑁/𝐹𝐶𝐹𝑆) queuing model, at the 

initial state, when there are no customers in the state, prove 

that the rate is �̃�′�̃�0
′ = �̃�′�̃�1

′ . 

Proof. Let, 

�̃�𝑛
′ =      �̃�′, 𝑛 = 0,1,2,3, . . . 𝑁 − 1 

                                     0, 𝑛 ≥ 𝑁 

                      �̃�𝑛
′ = �̃�′for 𝑛 = 1,2,3, . ..        

For 𝑛 = 0, 
The possibility that somehow there won't be any entities in 

the system at (�̃� ′ + 𝛥�̃� ′) will be equal to the sum of the next 

two separate probabilities: 

i) �̃�0
′(�̃�′)(1 − �̃�′𝛥�̃�′) is the statistical likelihood 

that there would be no entity in the system at  �̃� ′ 

and no arrival at 𝛥�̃� ′ 

ii) �̃�1
′(�̃�′). �̃�′𝛥�̃�′. (1 − �̃�′𝛥�̃�′) ≅ �̃�1

′(�̃�′)�̃�′𝛥�̃�′ +

𝑜(𝛥�̃�′) is the statistical likelihood that one unit 

is present in the system at �̃�′ , one unit is 

serviced at  𝛥�̃�′, and no arrival at 𝛥�̃�′.  
As a result, the probability of  𝑛 = 0 is �̃�0(�̃�

′ + 𝛥�̃�′) =

�̃�0(�̃�
′)(1 − �̃�′𝛥�̃�′) + �̃�1(�̃�

′)�̃�′𝛥�̃�′ + 𝑜(𝛥�̃�′)                         (11) 

Now dividing the aforementioned equation by 𝛥�̃�′ and 

assuming the limit as 𝛥�̃�′ → 0, hence it transforms into: 

�̃�0
′(�̃�′) = −�̃�′�̃�0

′(�̃�′) + �̃�′�̃�1
′(�̃�′)                                           (12) 

In the scenario of a steady state where 𝛥�̃�′ → ∞, �̃�𝑛
′(�̃�′) → �̃�𝑛

′ 

(independent of �̃� ′) and consequently �̃�𝑛
′(�̃�′) → 0. Eventually, 

the steady-state difference equations of the system are 

provided by 

0 = −�̃�′�̃�0
′ + �̃�′�̃�1

′   (From 12) 

Furthermore, �̃�′�̃�0
′ = �̃�′�̃�1

′; 𝑛 = 0                                                (13) 

Theorem 5.2 

In the (𝐹𝑀/𝐹𝑀/1): (𝑁/𝐹𝐶𝐹𝑆) queuing model, at the state 

1 ≤ 𝑛 ≤  𝑁 − 1, where  0 ≤ 𝑛 ≤  𝑁 proves that the rate is 

(�̃�′ + µ̃′)�̃�𝑛 = �̃�
′�̃�𝑛−1 + µ̃

′�̃�𝑛+1. 

Proof. Let, 

�̃�𝑛
′ =      �̃�′, 𝑛 = 0,1,2,3, . . . 𝑁 − 1 

                                     0, 𝑛 ≥ 𝑁 

                      �̃�𝑛
′ = �̃�′for 𝑛 = 1,2,3, . ..        

For 𝑛 = 1,2,3, . . . 𝑁 − 1,     

When independent conditions are incorporated together, the 

probability will be shown as follows:    

i) At any time  �̃�′ , there are 𝑛 entities in the system are 

�̃�𝑛
′(�̃�′). However, at  𝛥�̃� ′, there are no arrivals and no 

services respectively, (1 − �̃�′𝛥�̃� ′) and (1 − �̃�′𝛥�̃� ′). 

As a consequence, the probability is provided as  

⇒ �̃�𝑛
′ (�̃� ′)(1 − �̃�′𝛥�̃� ′)(1 − �̃�′𝛥�̃� ′) 

         ⇒ �̃�𝑛
′(�̃�′) (1 − 𝛥�̃�′(�̃�′ + �̃�′)) + 𝑜1(𝛥�̃�

′)    (14) 

ii) At any time  �̃�′ , there are (𝑛 − 1) entities in the 

system are �̃�𝑛−1
′ (�̃�′); there is one entrance at  𝛥�̃� ′ is 

�̃�′𝛥�̃�′ and no assistance at 𝛥�̃�′is (1 − �̃�′𝛥�̃�′). As a 

result, the probability is given as  

            ⇒ �̃�𝑛−1
′ (�̃�′)�̃�′𝛥�̃�′(1 − �̃�′𝛥�̃�′) 

                         ⇒ �̃�′𝛥�̃�′�̃�𝑛−1
′ (�̃�′) + 𝑜2(𝛥�̃�

′)      (15) 

iii) At any time  �̃� ′ , there are (𝑛 + 1) units in the system 

are �̃�𝑛+1
′ (�̃�′); there is no inflow at  𝛥�̃�′ is (1 − �̃�′𝛥�̃�′) 

and one service at 𝛥�̃�′ is �̃�′𝛥�̃�′. As an outcome, the 

probability is given as  

⇒ �̃�𝑛+1
′ (�̃�′)(1 − �̃�′𝛥�̃�′)�̃�′𝛥�̃�′ 

                          ⇒ �̃�′𝛥�̃�′�̃�𝑛+1
′ (�̃�′) + 𝑜3(𝛥�̃�

′)      (16) 

By adding (14), (15) & (16), we obtain 

�̃�𝑛
′(�̃�′ + 𝛥�̃�′) = �̃�𝑛

′(�̃�′)[1 − (�̃�′ + �̃�′)𝛥�̃�′] + �̃�′𝛥�̃�′�̃�𝑛−1
′ (�̃�′) +

𝜇′𝛥�̃�′�̃�𝑛+1
′ (�̃�′) + 𝑜(𝛥�̃�′); 𝑛 = 1,2,3, . . . 𝑁 − 1                   (17) 

The above equation now becomes �̃�𝑛
′(�̃�′) by dividing it by 𝛥�̃�′ 

and presuming that  𝛥�̃�′ → 0 is the limit hence it transforms 

into: 

�̃�𝑛
′(�̃�′) = −(�̃�′ + �̃�′)�̃�𝑛

′(�̃�′) + �̃�′�̃�𝑛−1
′ (�̃�′) + �̃�′�̃�𝑛+1

′ (�̃�′)    (18) 

In the circumstance of a steady state where 𝛥�̃�′ → ∞, 

�̃�𝑛
′(�̃�′) → �̃�𝑛

′ (independent of �̃�′) and hence �̃�𝑛
′(�̃�′) → 0. So, 

the system of steady-state difference equations is given by 

0 = −(�̃�′ + �̃�′)�̃�𝑛
′ + �̃�′�̃�𝑛−1

′ + 𝜇′�̃�𝑛+1
′    (From 18) 

Hence, 

(�̃�′ + �̃�′)�̃�𝑛
′ = �̃�′�̃�𝑛−1

′ + �̃�′�̃�𝑛+1
′ ; 𝑛 = 1,2,3, . . . 𝑁 − 1        (19) 

Theorem 5.3 

In the (𝐹𝑀/𝐹𝑀/1): (𝑁/𝐹𝐶𝐹𝑆) queuing model, at the state 

 𝑁, where  0 ≤ 𝑛 ≤  𝑁 proves that the rate is µ̃′�̃�𝑁 = �̃�′�̃�𝑁−1. 

Proof. Let, 

�̃�𝑛
′ =      �̃�′, 𝑛 = 0,1,2,3, . . . 𝑁 − 1 

                                     0, 𝑛 ≥ 𝑁 

                      �̃�𝑛
′ = �̃�′for 𝑛 = 1,2,3, . ..     

For 𝑛 ≥ 𝑁, 

Using equation (17),  

When the value of 𝑛 = 𝑁 , then �̃�𝑁+1
′ (�̃�′) = 0; �̃�′ = 0. 

As a consequence, the probability value becomes, 

�̃�𝑁
′ (�̃�′ + 𝛥�̃�′) = �̃�𝑁

′ (�̃�′)[1 − �̃�′𝛥�̃�′] + �̃�𝑁−1
′ (�̃�′)�̃�′𝛥�̃�′ +

𝑜(𝛥�̃�′)                                                                               (20) 

Now dividing the aforementioned equation by 𝛥�̃� ′ and 

assuming the limit as 𝛥�̃�′ → 0, hence it transforms into: 

�̃�𝑁
′ (�̃�′) = −�̃�′�̃�𝑁

′ (�̃�′) + �̃�′�̃�𝑁−1
′ (�̃�′); 𝑛 = 𝑁                         (21) 
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In the situation of a steady state where 𝛥�̃�′ → ∞, �̃�𝑛
′(�̃�′) → �̃�𝑛

′ 

(independent of �̃�′) and hence �̃�𝑛
′(�̃�′) → 0. Hence, the system 

of steady-state difference equations is given by 

0 = −�̃�′�̃�𝑁
′ + �̃�′�̃�𝑁−1

′     (From 21) 

Hence, �̃�′�̃�𝑁−1
′ = �̃�′�̃�𝑁

′ ; 𝑛 = 𝑁                    (22) 

Theorem 5.4 

In the (𝐹𝑀/𝐹𝑀/1): (𝑁/𝐹𝐶𝐹𝑆) queuing system, the steady-

state probability �̃�𝑛
′ is given by 

�̃�𝑛
′ =

(
�̃�′

�̃�′
)
𝑛

(1 − (
�̃�′

�̃�′
))

(1 − (
�̃�′

�̃�′
)
𝑁+1

)

, 0 < 𝑛 < 𝑁 

Proof 

The rate at which the process enters and leaves various states 

is given as follows: 

At the initial state, when there are no customers in the state 

the rate becomes �̃�′�̃�0
′ = µ̃′�̃�1

′. At the state 1 ≤ 𝑛 ≤  𝑁 − 1, 

the rate is given as (�̃�′ + µ̃′)�̃�𝑛
′ = �̃�′�̃�𝑛−1

′ + µ̃′�̃�𝑛+1
′ . At the 

state 𝑁, the rate value is µ̃′�̃�𝑁
′ = �̃�′�̃�𝑁−1

′ . 

We can solve the system of differential equations as follows, 

Hence, initially �̃�0
′ = �̃�0

′ 

From (13), �̃�1
′ = (

𝜆′

�̃�′
) �̃�0

′ 

From (19), (�̃�′ + �̃�′)�̃�𝑛
′ = �̃�′�̃�𝑛−1

′ + �̃�′�̃�𝑛+1
′  

Substitute 𝑛 = 1 and the value of �̃�1
′  in the above equation, it 

becomes 

(�̃�′ + �̃�′) (
�̃�′

�̃�′
) �̃�0

′ = �̃�′�̃�0
′ + �̃�′�̃�2

′ 

(�̃�′)
2

�̃�′
�̃�0
′ + �̃�′�̃�0

′ = �̃�′�̃�0
′ + �̃�′�̃�2

′  

�̃�2
′ = (

�̃�′

�̃�′
)

2

�̃�0
′ 

Similarly,              �̃�3
′ = (

𝜆′

�̃�′
)
3

�̃�0
′ 

                                ⋮ 

�̃�𝑛
′ = (

�̃�′

�̃�′
)

𝑛

�̃�0
′; 𝑛 < 𝑁 

�̃�𝑁
′ = (

�̃�′

�̃�′
)

𝑁

�̃�0
′; 𝑛 = 𝑁 

�̃�𝑁+1
′ = 0; 𝑛 > 𝑁 

By the total probability, we have ∑ �̃�𝑛
′𝑁

𝑛=0 = 1 

⇒ �̃�0
′ + �̃�1

′ + �̃�2
′ + �̃�3

′+. . . +�̃�𝑁
′ = 1 

�̃�0
′ + (

�̃�′

�̃�′
) �̃�0

′ + (
�̃�′

�̃�′
)

2

�̃�0
′ + (

�̃�′

�̃�′
)

3

�̃�0
′+. . . + (

�̃�′

�̃�′
)

𝑁

�̃�0
′ = 1 

�̃�0
′ [1 + (

�̃�′

�̃�′
) + (

�̃�′

�̃�′
)

2

+ (
�̃�′

�̃�′
)

3

+. . . (
�̃�′

�̃�′
)

𝑁

] = 1 

�̃�0
′

[
 
 
 
 1 − (

�̃�′

�̃�′
)
𝑁+1

1 − (
�̃�′

�̃�′
)
]
 
 
 
 

= 1 

(or) 

�̃�0
′ =

[
 
 
 
 1 − (

�̃�′

�̃�′
)

1 − (
�̃�′

�̃�′
)
𝑁+1

]
 
 
 
 

; �̃�′ ≠ �̃�′ 

�̃�0
′ = [

1

𝑁 + 1
] ; �̃�′ = �̃�′ 

∴ �̃�𝑛
′ =

[
 
 
 
 1 − (

�̃�′

�̃�′
)

1 − (
�̃�′

�̃�′
)
𝑁+1

]
 
 
 
 

�̃�′𝑛; 𝑛 = 0,1,2,3, . . . 𝑁 

VI. (FM/FM/1): (N/FCFS) QUEUES 

We assume a single-server fuzzy queuing system 

with finite capacity. The inter-arrival rate �̃� and the service 

rate �̃� are nearly comprehended and depicted by a fuzzy set, 

�̃� = {𝑝, 𝜇�̃�(𝑝)/𝑝 ∈ 𝑋} 

�̃� = {𝑞, 𝜇�̃�(𝑞)/𝑞 ∈ 𝑌} 

In this, 𝑋 is the inter-entrance period configuration and 𝑌 is 

the service time configuration. 𝜇�̃�(𝑝) is the inter-entrance 

time's membership function and 𝜇�̃�(𝑞) is the enlistment 

capacity of the service time. In addition to that, consider a 

single server intuitionistic fuzzy queuing system with finite 

capacity. The inter-arrival rate �̃�′ and the service rate �̃�′ are 

nearly comprehended and depicted by an intuitionistic fuzzy 

set, 

�̃�′ = {𝑝, 𝜇�̃�′(𝑝), 𝛾�̃�′(𝑝)/𝑝 ∈ 𝑋} 

�̃�′ = {𝑞, 𝜇�̃�′(𝑞), 𝛾�̃�′(𝑞)/𝑞 ∈ 𝑌} 

In this, X is the inter-entrance duration customization and Y
is the service time customization. 𝜇�̃�′(𝑝)&𝛾�̃�′(𝑝) is the 

membership and non-membership functions respectively of 

the inter-arrival time. 𝜇�̃�′(𝑞)&𝛾�̃�′(𝑞) are the membership and 

non-membership functions respectively of the service time. 

VII. SINGLE SERVER FUZZY QUEUING MODEL 

WITH FINITE CAPACITY 

Let �̃� and �̃�′ be the fuzzy and intuitionistic fuzzy 

arrival rates respectively. Let �̃� and �̃�′ be the fuzzy and 

intuitionistic fuzzy service rates respectively. At the steady 

state, the FCFS discipline is upheld, but the capacity is 

limited to a certain extent. 

The following are the fabrication characteristics of the above 

model: 

(a) Number of consumers predicted in the system 

 𝑁𝑠 = �̃�
[1−(𝑁+1)�̃�𝑁+𝑁(�̃�𝑁+1)]

(1−�̃�)(1−�̃�𝑁+1)
                                             (23) 

(b) Estimated number of consumers standing in line 

 𝑁𝑞 = �̃�2
[1−(𝑁)�̃�𝑁−1+(𝑁−1)(�̃�𝑁)]

(1−�̃�)(1−�̃�𝑁+1)
                                        (24) 

(c) The expected volume of time a customer invests in the 

system 

�̃�𝑠 = �̃�
[1−(𝑁+1)�̃�𝑁+𝑁(�̃�𝑁+1)]

𝜆(1−�̃�)(1−�̃�𝑁+1)
                                              (25) 

 (d) The average length of time a customer stood in line 

�̃�𝑞 = �̃�
2 [1−(𝑁)�̃�

𝑁−1+(𝑁−1)(�̃�𝑁)]

𝜆(1−�̃�)(1−�̃�𝑁+1)
                                          (26) 

VIII. SOLO SERVER FUZZY QUEUING MODEL WITH 

LIMITED CAPABILITY 

Interpret the entry rate and the departure rate as both 

TFNs and TIFNs symbolized by �̃�, �̃�′ and �̃�,�̃�′ respectively. 

We postulate the system's greatest limit, i.e., 𝑁 = 2. 

A. Single server fuzzy queuing model with finite capacity 

Let �̃� = (3,4,5) is the arrival rate and �̃� =
(13,14,15) is the service rate of the queuing model. 
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 Determine the TFN in the form of (�̃�, �̃�, 𝛽) as �̃� =
(4,1,1) and �̃� = (14,1,1). 
 To determine the values of a No. of consumers and 

their sojourn time in the queue as well as a system using 

suitable formulas among (23), (24), (25), & (26). It is 

necessary to use the appropriate arithmetic operations 

described in (1), (2), (3), (4), and (5) for add, sub, multiply, 

and divide, respectively. 

For instance, the value of  𝑁𝑠 is calculated as 

follows:  

 

𝑁𝑠 =
(0.2857,1,1)[1 − 3(0.2857,1,1)2 + 2(0.2857,1,1)3]

(1 − (0.2857,1,1))(1 − (0.2857,1,1)3)
 

𝑁𝑠 =
(0.2857,1,1)[1 − (0.2448,1,1) + (0.0466,1,1)]

(0.7143,1,1)(0.9767,1,1)
 

𝑁𝑠 =
(0.2857,1,1)(0.8018,1,1)

(0.6976,1,1)
 

𝑁𝑠 =
(0.2290,1,1)

(0.6976,1,1)
 

𝑁𝑠 = (0.3282,1,1) 
𝑁𝑠 = (−0.6718,0.3282,1.3282) 

 

  Similarly, calculate the remaining parameters and 

the metrics of performance are calculated and tabulated in 

Table I. 

 
TABLE I 

PERFORMANCE MEASURES USING TRIANGULAR FUZZY 

NUMBERS 

 Quantifiable metrics using TFN 

�̃�𝒒 (−0.9404,0.0596,1.0596) 

�̃�𝒔 (−0.6718,0.3282,1.3282) 

�̃�𝒒 (−0.9851,0.0149,1.0149) 

�̃�𝒔 (−0.918,0.082,1.082) 

 

The following figures depict the visualizations of 

Table I. 

 

 
 

Fig. 5. The value of a No. of consumers in the queue Nq  

 

Fig. 6. The value of a No. of consumers in the system N s  

 

 

Fig. 7. The value of the sojourn time of consumers in the queue Tq  

 

 
 

Fig. 8. The value of the sojourn time of consumers in the system Ts  

 

B. Single server intuitionistic fuzzy queuing model with 

finite capacity 

Let �̃�′ = (3.5,4,4.5; 3,4,5) is the arrival rate and 

𝜇′ = (13.5,14,14.5; 13,14,15) is the service rate of the 

queuing model. 
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Determine the TIFN in the form of 

(�̃�, �̃�, 𝛽; �̃�, �̃�′, 𝛽′) as �̃�′ = (4,0.5,0.5; 4,1,1)   and 

( )14, 0.5, 0.5;14,1,1 = . 

To determine the values of a No. of consumers and 

their sojourn time in the queue as well as a system using 

suitable formulas among (23), (24), (25), & (26). It is 

necessary to use the appropriate arithmetic operations 

described in (6), (7), (8), (9), and (10) for addition, 

subtraction, multiplication, and division, respectively.  

For instance, the value of  𝑁𝑠 is calculated as 

follows:  

𝑁𝑠 =

(0.2857,0.5,0.5; 0.2857,1,1)[1 − 3(0.2857,0.5,0.5;

0.2857,1,1)2 + 2(0.2857,0.5,0.5; 0.2857,1,1)3]

(1 − (0.2857,0.5,0.5; 0.2857,1,1))

(1 − (0.2857,0.5,0.5; 0.2857,1,1)3)

 

𝑁𝑠

=
(0.2857,0.5,0.5; 0.2857,1,1)(0.8018,0.5,0.5; 0.8018,1,1)

(07143,0.5,0.5; 0.7143,1,1)(0.9767,0.5,0.5; 0.9767,1,1)
 

𝑁𝑠 =
(0.2290,0.5,0.5; 0.2290,1,1)

(0.6976,0.5,0.5; 0.6976,1,1)
 

𝑁𝑠 = (−0.1718,0.3282,0.8282;−0.6718,0.3282,1.3282) 
 

Similarly, calculate the remaining parameters and 

the metrics of performance are calculated and tabulated in 

Table II. 
 

TABLE II  

 PERFORMANCE MEASURES USING INTUITIONISTIC 

TRIANGULAR FUZZY NUMBERS 

 

 

The following figures depict the visualizations of 

Table II. 

 

 
Fig. 9. The membership (µ) and the non-membership (𝛾) functions of the 

No. of consumers in the queue” Nq   

  
 
 

Fig. 10. The membership (µ) and the non-membership (𝛾) functions of the 

No. of consumers in the system” N s   

 

 
 

 

 

Fig. 11. The membership (µ) and the non-membership (𝛾) functions of the 

sojourn time of consumers in the queue Tq
  

 

 
 

 

 

Fig. 12. The membership (µ) and the non-membership (𝛾) functions of the 

sojourn time of consumers in the system  Ts      

 Quantifiable metrics using TIFN 

�̃�𝒒
′  (−0.4404,0.0596,0.5596;−0.9404,0.0596,1.0596) 

�̃�𝒔
′  (−0.1718,0.3282,0.8282;−0.6718,0.3282,1.3282) 

�̃�𝒒
′  (−0.4851,0.0149,0.5149;−0.9851,0.0149,1.0149) 

�̃�𝒔
′  (−0.418,0.0820,0.582;−0.918,0.0820,1.0820) 
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IX. RESULTS AND DISCUSSIONS 

 

Here, we've utilized the fuzzy set and intuitionistic 

fuzzy set notions to tackle the issue. Compared to the 

identical method utilizing fuzzy sets, we achieved better 

results using intuitionistic fuzzy sets. The performance of the 

intuitionistic fuzzy classifier is highly dependent on the 

recognition capacity of a smaller class. It is directly related to  

the fact that Atanassov's [9] intuitionistic fuzzy sets, which 

are a generalization of fuzzy sets, require more parameters, 

which makes the resulting models more reliable (both for 

memberships and non-memberships). In this work, we 

compare fuzzy and intuitionistic fuzzy queuing models and 

discuss queuing conundrums in practical settings. And their 

evaluations are tabulated as follows: 

Intuitionistic fuzzy optimization approaches offer a 

useful and effective tool for modelling and optimizing the 

unstructured system. Intuitionistic fuzzy modelling enhances 

the validity of poorly organized systems by providing a 

complete awareness of the complexity of the decision 

parameters. One of the most helpful aspects of intuitionistic 

fuzzy set theory is its capacity to generate ambiguous and 

hazy goals and restrictions in problem-solving situations. The 

intuitionistic fuzzy decision methodology's objective is to 

make the best choice while adhering to a set of constraints 

and attaining a certain set of goals. The intuitionistic fuzzy 

decision-building method is utilized when the decision-maker 

does not place equal weight on the aims, purposes and 

limitations. 

 Tables I and II provides the results, which show 

different assessments for a multitude of membership 

functions (TFN and TIFN). 

i) The mean value of  𝑁𝑞 = 0.0596 and the left and 

right stretched values are −0.9404 and 1.0596 

respectively emphasizing that the queue length of 

consumers is closely between −0.9404 and 1.0596. 

Its most assured value is 0.0596. 

ii) The mean value of  𝑁𝑠 = 0.3282 and the left and 

right stretched values are −0.6718 and 1.3282 

respectively emphasizing that the system length of 

consumers is closely between −0.6718 and 1.3282. 

Its most assured value is 0.3282. 

iii) The mean value of  �̃�𝑞 = 0.0149 and the left and 

right stretched values are −0.9851 and 1.0149 

respectively emphasizing that the sojourn time of 

consumers in the queue is closely between −0.9851 

and 1.0149. Its most assured value is 0.0149. 

iv) The mean value of  �̃�𝑠 = 0.082 and the left and right 

stretched values are −0.918 and 1.082 respectively 

emphasizing that the sojourn time of consumers in 

the system is closely between −0.918 and 1.082. Its 

most assured value is 0.082. 

v) The mean value of  𝑁𝑞
′ = 0.0596 and the left and 

right fuzziness of membership (µ) functions are         

−0.4404 and 0.5596 respectively and the left and 

right fuzziness of non-membership (𝛾) functions are               

−0.9404 and 1.0596 respectively. Its most assured  

value is 0.0596. 

vi) The mean value of  𝑁𝑠
′ = 0.3282 and the left and 

right fuzziness of membership (µ) functions are         

−0.1718 and 0.8282 respectively and the left and 

right fuzziness of non-membership (𝛾) functions are 

−0.6718 and 1.3282 respectively. Its most assured 

value is 0.3282. 

vii) The mean value of  �̃�𝑞
′ = 0.0149 and the left and 

right fuzziness of membership (µ) functions are         

−0.4851 and 0.5149 respectively and the left and 

right fuzziness of non-membership (𝛾) functions are 

−0.9851 and 1.0149 respectively. Its most assured 

value is 0.0149. 

viii) The mean value of  �̃�𝑠
′ = 0.082 and the left and right 

fuzziness of membership (µ) functions are −0.418 

and 0.582 respectively and the left and right 

fuzziness of non-membership (𝛾) functions are           

−0.918 and 1.082 respectively. Its most assured 

value is 0.082. 

Table III indicates that the performance metrics for 

the intuitionistic fuzzy queuing model and the fuzzy queuing 

theory model are interoperable. For the fuzzy queuing theory 

model, the values of 𝑁𝑞, 𝑁𝑠, �̃�𝑞, and �̃�𝑠 are within the range 

of values of the intuitionistic fuzzy queuing theory model. As 

a result, the outcomes of performance measurements for the 

intuitionistic fuzzy queuing model and the fuzzy queuing 

theory model exemplify that both models are comparable. 

While intuitionistic fuzzy queuing encompasses a wide range 

of values, fuzzy queuing offers a range of values. Since the 

obtained value of the intuitionistic fuzzy queuing model falls 

within the range of performance measures, Subsequently, it 

demonstrates that the outcome is coherent. 

Using the TFN in this study's intuitionistic fuzzy 

environment, we adjust for stabilization and deprivation 

levels to ensure that the total of both virtues never outstrips 

one. For this kind of fuzzified integer, we implemented 

different non-normal arithmetic methods. The envisioned 

configurations are short and to the point because they were 

developed using traditional algorithmic mathematics. This 

campaign is easy and simple to use in practical systems. The 

TIFN is then measured to the nearest interval number. The 

foremost strength of this strategy is that it facilitates us to 

adapt a multi-section heuristic hastily to solve a compelled 

unbridled optimization framework with TIFN correlations. In 

focusing on customer equity, fundraising, administration, and 

earth sciences, which will be the focus of our future research, 

the contemporary strategies and proposals are consigned to 

be pertinent to various sorts of updated decision-making 

bollards. TIFN encompasses a wider variety of options than 

TFN, even though their average correlation is fairly 

comparable. Although the fuzzy set theory is used to deal 

with uncertainty in decision-making situations, it only 

accounts for membership extent and lacks a model for 

hesitance. The distinctive quality of intuitionistic fuzzy sets 

is the cognizance of the confirmation and deprivation levels 

of each asset. It consequently becomes more factual, 

pertinent, and implementable. 

X. THE AMENDED MODEL'S BOUNDARIES 

The envisaged model has some detriments. One of 

them is the prospect that the waiting environment will be 

constricted. The reasonable assumption is that the birth rate 

may be regarded as dependent on the state. Multi-channel 

queuing problems occur recurrently in sectors and providers. 

After a customer has been identified and a provider has been 

supplied, the customer may need to acquire another provider 
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TABLE III 

COMPARISON PERFORMANCE MEASURES BETWEEN FUZZY QUEUING THEORY MODEL AND INTUITIONISTIC FUZZY QUEUING 

THEORY MODEL 

 

from another facility, which will necessitate them to queue 

again. In such instances, assessing the problem becomes even 

more complicated.  

XI. CONCLUSION 

When attempting to deal with putative deployment 

in single server queuing models with finite capacity, IFS is 

shown to be a more valuable tool than the fuzzy set theory in 

this manuscript. Amidst altering the composition of the 

queues from fuzzy to crisp, we assessed the system using 

benchmark grading rubrics such as the projected length of the 

customer line and the system for both classifications of 

arrivals. Besides that, fuzzy values and intuitionistic fuzzy 

values are used to quantify the postulated sojourn time of 

consumers in the line and across the system. Another 

rationale for using the suggested technique indicator is that it 

provides more than one solution to morals in the queuing 

system, utilizing multiple kinds of membership functions 

(TFN and TIFN) while sustaining a precise calculation within 

the shuttered crisp interval. 

Using various fuzzy numbers (TFN and TIFN), we 

surmise that fuzzy identity has been stimulated to a restricted 

extent in miniature. The characterizations of the time between 

entries and service time are nebulous. It should be 

acknowledged that by increasing the number of variables, the 

success of the queuing model can be improved. The proposed 

model can help endeavors, distributors and retail outlets 

determine the ideal lethal injection proportions of the queuing 

model without a doubt. 

The fuzzy and intuitionistic fuzzy queue with finite 

capacity is explained in greater detail, and the prediction 

model is used to arrive at scientific conclusions. The TFN and 

TIFN mathematical manifestations are used to evaluate the 

proposed queuing system's accuracy and completeness. The 

recommended methodology's versatility is revealed by a 

numerical model. Because the intuitionistic fuzzy theory is 

more flexible and scalable, the intuitionistic fuzzy queuing 

model is significantly more productive and advantageous in 

reviewing and evaluating the dimensions of queuing models. 

As a result, intuitionistic fuzzy queuing, according to this 

investigation, is one of the healthiest modes of computing 

performance standards because the evidence gathered from 

the application is easier to recognize and better comprehend. 

The deterministic parameters for the fuzzy numbers 

can be combined to increase the scope of this article. 

Neutrosophic sets are yet another potential area of study for 

the future. The authors are collaborating on more 

sophisticated concepts for user contexts, like scenarios where  

multiple servers process a customer simultaneously across 

multiple serving streams or phases. 
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