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Abstract—In this paper, we investigate the dynamics of a
discrete commensal symbiosis model with Holling type func-
tional response and density dependent birth rate. Sufficient
conditions are obtained for the permanence, partial extinction,
and global attractivity of the system. Our analysis presents
that the density dependent birth rate plays a crucial role on the
dynamic behaviors of the system. Finally, numerical simulations
and graphical illustrations are given to indicate the analytical
results.

Index Terms—Discrete, Commensal Symbiosis; Density De-
pendent Birth Rate, Permanence, Extinction, Global attractiv-
ity.

I. INTRODUCTION

THE mutualism model and commensalism model have
been extensively investigated by many scholars in re-

cent years, see [1-30]. Some important conclusions have been
obtained, for instance the persistent, the global attractivity,
the existence of the positive periodic solutions and the
stability of the positive equilibrium and so on.

It is well known that mathematical ecological model with
some kind of functional response is more suitable. Wu
et al. [8] incorporated the following model of commensal
symbiosis with functional response of Holling type:

x′(t) = x
(
a1 − b1x+

c1y
p

1 + yp
)
,

y′(t) = y
(
a2 − b2y

)
,

(1.1)

where the constants ai, bi, i = 1, 2, p and c1 are all positive,
and p ≥ 1. They obtained sufficient conditions which ensure
the unique globally stable positive of equilibrium system
(1.1).

Further, Wu and Lin [9] considered the commensalism sys-
tem which incorporate ratio-dependent functional response:

x′(t) = x
(
− a1 − b1x+

c1y

x+ y

)
,

y′(t) = y
(
a2 − b2y

)
.

(1.2)

For the autonomous case and non-autonomous case, they got
the results of partial extinction and other dynamic behaviors.

Brauer and Castillo-Chavez[27], Tang and Chen[28],
Berezansky, Braverman and Idels[29] had presented that
the species is more appropriate which incorporate density
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dependent birth rate in some cases. Recently, Chen [10]
proposed the functional response of Holling type to the
two species autonomous commensal symbiosis model with
density dependent birth rate as follows:

dx

dt
= x

( a11
a12 + a13x

− a14 − b1x+
c1y

p

1 + yp
)
,

dy

dt
= y
(
a2 − b2y

)
,

(1.3)

where a1j , bi, i = 1, 2, j = 1, 2, 3, 4 and a2, c1 are contin-
uous functions whose lower and upper bounds are positive,
and the constant p ≥ 1. For the autonomous case, his study
focused on the global and local stability of the positive
equilibrium. And he showed that system (1.3) admits the
persistent property and extinction, owns positive periodic
solution, for non-autonomous case.

Stimulated by the works of [8], [10], and since the
environment is vary with seasonal, we establish the following
discrete time version of system (1.3) :

x1(n+ 1) = x1(n) exp{
a11(n)

a12(n) + a13(n)x1(n)

−a14(n)− b1(n)x1(n)

+
c1(n)x

p
2(n)

1 + xp2(n)
}

x2(n+ 1) = x2(n) exp{a2(n)− b2(n)x2(n)}

(1.4)

where x1(n), x2(n) are separately the population den-
sity of species x1 and x2 at the n−th generation,

a11(n)

a12(n) + a13(n)x1(n)
and a14(n) are the birth rate and

death rate of the species x1 respectively. The coefficients
aij(n), bi(n), i = 1, 2, j = 1, 2, 3, 4 and a2(n), c1(n) are all
bounded nonnegative sequences, p ≥ 1 is a positive constant.

Our main objective is to study the discrete model of
commensal symbiosis. The paper is organized as follows. In
Section 2, we discuss the persistent property and extinction,
and the global attractivity is investigated in Section 3. Then,
we give two examples with computer simulations and a brief
conclusion.

For biological reasons, we base on the following initial
conditions x1(0) > 0, x2(0) > 0 and we can immediately
see that the solutions of system (1.4) are positive.

II. EXTINCTION AND PERMANENCE

We denote

hl = inf
n∈N
{h(n)}, hu = sup

n∈N
{h(n)},
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for any {h(n)} which is bounded sequence defined on Z.
Lemma 2.1.([24])
(1) Assume that sequences a(n) and b(n) are nonnegative
and the upper and lower bounds are positive constants, if
{x(n)} satisfies

x(n+ 1) ≤ x(n) exp{a(n)− b(n)x(n)}, n ∈ N,

where x(n) > 0. Then, we have

lim sup
n→+∞

x(n) ≤ 1

bl
exp(au − 1).

(2) Suppose that nonnegative sequences a(n) and b(n)
bounded above and below by positive constants, and {x(n)}
satisfies lim sup

n→+∞
x(n) ≤ x∗, x(N0) > 0, and

x(n+ 1) ≥ x(n) exp{a(n)− b(n)x(n)}, n ≥ N0,

where N0 ∈ N . That, we have

lim inf
n→+∞

x(n) ≥ min{ a
l

bu
exp(al − bux∗), a

l

bu
}.

Theorem 2.2. If (H1)

au11
al12
− al14 +

cu1M
p
2

1 +Mp
2

< 0

holds, where M2 =
1

bl2
exp(au2 − 1), then for each positive

solution (x1(n), x2(n))
T of system (1.4) satisfies

limn→+∞ x1(n) = 0,

m2 ≤ lim inf
n→+∞

x2(n) ≤ lim sup
n→+∞

x2(n) ≤M2,

where m2 =
al2
bu2

exp(al2 − bu2M2). That is, the species x1 is

extinct, and the second species x2 is permanent.
Proof. From (H1), for any constant ε > 0 small enough, we
have

au11
al12
− al14 +

cu1 (M2 + ε)p

1 + (M2 + ε)p
def
= −δ < 0. (2.1)

From the second equation of (1.4), it implies that

x2(n+ 1) ≤ x2(n) exp{au2 − bl2x2(n)}. (2.2)

We get from Lemma 2.1 that

lim sup
n→+∞

x2(n) ≤
1

bl2
exp(au2 − 1)

def
= M2. (2.3)

For the above ε, from (2.3), there is a positive constant N1

such that
x2(n) < M2 + ε, n ≥ N1. (2.4)

By (2.4) and the first equation of (1.4), it immediately follows
that, for any k > N1,

ln
x1(k + 1)

x1(k)
=

a11(k)

a12(k) + a13(k)x1(k)
− a14(k)

−b1(k)x1(k) +
c1(k)x

p
2(k)

1 + xp2(k)

≤ au11
al12
− al14 +

cu1 (M2 + ε)p

1 + (M2 + ε)p

= −δ < 0

(2.5)

We sum both sides of the above inequalities from N + 1 to
n− 1, then we can get

ln
x1(n)

x1(N + 1)
< −δ(n−N − 1),

hence

x1(n) < x1(N + 1) exp{−δ(n−N−1)} → 0, (n→ +∞).
(2.6)

By the second equation of (1.4), we obtain

x2(n+ 1) ≥ x2(n) exp{al2 − bu2x2(n)}. (2.7)

According to Lemma 2.1 and (2.7), we have

lim inf
n→+∞

x2(n) ≥ min{a
l
2

bu2
exp(al2 − bu2M2),

al2
bu2
}. (2.8)

By calculation, one can easily get

al2 − bu2M2 = al2 − bu2
exp(au2 − 1)

bl2

≤ al2 − exp(au2 − 1)

≤ al2 − au2 ≤ 0.

(2.9)

Inequality (2.9) together with (2.8) lead to

lim inf
n→+∞

x2(n) ≥
al2
bu2

exp(al2 − bu2M2)
def
= m2. (2.10)

Thus from (2.3), (2.6) and (2.10), the conclusions hold. That
is the proof ends.
Theorem 2.3. Assume that (H2)

al11
au12 + au13M1

− au14 +
cl1m

p
2

1 +mp
2

> 0 (2.11)

holds, then, all the positive solutions (x1(n), x2(n))T of (1.4)
satisfy

m1 ≤ lim inf
n→+∞

x1(n) ≤ lim sup
n→+∞

x1(n) ≤M1,

m2 ≤ lim inf
n→+∞

x2(n) ≤ lim sup
n→+∞

x2(n) ≤M2,

i.e., system (1.4) is permanent, where m1,M1 will be defined
in (2.14) and (2.22) respectively, and m2,M2 are defined in
Theorem 2.2.
Proof. For any constant ε1 > 0 small enough, it follows from
(2.3) that

x2(n) < M2 + ε1, n ≥ N2 (2.12)

where N2 is a positive constant. For n > N2, the first
equation of (1.4) together with (2.12) lead to

x1(n+ 1) ≤ x1(n) exp{
au11
al12
− al14 − bl1x1(n)

+
cu1 (M2 + ε1)

p

1 + (M2 + ε1)p
}.

(2.13)

By using Lemma 2.1, it yields

lim sup
n→+∞

x1(n) ≤
1

bl1
exp{a

u
11

al12
− al14+

cu1 (M2 + ε1)
p

1 + (M2 + ε1)p
− 1}.

Setting ε1 → 0 in the above inequality, one can obtain

lim sup
n→+∞

x1(n) ≤
1

bl1
exp{a

u
11

al12
− al14 +

cu1M
p
2

1 +Mp
2

− 1} def
= M1.

(2.14)
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By condition (2.11), there exists ε2 > 0 satisfying

al11
au12 + au13(M1 + ε2)

− au14 +
cl1(m2 − ε2)p

1 + (m2 − ε2)p
> 0 (2.15)

For the above ε2, from (2.10) and (2.14), one can choose
N3 > 0 such that

x2(n) > m2 − ε2, x1(n) < M1 + ε2, n ≥ N3. (2.16)

For n > N3, the first equation of (1.4) and (2.16) yield that

x1(n+ 1) ≥ x1(n) exp{Aε2 − bu1x1(n)}, (2.17)

where

Aε2
def
=

al11
au12 + au13(M1 + ε2)

− au14 +
cl1(m2 − ε2)p

1 + (m2 − ε2)p
.

(2.18)
By applying Lemma 2.1 to (2.18), we derive

lim inf
n→+∞

x1(n) ≥ min{Aε2
bu1

exp(Aε2−bu1M1),
Aε2
bu1
}. (2.19)

Setting ε2 → 0 in (2.19), it leads to

lim inf
n→+∞

x1(n) ≥ min{A
bu1

exp(A− bu1M1),
A

bu1
}, (2.20)

where

A
def
=

al11
au12 + au13M1

− au14 +
cl1m

p
2

1 +mp
2

.

By calculation, we have

A− bu1M1 =
al11

au12 + au13M1
− au14 +

cl1m
p
2

1 +mp
2

−b
u
1

bl1
exp{a

u
11

al12
− al14 +

cu1M
p
2

1 +Mp
2

− 1}

≤ al11
au12 + au13M1

− au14 +
c21m

p
2

1 +mp
2

−{a
u
11

al12
− al14 +

cu1M
p
2

1 +Mp
2

}

≤ 0.
(2.21)

Then, (2.20) and (2.21) show that

lim inf
n→+∞

x1(n) ≥
A

bu1
exp(A− bu1M1)

def
= m1. (2.22)

The proof is end.

III. GLOBAL ATTRACTIVITY

By constructing a nonnegative discrete Lyapunov function,
we will derive the global attractivity of the system in this
part.
Theorem 3.1. In addition to (H2) , further suppose that
there exist constants λ1 > 0 and λ2 > 0, and the following
statements hold

λ1µ1 − λ1
au11a

u
13

(al12 + al13m1)2
> 0,

λ2µ2 − λ1
cu1pM

p−1
2

(1 +mp
2)

2
> 0,

(H3)

where µi = min{bli,
2

Mi
− bui }, i = 1, 2. Then, for any

two positive solutions (x1(n), x2(n))
T and (x∗1(n), x

∗
2(n))

T

of (1.4), one has

lim
n→+∞

|x1(n)− x∗1(n)| = 0,

lim
n→+∞

|x2(n)− x∗2(n)| = 0,
(3.1)

that is, system (1.4) has global attraction.
Proof. From (H3), there exist ε > 0 and δ > 0 such that

λ1µ
ε
1 − λ1

au11a
u
13

(al12 + al13(m1 − ε))2
> δ,

λ2µ
ε
2 − λ1

cu1p(M2 + ε)p−1

(1 + (m2 − ε))2
> δ,

(3.2)

where µεi = min{bli,
2

Mi + ε
− bui }, i = 1, 2.

For the above ε, by (H2) and Theorem 2.3, there exists a
constant N1 > 0, and for all n ≥ N1, it has

mi − ε ≤ xi(n) ≤Mi + ε,
mi − ε ≤ x∗i (n) ≤Mi + ε, i = 1, 2,

(3.3)

where (x1(n), x2(n))
T and (x∗1(n), x

∗
2(n))

T are any positive
solutions of system (1.4).

Let us define

V1(n) = | lnx1(n)− lnx∗1(n)|.

From the first equation of (1.4), we can get

V1(n+ 1) = | lnx1(n+ 1)− lnx∗1(n+ 1)|

≤ | lnx1(n)− lnx∗1(n)− b1(n)(x1(n)− x∗1(n))|

+
a11(n)a13(n)

(a12(n) + a13(n)x1(n))(a12(n) + a13(n)x∗1(n))
|x1(n)− x∗1(n)|

+c1(n)|
|xp2(n)− x∗p2 (n)|

(1 + xp2(n))(1 + x∗p2 (n))
.

(3.4)
Applying the Mean Value Theorem, one has

lnx1(n)− lnx∗1(n) =
1

θ1(n)
(x1(n)− x∗1(n)),

xp2(n)− x
∗p
2 (n) = pξ(p−1)(n)(x2(n)− x∗2(n)),

(3.5)

where θ1(n) is among x1(n) and x∗1(n), ξ(n) is between
x2(n) and x∗2(n). (3.4) and (3.5) lead to

∆V1(n) ≤ −(
1

θ1(n)
− |

1

θ1(n)
− b1(n)|)|x1(n)− x∗1(n)|

+
a11(n)a13(n)

(a12(n) + a13(n)x1(n))(a12(n) + a13(n)x∗1(n))
|x1(n)− x∗1(n)|

+|
c1(n)pξ(p−1)(n)

(1 + xp2(n))(1 + x∗p2 (n))
|x2(n)− x∗2(n)|

≤ −min{bl1,
2

M1 + ε
− bu1}|x1(n)− x∗1(n)|

+
au11a

u
13

(al12 + al13(m1 − ε))2
|x1(n)− x∗1(n)|

+|
cu1p(M2 + ε)p−1

(1 + (m2 − ε))2
|x2(n)− x∗2(n)|.

(3.6)
Define

V2(n) = | lnx2(n)− lnx∗2(n)|.
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Be similar to the discussion of (3.4)-(3.6), the second equa-
tion of (1.4) implies that

∆V2(n) ≤ −(
1

θ2(n)
− |

1

θ2(n)
− b2(n)|)|x2(n)− x∗2(n)|

≤ −min{bl2,
2

M2 + ε
− bu2}|x2(n)− x∗2(n)|

(3.7)

where θ2(n) lies between x2(n) and x∗2(n).
In the following, we denote the Lyapunov function:

V (n) = λ1V1(n) + λ2V2(n).

From (3.6) and (3.7), for any n ≥ N1, we obtain

∆V (n) ≤ −(λ1µ
ε
1 − λ1

au11a
u
13

(al12 + al13(m1 − ε))2
)|x1(n)− x∗1(n)|

−(λ2µ
ε
2 − λ1

cu1p(M2 + ε)p−1

(1 + (m2 − ε))2
)|x2(n)− x∗2(n)|

≤ −δ(|x1(n)− x∗1(n)|+ |x2(n)− x∗2(n)|).
(3.8)

Summing both sides of the above inequality (3.8) from N1

to k leads to
k∑

n=N1

(V (n+ 1)− V (n))

≤ −δ
k∑

n=N1

(|x1(n)− x∗1(n)|+ |x2(n)− x∗2(n)|),

which implies

V (k+1)+δ
k∑

n=N1

(|x1(n)−x∗1(n)|+|x2(n)−x∗2(n)|) ≤ V (N1).

Thus,

k∑
n=N1

(|x1(n)− x∗1(n)|+ |x2(n)− x∗2(n)|) ≤
V (N1)

δ
.

Therefore,

+∞∑
n=N1

(|x1(n)−x∗1(n)|+ |x2(n)−x∗2(n)|) ≤
V (N1)

δ
< +∞,

which implies that

lim
n→+∞

(|x1(n)− x∗1(n)|+ |x2(n)− x∗2(n)|) = 0,

that is

lim
n→+∞

|x1(n)− x∗1(n)| = 0, lim
n→+∞

|x2(n)− x∗2(n)| = 0.

This completes the claim.

IV. NUMERIC SIMULATIONS

In this part, two examples are given to support our main
results.
Example 4.1. Consider the equations as follows

x1(n+ 1) = x1(n) exp{
2

1 + x1(n)
− 2.5− x1(n)

+
0.5x2(n)

1 + x2(n)
},

x2(n+ 1) = x2(n) exp{1.5− 0.5x2(n)}.

(4.1)

Corresponding to system (1.4), one has M2 = 2
√
e,
au11
al12
−

al14 +
cu1M

p
2

1 +Mp
2

= −1 +

√
e

1 + 2
√
e
< 0. Clearly, condition

(H1) is satisfied, from Theorem 2.2, we know that x2(n) is
permanent and x1(n) is driven to extinction, for all positive
solutions (x1(n), x2(n))T of system (4.1). Figure 1 supports
the conclusion of Theorem 2.2.

Fig. 1. Numeric simulations of system (41) with initial conditions
(x1(n), x2(n))T = (1, 0.4)T , (0.3, 0.15)T , (0.7, 0.9)T , and (0.9, 0.6)T ,
respectively.

Example 4.2. Consider this model

x1(n+ 1) = x1(n) exp{
1

0.5 + 0.2x1(n)

−2− x1(n) +
2x2(n)

1 + x2(n)
},

x2(n+ 1) = x2(n) exp{(0.8 + 0.2cos(n))

−(0.7 + 0.2sin(n))x2(n)}.

(4.2)

By calculation, one has

M1 = e−0.8, M2 = 2, m2 = 2
3e
−1.2,

al11
au12 + au13M1

− au14 +
cl1m

p
2

1 +mp
2

=
1

0.5 + 0.1e−0.8
− 2 +

4

3e−1.2 + 2
> 0.

Obviously, condition (H2) is satisfied and according to
Theorem 2.3, we obtain that the model (4.2) is permanent.

One could easily check that there exist positive constants
λ1 = 1 and λ2 = 0.05 such that condition (H3) is satis-
fied, hence Theorem 3.1 shows that the system is globally
attractive. Figure 2 supports the assertions.

V. CONCLUSION

In this paper, we incorporated the density dependent birth
rate for the first species of a Holling type commensalism
model, it extended the model of Wu et al. [8]. In Section
2, we obtained sufficient conditions of the permanence and
partial extinction of the system. Theorem 3.1 showed the
global attractivity which Chen [10] has not studied, and
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Fig. 2. Numeric simulations of system (42) with initial conditions
(x1(n), x2(n)) = (0.9, 0.4)T , (0.2, 0.1)T , (0.6, 0.8)T , and (0.5, 0.5)T ,
respectively.

we can see that the density dependent birth rate plays an
important role in the permanence, partial extinction and
global attractivity of the species. We also can see that when
all the coefficients are positive constants, i.e., system (1.4)
in the autonomous case, all the results also held. Numeric
simulations validated our analytical results.
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