Vertex-Distinguishing E-Total Colorings of Complete Bipartite Graphs with One Part Having Five Vertices

Xiang'en CHEN, Shiling LI

Abstract

Suppose G is a simple graph. If f is a mapping from $V(G) \cup E(G)$ to $\{1,2, \cdots, k\}$ such that $f(e), f(u), f(v)$ are distinct for each edge $e=u v$ of G, then f is called an E-total coloring of G using k colors (k-E-total coloring of G, in brief). For an E-total coloring f of a graph G and any vertex x of G, we denote the set

$\{f(x)\} \cup\{f(e) \mid e \in E(G)$ and e is incident with $x\}$ by $C(x)$ and refer to it as the color set of x under f. If $C(u) \neq$ $C(v)$ for any two different vertices u and v of $V(G)$, then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. Let
$\chi_{v t}^{e}(G)=\{k \mid G$ has a VDET coloring using k colors $\}$.
Then the positive integer $\chi_{v t}^{e}(G)$ is called the VDET chromatic number of G. The VDET coloring of complete bipartite graph $K_{5, n}$ is discussed in this paper and the VDET chromatic number of $K_{5, n}$ has been obtained.

Index Terms-graph; complete bipartite graphs; Etotal coloring; vertex-distinguishing E-total coloring; vertexdistinguishing E-total chromatic number

I. Introduction and Preliminaries

COLORING problem in graph theory research has important theoretical significance and applications. In this paper we will discuss a kind of coloring: vertexdistinguishing E-total coloring of graphs. All graphs considered in this paper are simple, finite and undirected.
For a total coloring (proper or not) f of G and a vertex x of G, let

$$
\{f(x)\} \cup\{f(e) \mid e \in E(G) \text { and } e \text { is incident with } x\} .
$$

Note that $C(x)$ is not a multiset. We refer to $C(x)$ as the color set of x under f.
For a proper total coloring, if $C(u) \neq C(v)$ for any two distinct vertices u and v, then the coloring is called a vertexdistinguishing (proper) total coloring, or a VDT coloring of G for short.

$$
\chi_{v t}(G)=\{k \mid G \text { has a VDT coloring using } k \text { colors }\} .
$$

Then the positive integer $\chi_{v t}(G)$ is called the VDT chromatic number of G. The vertex distinguishing (proper) total colorings of graphs are introduced and studied in [8]. The

[^0]VDT chromatic number of complete graph, star, complete bipartite graph, wheel, fan, path and cycle are determined in [8] and a conjecture was proposed in [8]: $\chi_{v t}(G)=\mu(G)$ or $\mu(G)+1$, where $\mu(G)$ denote the minimum positive integer k such that $\binom{k}{i+1}$ is not less than $n_{i}(\delta(G) \leq i \leq \Delta(G))$. We denote the number of vertices of degree i in G by $n_{i}(G)$ or n_{i} simply. In [2], the vertex-distinguishing total coloring of n cube were discussed. In [3], the relations of VDT chromatic numbers between a subgraph and its supergraph had been studied. When p is even, $p \geq 4$ and $q \geq 3$, the VDT chromatic numbers of complete p-partite graphs with each part of cardinality q had been obtained in [7].
If f is a mapping from $V(G) \cup E(G)$ to $\{1,2, \cdots, k\}$ such that $f(e), f(u), f(v)$ are distinct for each edge $e=u v$ of G, then f is called an E-total coloring of G using k colors (k -E-total coloring of G, in brief). For an E-total coloring f of a graph G and any vertex x of G, we denote the set

$$
\{f(x)\} \cup\{f(e) \mid e \in E(G) \text { and } e \text { is incident with } x\}
$$

by $C(x)$ and refer to it as the color set of x under f. If $C(u) \neq C(v)$ for any two different vertices u and v of $V(G)$, then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. Let
$\chi_{v t}^{e}(G)=\{k \mid G$ has a VDET coloring using k colors $\}$.
Then the positive integer $\chi_{v t}^{e}(G)$ is called the VDET chromatic number of G.
The VDET colorings of complete graph, complete bipartite graph $K_{2, n}$, star, wheel, fan, path and cycle were discussed in [5]. The VDET chromatic numbers of $m C_{3}$ and $m C_{4}$ are obtained in [6]. The VDET coloring of complete bipartite graph $K_{5, n}$ is discussed in this paper and the VDET chromatic number of $K_{5, n}$ has been obtained.
A parameter was introduced in [5]: $\eta(G)=\min \left\{l:\binom{l}{2}+\right.$ $\left.\binom{l}{3}+\cdots+\binom{l}{i+1} \geq n_{\delta}+n_{\delta+1}+\cdots+n_{i}, 1 \leq \delta \leq i \leq \Delta\right\}$, n_{i} denote the number of vertices with degree $i, \delta \leq i \leq \Delta$. At the end of the paper [5], a conjecture was proposed.

Conjecture 1 ([5]) For a graph G with no isolated vertices and chromatic number at most 5, we have $\chi_{v t}^{e}(G)=\eta(G)$ or $\eta(G)+1$.
In this paper, we will consider the VDET coloring of complete bipartite graph $K_{5, n}$ and confirm Conjecture 1 for $K_{5, n}$.

For not necessarily proper total colorings which are adjacent vertex distinguishing, we can see [4]. For other notations and terminologies we can refer to [1].
Let $X=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}, Y=\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{n}\right\}$, $V\left(K_{5, n}\right)=X \cup Y$ and $E\left(K_{5, n}\right)=\left\{u_{i} v_{j}: 1 \leq i \leq 5,1 \leq\right.$ $j \leq n\}$.

Global description of the main results: Let M_{5}, $M_{6}, M_{7}, M_{8}, M_{9}$ and M_{k} denote the integer intervals $[5,11],[12,39],[40,100],[101,220],[221,437]$ and $\left[\binom{k-1}{2}+\right.$ $\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-1}{5}+\binom{k-1}{6}-2(k-1),\binom{k}{2}+\binom{k}{3}+\binom{k}{4}+$ $\left.\binom{k}{5}+\binom{k}{6}-2 k-1\right]$, where $k \geq 10$. We will prove the result "If $n \in M_{s}$ with $s \geq 5$, then $\chi_{v t}^{e}\left(K_{5, n}\right)=s$ " by giving six theorems in Section 2.

II. BASIC IDEAS OF THE PROOFS OF THE THEOREMS IN Section III

In order to prove that the VDET chromatic number of a graph $K_{5, n}$ is l (for $l \in\{5,6,7,8,9, k\}$) in each theorems, we have done two jobs as follows:

1. We need to prove that $K_{5, n}$ doesn't have $(l-1)$ VDET coloring by contradiction. Assume that $K_{5, n}$ has a ($l-1$)-VDET coloring using colors $1,2, \cdots, l-1$, we will consider five cases when the number of different colors of five vertices in X is $1,2,3,4$ and 5 successively. Then we can find the subsets of $\{1,2, \cdots, l-1\}$ which may become the color sets of vertices in Y. According to the definition of VDET coloring and the colors of vertices in X, we only need to consider some special subsets and finally we can obtain contradictions.
2. We can prove that $K_{5, n}$ has an l-VDET coloring. In the 2 -subsets, 3 -subsets, $\cdots,(l-1)$-subsets and l-subsets of $\{1,2, \cdots, l\}$, we may select $n+5$ subsets appropriately, and let these $n+5$ subsets correspond to the vertices in $X \cup$ Y, such that the different vertices corresponded to different subsets. Then we will find an E-total coloring f of $K_{5, n}$, under this E-total coloring, the color set of every vertex is the subset corresponded to this vertex in advance. So we can obtain that the coloring f is vertex distinguishing. Namely, f is an l-VDET coloring of $K_{5, n}$.

Suppose p_{s} is the maximum number in M_{s}, i.e., $p_{s}=$ $\max M_{s}, s \geq 5$.
In order to construct required coloring, we can give a 5VDET coloring f_{11} of $K_{5,11}$ firstly. Then based on the $(s-$ 1)-VDET coloring $f_{p_{s-1}}$ of $K_{5, p_{s-1}}$ for every $s \in\{6,7, \cdots\}$, we increase a new color s, and give required coloring of $p_{s}-p_{s-1}$ new degree five vertices and their incident edges. So we can obtain an s-VDET coloring $f_{p_{s}}$ of $K_{5, p_{s}}$.

When we have constructed an s-VDET coloring $f_{p_{s}}$ of $K_{5, p_{s}}$ for each $s \geq 5$, we delete some vertices in Y and their incident edges gradually, then we can obtain an s-VDET coloring of $K_{5, n}$ when $n \in M_{s} \backslash\left\{p_{s}\right\}$.

This process should be carried out recursively.

III. Main Results

Theorem 1. If $5 \leq n \leq 11$, then $\chi_{v t}^{e}\left(K_{5, n}\right)=5$.
Proof. We only need to prove that $K_{5, n}$ has no 4-VDET coloring, in the same time, we will give a 5 -VDET coloring of $K_{5, n}$.

Assume that $K_{5, n}$ has a 4-VDET coloring f using colors $1,2,3$ and 4 . There are three cases to consider.
Case $1 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive the same color under f. We may suppose that $f\left(u_{i}\right)=1, i=1,2,3,4,5$. So none of the $C\left(v_{j}\right)$ include color 1 and each $C\left(v_{j}\right)$ is one of $\{2,3\},\{2,4\},\{3,4\},\{2,3,4\}$. When $5 \leq n \leq 11$, we can obtain a contradiction, since four subsets can not distinguish n vertices in Y.

Case $2 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive two different colors, say 1 and 2 , under f. Then the color set $C\left(v_{j}\right)$ does not include color i when $\left|C\left(v_{j}\right)\right|=2, i=1,2$. So each $C\left(v_{j}\right)$ is one of $\{3,4\},\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}$ and $\{1,2,3,4\}$. We can obtain a contradiction since 6 subsets can not distinguish $n(7 \leq n \leq 11)$ vertices in Y.

When $n=5,6$. From one subset in $\{\{1,2,3\},\{1,2,4\}\}$, say $\{1,2,3\}$, must be the color set of some vertex in Y, we can obtain that each $C\left(u_{i}\right)$ contains $\{1,2\}$, and when $n=5$, each $C\left(u_{i}\right)$ is either $\{1,2\}$ or $\{1,2,4\}$. This is a contradiction. When $n=6$, each $C\left(u_{i}\right)$ is equal to $\{1,2\}$. This is also a contradiction.

Case $3 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive three different colors, say 1,2 and 3 , under f. Then the color set $C\left(v_{j}\right)$ does not include color i when $\left|C\left(v_{j}\right)\right|=2, i=1,2,3$, and each $C\left(v_{j}\right)$ is not $\{1,2,3\}$. So the color set of each v_{j} is one of $\{1,2,4\},\{1,3,4\},\{2,3,4\}$ and $\{1,2,3,4\}$. This is a contradiction since 4 subsets can not distinguish $n(5 \leq n \leq 11)$ vertices in Y.

Hence $K_{5, n}$ does not have a 4-VDET coloring and $\chi_{v t}^{e}\left(K_{5, n}\right) \geq 5$ when $5 \leq n \leq 11$. We will give a 5 -VDET coloring f_{n} of $K_{5, n}$.
Let $f_{n}=\left(a_{1} b_{1} c_{1} d_{1} e_{1} g_{1}, a_{2} b_{2} c_{2} d_{2} e_{2} g_{2}, \cdots\right.$, $a_{n} b_{n} c_{n} d_{n} e_{n} g_{n}, 2 b_{1} b_{2} \cdots b_{n}, 1 c_{1} c_{2} \cdots c_{n}, 1 d_{1} d_{2} \cdots d_{n}$, $2 e_{1} e_{2} \cdots e_{n}, 2 g_{1} g_{2} \cdots g_{n}$), where " $a_{j} b_{j} c_{j} d_{j} e_{j} g_{j}$ " (composed with six ordered colors $a_{j}, b_{j}, c_{j}, d_{j}, e_{j}$ and g_{j}) represents the colors of the vertex v_{j} and its incident edges: the color of v_{j} is a_{j}, the colors of $u_{1} v_{j}, u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}, u_{5} v_{j}$ are $b_{j}, c_{j}, d_{j}, e_{j}, g_{j}$, respectively. And the colors of $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ are $2,1,1,2,2$ respectively.
Next we will give a 5-VDET coloring f_{n} of $K_{5, n}$.
$f_{11}=(344444,533333,533331,533233,435355,544444$,
544441, 544244, 533231, 544241, 344441, 243333444344,
143335444344, 143323442224, 243335444344, 243135414111)
Based on $K_{5,11}$ and its coloring f_{11}, if we delete the vertex whose color set is $\{1,3,4\}$, then we obtain $K_{5,10}$ and its 5VDET coloring f_{10}. Based on $K_{5,10}$ and its coloring f_{10}, if we delete i vertices, where $i=1,2,3,4,5$, whose color sets are in $\{\{1,2,4,5\},\{1,2,3,5\},\{2,4,5\},\{1,4,5\},\{4,5\}\}$, then we obtain $K_{5,10-i}$ and its 5-VDET coloring f_{10-i}.

This completes the proof of Theorem 1.
Theorem 2. If $12 \leq n \leq 39$, then $\chi_{v t}^{e}\left(K_{5, n}\right)=6$.
Proof. Assume that $K_{5, n}$ has a 5-VDET coloring f. There are four cases we need to consider.
Case $1 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive the same color under f. We may suppose that $f\left(u_{i}\right)=1, i=$ $1,2,3,4,5$, so none of the $C\left(v_{j}\right)$ include color 1 and each $C\left(u_{i}\right)$ is in $A=\{\{2,3\},\{2,4\},\{2,5\},\{3,4\},\{3,5\}$, $\{4,5\},\{2,3,4\},\{2,3,5\}, \quad\{2,4,5\},\{3,4,5\}, \quad\{2,3,4,5\}\}$. We can obtain a contradiction since 11 subsets can not distinguish n vertices in Y when $12 \leq n \leq 39$.

Case $2 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive two different colors under f. We may assume that $f\left(u_{i}\right) \in\{1,2\}, i=1,2,3,4,5$. Then the color set $C\left(v_{j}\right)$ does not include color i when $\left|C\left(v_{j}\right)\right|=2, i=1,2$. So the number of the subsets of $\{1,2,3,4,5\}$ which may become the color sets of the vertices in Y is $\binom{5}{2}+\binom{5}{3}+\binom{5}{4}+\binom{5}{5}-7=19$. A contradiction may arise since 19 subsets can not distinguish n vertices in Y when $20 \leq n \leq 39$.
Let $B_{1}=\{\{3,4\},\{3,5\},\{4,5\}\}$,
$B_{2}=\{\{1,2,3\},\{1,2,4\},\{1,2,5\}\}$,
$B_{3}=\{\{1,3,4\},\{1,3,5\},\{1,4,5\},\{2,3,4\},\{2,3,5\}$, $\{2,4,5\},\{3,4,5\}, \quad\{1,2,3,4\}, \quad\{1,2,3,5\},\{1,3,4,5\}$, $\{1,2,4,5\},\{2,3,4,5\},\{1,2,3,4,5\}\}$.
\diamond If one set in B_{1} and one set in B_{2}, say $\{3,4\}$ and $\{1,2,3\}$, are the color sets of vertices in Y, we may obtain that $\{1,2,3\} \subseteq C\left(u_{i}\right), i=1,2,3,4,5$ or $\{1,2,4\} \subseteq C\left(u_{i}\right), i=1,2,3,4,5$, without loss of generality, we may assume that $\{1,2,3\} \subseteq C\left(u_{i}\right), i=1,2,3,4,5$. Then each $C\left(u_{i}\right)$ is one of $\{1,2,3\},\{1,2,3,4\},\{1,2,3,5\}$ and $\{1,2,3,4,5\}$. This is a contradiction. So we need to consider the following subcases.

$2.1 n=16$.

\diamond If $\{3,4\},\{3,5\}$ and $\{4,5\}$ are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains $\{1,2\}$. In order to distinguish each u_{i} with vertices in Y, we can obtain that each $C\left(u_{i}\right)$ is equal to $\{1,2\}$. This is a contradiction.
\diamond If $\{1,2,3\},\{1,2,4\}$ and $\{1,2,5\}$ are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least two common colors in $\{3,4,5\}$, say 3 and 4 . So each $C\left(u_{i}\right)$ is either $\{1,3,4\}$ or $\{2,3,4\}$. This is a contradiction.
$2.2 n=15$. There exist four subsets in $B_{1} \cup B_{2} \cup B_{3}$ which are not the color sets of vertices in Y.
$\diamond\{3,4\},\{3,5\}$ and $\{4,5\}$ are not the color sets of vertices in Y. From one set in B_{2} is a color set of some vertex in Y, we can know that each $C\left(u_{i}\right)$ contains $\{1,2\}$. So there exist at most two subsets which may become the color sets of vertices in X. This is a contradiction.
$\diamond\{1,2,3\},\{1,2,4\}$ and $\{1,2,5\}$ are not the color sets of vertices in Y. From one set in B_{1} is a color set of some vertex in Y, we can know that each $C\left(u_{i}\right)$ contains one common color. In order to distinguish each u_{i} with vertices in Y, there exist at most three subsets which may become the color sets of vertices in X. This is a contradiction.
$2.3 n=14$. There exist five subsets in $B_{1} \cup B_{2} \cup B_{3}$ which are not the color sets of vertices in Y.
\diamond Two subsets in B_{1} and three subsets in B_{2} are not the color sets of vertices in Y. From one set in B_{1} is a color set of some vertex in Y, we can know that each $C\left(u_{i}\right)$ contains one common color. In order to distinguish each u_{i} with vertices in Y, there exist at most two subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond Two subsets in B_{2} and three subsets in B_{1} are not the color sets of vertices in Y. From one set in B_{2} is a color set of some vertex in Y, we can know that each $C\left(u_{i}\right)$ contains $\{1,2\}$. In order to distinguish each u_{i} with vertices in Y, there exist at most three subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If $\{3,4\},\{3,5\},\{4,5\}$ and two subsets in B_{3} are not the color sets of vertices in Y, then from $\{1,2,3\}$ is a color set of some vertex in Y, we can know that $\{1,2\} \subseteq C\left(u_{i}\right), i=1,2,3,4,5$, and there exist at most three subsets which may become the color sets of vertices in X. This is a contradiction.
$\diamond\{\{1,2, i\} \mid i=3,4,5\}$ and two subsets in B_{3} are not the sets of vertices in Y, then we can obtain a contradiction similar to the last paragraph.
2.4 $n=13$. There exist six subsets in $B_{1} \cup B_{2} \cup B_{3}$ which are not the color sets of vertices in Y.
\diamond If one subset in B_{1}, three subsets in B_{2} and two subsets in B_{3} are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least one common color, say 3 . So some
sets $C\left(u_{i}\right)$ contain $\{1,3\}$, and others contain $\{2,3\}$. If two subsets, say $\{1,4,5\}$ and $\{2,4,5\}$, are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ is one of $\{1,3\},\{2,3\}$ and $\{1,2,3\}$. This is a contradiction since three subsets are not distinguish 5 vertices in X; If two subsets, which contain $\{1,3\}$ or $\{2,3\}$, are not the color sets of vertices in Y, then from $\{1,4,5\}$ and $\{2,4,5\}$ are the color sets of vertices in Y, we can know that each $C\left(u_{i}\right)$ is one of $\{1,3,5\},\{2,3,5\}$ and $\{1,2,3,5\}$ or each $C\left(u_{i}\right)$ is one of $\{1,3,4\},\{2,3,4\}$ and $\{1,2,3,4\}$. This is a contradiction.
\diamond There exist exactly one subset in B_{3} is not a color set of vertex in Y, we can know that only one subset in $B_{1} \cup B_{2}$ is a color set of vertex in Y. In order to distinguish each u_{i} with vertices in Y, we can obtain that there exist at most four subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If one subset in B_{2}, three subsets in B_{1} and two subsets in B_{3} are not the color sets of vertices in Y, then $\{1,2\} \subseteq$ $C\left(u_{i}\right), i=1,2,3,4,5$, and there exist at most four subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond All subsets in $B_{1} \cup B_{2}$ are not the color sets of vertices in Y. From $\{1,4,5\}$ and $\{2,4,5\}$ are the color sets of vertices in Y, we can know that there exist at least two sets $C\left(u_{i}\right)$ contain $\{1,2\}$, and others contain $\{1,5\},\{1,4\},\{2,5\}$ or $\{2,4\}$. Because not all vertices in Y contain color 4 or 5, so each u_{i} is not a 2 -subset. In order to distinguish each u_{i} with vertices in Y, we can obtain that each $C\left(u_{i}\right)$ is either $\{1,2,4\}$ or $\{1,2,5\}$. This is a contradiction.
\diamond If three subsets in B_{1} and three subsets in B_{3} are not the color sets of vertices in Y, then $\{1,2\} \subseteq C\left(u_{i}\right), i=$ $1,2,3,4,5$, and there exist at most four subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If three subsets in B_{2} and three subsets in B_{3} are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least two common colors, say 3 and 4 . So each $C\left(u_{i}\right)$ contains $\{1,3,4\}$ or $\{2,3,4\}$, and there exist at most three subsets which may become the color sets of vertices in X. This is a contradiction.
2.5 $n=12$. There exist seven subsets in $B_{1} \cup B_{2} \cup B_{3}$ which are not the color sets of vertices in Y.
\diamond If one subset in B_{1}, say $\{4,5\}$, three subsets in B_{2} and three subsets in B_{3} are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least one common color, say 3 . So each $C\left(u_{i}\right)$ contains $\{1,3\}$ or $\{2,3\}$. If $\{1,4,5\}$ or $\{2,4,5\}$ is not the color set of vertex in Y, then we can obtain a contradiction easily since there exist at most four subsets which may become the color sets of vertices in X. So $\{1,4,5\}$ and $\{2,4,5\}$ are the color sets of vertices in Y, and we may suppose that each $C\left(u_{i}\right)$ contains $\{1,3,4\}$ or $\{2,3,4\}$. So there exist at most three subsets which may become the color sets of vertices in X. This is also a contradiction.
\diamond If three subsets in B_{1}, one subset in B_{2} and three subsets in B_{3} are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains $\{1,2\}$ and each $C\left(u_{i}\right)$ is not $\{1,2\}$ since there exist 5 subsets in B_{3} do not contain color 1, and 5 subsets in B_{3} do not contain color 2. So there exist at most four subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond One subset in B_{3}, say $\{1,4,5\}$, and all subsets in $B_{1} \cup$ B_{2} are not the color sets of vertices in Y. From $\{1,3,5\}$ and $\{2,3,5\}$ are the color sets of vertices in Y, we can know that there exist at least two sets $C\left(u_{i}\right)$ contain $\{1,2\}$, and all sets contain color 3 or 5 . By using the same method, each $C\left(u_{i}\right)$ is not a 2 -subset. So there exist at most three subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If two subsets in B_{1}, say $\{3,5\}$ and $\{4,5\}$, three subsets in B_{2} and two subsets in B_{3} are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains one common color, say 3. Since there exist three subsets in B_{3} which not contain color 3, we can obtain that each $C\left(u_{i}\right)$ is not a 2 -subset. So $\left|C\left(u_{i}\right) \cup C\left(v_{j}\right)\right|=\left|B_{3} \cup\{\{1,2,3\},\{3,5\},\{4,5\}\}\right|=16$. This is a contradiction since 16 subsets can not distinguish $5+n=17$ vertices in $X \cup Y$.
\diamond If three subsets in B_{1}, two subsets in B_{2}, say $\{1,2,3\}$ and $\{1,2,4\}$, and two subsets in B_{3} are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains $\{1,2\}$. Since 5 subsets in B_{3} do not contain color 2, and 5 subsets in B_{3} do not contain color 1, we can know that each $C\left(u_{i}\right)$ is not a 2-subset. So $\left|C\left(u_{i}\right) \cup C\left(v_{j}\right)\right|=\left|B_{3} \cup\{\{1,2,3\},\{1,2,4\}\}\right|=$ 15. This is a contradiction since 15 subsets can not distinguish $5+n=17$ vertices in $X \cup Y$.
\diamond If three subsets in B_{1} and four subsets in B_{3} are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains $\{1,2\}$. From the above discussion, each $C\left(u_{i}\right)$ is not a 2 -subset and there exist at most four subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If three subsets in B_{2} and four subsets in B_{3} are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least two common colors, say 3 and 4. In order to distinguish each u_{i} with vertices in Y, we can obtain that there exist at most four subsets which may become the color sets of vertices in X. This is a contradiction.

Case $3 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive three different colors under f, say 1,2 , and 3 . Then the color set $C\left(v_{j}\right)$ does not include color i when $\left|C\left(v_{j}\right)\right|=2, i=1,2,3$, and each $C\left(v_{j}\right)$ is not $\{1,2,3\}$. So the number of the subsets of $\{1,2,3,4,5\}$ which may become the color sets of the vertices in Y is $\binom{5}{2}+\binom{5}{3}+\binom{5}{4}+\binom{5}{5}-10=16$. A contradiction may arise since 19 subsets can not distinguish n vertices in Y when $17 \leq n \leq 39$.
Let $C_{1}=\{\{4,5\}\}, C_{2}=\{\{1,2,4\},\{1,2,5\},\{1,3,4\}$, $\{1,3,5\},\{2,3,4\},\{2,3,5\}\}, C_{3}=\{\{1,4,5\},\{2,4,5\}$, $\{3,4,5\},\{1,2,3,4\},\{1,2,3,5\},\{1,3,4,5\},\{1,2,4,5\}$, $\{2,3,4,5\},\{1,2,3,4,5\}\}$.
\diamond If one subset in $\{\{1,2,4\},\{1,2,5\}\}$, one subset in $\{\{1,3,4\},\{1,3,5\}\}$ and one subset in $\{\{2,3,4\},\{2,3,5\}\}$ are the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains $\{1,2,3\}$. So each $C\left(u_{i}\right)$ is one of $\{1,2,3\},\{1,2,3,4\}$, $\{1,2,3,5\}$ and $\{1,2,3,4,5\}$. This is a contradiction since 4 subsets can not distinguish 5 vertices in X.
3.1 $n=14$. There exist two subsets in $C_{1} \cup C_{2} \cup C_{3}$ which are not the color sets of vertices in Y.
\diamond If $\{4,5\}$ and one subset in $C_{2} \cup C_{3}$ (or one subset in C_{3}) are not the color sets of vertices in Y, then we can obtain a contradiction similar to the last paragraph. If two sets in C_{2} are not the color sets of vertices in Y, say $\{1,2,4\}$ and $\{1,2,5\}$, then from $\{4,5\}$ is a color set of vertex in Y, we can obtain that each $C\left(u_{i}\right)$ contains $\{3,5\}$ or each $C\left(u_{i}\right)$
contains $\{3,4\}$, we may suppose that each $C\left(u_{i}\right)$ contains $\{3,4\}$. So the color sets of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ contain $\{3,4\}$ or $\{1,3,4\}$ or $\{2,3,4\}$. In order to distinguish each u_{i} with vertices in Y, we can know that each $C\left(u_{i}\right)$ is $\{3,4\}$ or $\{1,3,4\}$ or $\{2,3,4\}$. This is also a contradiction.
$3.2 n=13$. There exist three subsets in $C_{1} \cup C_{2} \cup C_{3}$ which are not the color sets of vertices in Y.
\diamond Three subsets in C_{2}, say $\{1,2,4\},\{1,2,5\}$ and $\{1,3,4\}$, are not the color sets of vertices in Y. Since $\{4,5\},\{1,3,5\}$ and $\{2,3,4\}$ are the color sets of vertices in Y, and we may assume that some v_{j} has color 5 , we can know that the color sets of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ contain $\{1,3,4\}$ or $\{2,3,4\}$ or $\{1,2,3,4\}$. In order to distinguish each u_{i} with vertices in Y, we can obtain a contradiction.
$\diamond\{4,5\}$ and two subsets in C_{2}, say $\{1,2,4\}$ and $\{1,2,5\}$, are not the color sets of vertices in Y. From the above discussion, we can obtain that each $C\left(u_{i}\right)$ contains color 3. In order to distinguish each u_{i} with vertices in Y, we can know that each $C\left(u_{i}\right)$ is one of $\{1,3\},\{2,3\}$ and $\{1,2,3\}$. This is a contradiction.
\diamond One set in C_{3} and two subsets in C_{2}, say $\{1,2,4\}$ and $\{1,2,5\}$, are not the color sets of vertices in Y. From $\{4,5\},\{1,3,4\}$ and $\{2,3,4\}$ are the color sets of vertices in Y, and we may suppose that some v_{j} has color 5 . We can know that each $C\left(u_{i}\right)$ contains $\{3,4\}$, from the above discussion, we can also obtain a contradiction.
$3.3 n=12$. There exist four subsets in $C_{1} \cup C_{2} \cup C_{3}$ which are not the color sets of vertices in Y.
\diamond Four subsets in C_{2}, say $\{1,2,4\},\{1,2,5\},\{1,3,4\}$ and $\{1,3,5\}$, are not the color sets of vertices in Y. From $\{4,5\}$ and $\{2,3,4\}$ are the color sets of vertices in Y, and we may suppose that some v_{j} has color 5 . We can know that at least two sets $C\left(u_{i}\right)$ contain $\{2,3,4\}$. In order to distinguish each u_{i} with vertices in Y, we can know that there exist at least two sets $C\left(u_{i}\right)$ which are equal to the color set of some vertex v_{j}. This is a contradiction.
$\diamond\{4,5\}$ and three subsets in C_{2}, say $\{1,2,4\},\{1,2,5\}$ and $\{1,3,4\}$, are not the color sets of vertices in Y. From $\{1,3,5\}$ and $\{2,3,4\}$ are the color sets of vertices in Y, we can know that each $C\left(u_{i}\right)$ contains $\{1,3\}$ or $\{2,3\}$ or $\{1,2,3\}$. In order to distinguish each u_{i} with vertices in Y, we can obtain that each $C\left(u_{i}\right)$ is one of $\{1,3\},\{2,3\},\{1,2,3\}$ and $\{1,3,4\}$. This is a contradiction.
\diamond One subset in C_{3} and three subsets in C_{2}, say $\{1,2,4\},\{1,2,5\}$ and $\{1,3,4\}$, are not the color sets of vertices in Y. From the above discussion, we can obtain that there exist at most two subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond Two subsets in C_{2}, say $\{1,2,4\}$ and $\{1,2,5\}$, and two subsets in C_{3} are not the color sets of vertices in Y. From $\{4,5\},\{1,3,4\}$ and $\{2,3,4\}$ are the color sets of vertices in Y, and we may suppose that some v_{j} has color 5 , we can know that each $C\left(u_{i}\right)$ contains $\{1,3,4\}$ or $\{2,3,4\}$ or $\{1,2,3,4\}$. In order to distinguish each u_{i} with vertices in Y, we can obtain that there exist at most two subsets which may become the color sets of vertices in X. This is a contradiction.
$\diamond\{4,5\}$, one subset in C_{3} and two subsets in C_{2}, say $\{1,2,4\}$ and $\{1,2,5\}$ are not the color sets of vertices in Y. By using the same method, we can obtain that there exist at most three subsets which may become the color sets of

TABLE I
Coloring Methods

the color set of v_{j}	the colors of v_{j} and $u_{i} v_{j}(i=1,2,3,4,5)$
$\{a, k\}$	$a ; k, k, k, k, k$
$\{1,2, k\}$	$k ; 1,2,2,1,1$
$\{a, b, k\}$	$a ; k, b, k, k, k$
$\{1, b, k\}$	$b ; k, k, k, 1,1$
$\{2, b, k\}$	$b ; k, 2, k, k, k$
$\{a, b, c, k\}$	$a ; k, b, c, k, k$
$\{1, b, c, k\}$	$b ; k, c, k, 1,1$
$\{1,2, c, k\}$	$c ; 1,2,2,1, k$
$\{2, b, c, k\}$	$b ; c, 2, k, k, k$
$\{a, b, c, d, k\}$	$a ; k, b, c, d, k$
$\{1, b, c, d, k\}$	$b ; k, c, d, 1, k$
$\{2, b, c, d, k\}$	$b ; c, 2, d, k, k$
$\{1,2, c, d, k\}$	$c ; 1,2, d, 1, k$
$\{a, b, c, d, e, k\}$	$a ; k, b, c, d, e$
$\{1, b, c, d, e, k\}$	$b ; k, c, d, 1, e$
$\{2, b, c, d, e, k\}$	$b ; c, 2, d, e, k$
$\{1,2, c, d, e, k\}$	$c ; 1, d, 2, e, k$

vertices in X. This is a contradiction.
Case $4 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive four different colors under f, say $1,2,3$ and 4 . Then the color set $C\left(v_{j}\right)$ is not a 2 -subset, and each $C\left(v_{j}\right)$ is not $\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}$ or $\{1,2,3,4\}$. So the number of the subsets in $\{1,2,3,4,5\}$ which may become the color sets of the vertices in Y is $\binom{5}{3}+\binom{5}{4}+\binom{5}{5}-5=11$. A contradiction may arise since 11 subsets can not distinguish n vertices in Y when $12 \leq n \leq 39$.

Hence $K_{5, n}$ does not have a 5-VDET coloring and $\chi_{v t}^{e}\left(K_{5, n}\right) \geq 6$ when $12 \leq n \leq 39$.
Based on $K_{5,11}$ and its coloring f_{11}, we can give a 6 -VDET coloring f_{n} of $K_{5, n}(12 \leq n \leq 39)$. In order to distinguish each u_{i} with vertices in Y, subsets $\{2,3,4,6\}, \quad\{1,3,4,5,6\},\{1,2,3,4,6\},\{2,3,4,5,6\}$ and $\{1,2,3,4,5,6\}$ are not the color sets of any vertices in Y. So $f_{n}=f_{11}+(366666,344244,345451,344241,345245$, $345241, \cdots)$. We can by coloring other vertices v_{j} and its incident edges $(18 \leq j \leq 39)$ according to the method given in Table I (the second column in Table I shows that the colors of $v_{j} ; u_{1} v_{j}, u_{2} v_{j}, u_{3} v_{j}, u_{4} v_{j}, u_{5} v_{j}$), in the same time, the colors of $u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} are $2,1,1,2$ and 2 respectively. Finally we can obtain the 6 -VDET coloring f_{n} $(12 \leq n \leq 39)$ of $K_{5, n}$.

The proof of Theorem 2 is completed.
Theorem 3. If $40 \leq n \leq 100$, then $\chi_{v t}^{e}\left(K_{5, n}\right)=7$.
Proof. Assume that $K_{5, n}$ has a 6 -VDET coloring f. There are five cases we need to consider.

Case $1 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive the same color under f. We may suppose that $f\left(u_{i}\right)=1, i=1,2,3,4,5$, so none of the $C\left(v_{j}\right)$ include color 1 and the number of the subsets in $\{1,2,3,4,5,6\}$ which may become the color sets of the vertices in Y is $\binom{5}{2}+\binom{5}{3}+\binom{5}{4}+\binom{5}{5}=26$. A contradiction may arise since 26 subsets can not distinguish n vertices in Y when $40 \leq n \leq 100$.

Case $2 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive two different colors under f. We may assume that $f\left(u_{i}\right) \in\{1,2\}, i=1,2,3,4,5$. Then the color sets $C\left(v_{j}\right)$ do not include color i when $\left|C\left(v_{j}\right)\right|=2, i=1,2$. So the number of the subsets of
$\{1,2,3,4,5,6\}$ which may become the color sets of the vertices in Y is $\binom{6}{2}+\binom{6}{3}+\binom{6}{4}+\binom{6}{5}+\binom{6}{6}-9=48$. A contradiction may arise since 48 subsets can not distinguish n vertices in Y when $49 \leq n \leq 100$.
If four subsets in $\{\{3,4\},\{3,5\},\{3,6\},\{4,5\},\{4,6\},\{5,6\}\}$ and one subset in $\{\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,2,6\}\}$ are the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least four common colors, say $1,2,3$ and 4 . So each $C\left(u_{i}\right)$ is one of $\{1,2,3,4\},\{1,2,3,4,5\},\{1,2,3,4,6\}$ and $\{1,2,3,4,5,6\}$. This is a contradiction. So we only need to consider the following subcases.
Let $A=\{\{3,4\},\{3,5\},\{3,6\},\{4,5\},\{4,6\},\{5,6\}$, $\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,2,6\}\}$. We denoted the set, which contains all 48 subsets except A, as S.
$2.1 n=45$.
If three 2-subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least three common colors in $\{1,2,3,4,5,6\}$, say 1,2 and 3 . In order to distinguish each u_{i} with vertices in Y, we can obtain that each $C\left(u_{i}\right)$ is equal to $\{1,2,3\}$. This is a contradiction.
$2.2 n=44$.
\diamond Four 3-subsets in A are not the color sets of vertices in Y. From all 2-subsets in A are the color sets of vertices in Y, we can know that each $C\left(u_{i}\right)$ contains at least three common colors in $\{3,4,5,6\}$, say 3,4 and 5 . So each $C\left(u_{i}\right)$ contains $\{1,3,4,5\}$ or $\{2,3,4,5\}$. In order to distinguish each u_{i} with vertices in Y, we can obtain that each $C\left(u_{i}\right)$ is either $\{1,3,4,5\}$ or $\{2,3,4,5\}$. This is a contradiction.
\diamond If four 2-subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least one common color in $\{3,4,5,6\}$, say 3 . So $\{1,2,3\} \subset C\left(u_{i}\right), i=1,2,3,4,5$. In order to distinguish each u_{i} with vertices in Y, we can obtain that each $C\left(u_{i}\right)$ is $\{1,2,3\}$. This is a contradiction.
\diamond If one 3 -subset and three 2 -subsets in A are not the color sets of vertices in Y, then we can obtain a contradiction similar to the last paragraph.
\diamond If one subset in S and three 2 -subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least one common color in $\{3,4,5,6\}$, say 3 . So $\{1,2,3\} \subset$ $C\left(u_{i}\right), i=1,2,3,4,5$. In order to distinguish each u_{i} with vertices in Y, we can obtain that there exist at most one subset which may become the color set of vertices in X. This is a contradiction.
$2.3 n=43$.
\diamond If five 2 -subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least one common color in $\{3,4,5,6\}$, say 3. So $\{1,2,3\} \subset C\left(u_{i}\right), i=1,2,3,4,5$. In order to distinguish each u_{i} with vertices in Y, we can obtain that each $C\left(u_{i}\right)$ is $\{1,2,3\}$. This is a contradiction.
\diamond Two 3 -subset and three 2 -subsets in A are not the color sets of vertices in Y. This discussion is similar to the last paragraph.
\diamond If one 3-subset and four 2-subsets in A are not the color sets of vertices in Y, then we can also obtain a contradiction similar to the last paragraph.
\diamond One subset in S and four 2-subsets in A are not the color sets of vertices in Y. From the above discussion, we may assume that each $C\left(u_{i}\right)$ contains $\{1,2,3\}$. Then there exist at most one subset which may become the color set of vertices in X. This is a contradiction.
\diamond If one subset in S and four 3-subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least three common colors in $\{3,4,5,6\}$, say 3,4 and 5 . So each $C\left(u_{i}\right)$ contains $\{1,3,4,5\}$ or $\{2,3,4,5\}$, and there exist at most one subset which may become the color set of vertices in X. This is a contradiction.
\diamond One 2-subset and four 3-subsets in A are not the color sets of vertices in Y. From the above discussion, we may assume that each $C\left(u_{i}\right)$ contains $\{1,3,4\}$ or $\{2,3,4\}$. This is also a contradiction.
\diamond If two subsets in S and three 2 -subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least three common colors in $\{1,2,3,4,5,6\}$, say 1,2 and 3 . So there exist at most two subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If one subset in S, one 3 -subset and three 2 -subsets in A are not the color sets of vertices in Y, then we can obtain a contradiction similar to the last paragraph.

$2.4 n=42$.

\diamond If six 2-subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains $\{1,2\}$. In order to distinguish each u_{i} with vertices in Y, we can obtain that each $C\left(u_{i}\right)$ is equal to $\{1,2\}$. This is a contradiction.
\diamond If one 3 -subset and five 2 -subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least three common colors in $\{1,2,3,4,5,6\}$, say 1,2 and 3. In order to distinguish each u_{i} with vertices in Y, we can obtain that each $C\left(u_{i}\right)$ is equal to $\{1,2,3\}$. This is a contradiction.
\diamond If one subset in S and five 2 -subsets in A are not the color sets of vertices in Y, then we can obtain a contradiction similar to the last paragraph.
\diamond If one subset in S, one 2 -subset and four 3 -subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least two common colors in $\{3,4,5,6\}$, say 3 and 4. In order to distinguish each u_{i} with vertices in Y, we can obtain that there exist at most one subset which may become the color set of vertex in X. This is a contradiction.
\diamond If one subset in S, one 3 -subset and four 2 -subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least three common colors in $\{1,2,3,4,5,6\}$, say 1,2 and 3 . So there exist at most two subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If one subset in S, two 3 -subsets and three 2 -subsets in A are not the color sets of vertices in Y, then we can obtain a contradiction similar to the last paragraph.
\diamond Two subsets in S, one 3 -subset and three 2 -subsets in A are not the color sets of vertices in Y. From the above discussion, we can know that each $C\left(u_{i}\right)$ contains at least three common colors in $\{1,2,3,4,5,6\}$, say 1,2 and 3 . So there exist at most three subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If three 3 -subsets and three 2 -subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least three common colors in $\{1,2,3,4,5,6\}$, say 1,2 and 3 . In order to distinguish each u_{i} with vertices in Y, we can obtain that each $C\left(u_{i}\right)$ is equal to $\{1,2,3\}$. This is a contradiction.
\diamond If two 3 -subsets and four 2 -subsets in A are not the color sets of vertices in Y, then we can obtain a contradiction similar to the last paragraph.
\diamond Three subsets in S and three 2-subsets in A are not the
color sets of vertices in Y. From the above discussion, there exist at most three subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If two 2 -subsets and four 3 -subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least two common colors in $\{3,4,5,6\}$, say 3 and 4 . In order to distinguish each u_{i} with vertices in Y, we can obtain that each $C\left(u_{i}\right)$ is either $\{1,3,4\}$ or $\{2,3,4\}$. This is a contradiction.
\diamond If two subsets in S and four 2-subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least three common colors in $\{1,2,3,4,5,6\}$, say 1,2 and 3. In order to distinguish each u_{i} with vertices in Y, there exist at most two subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If two subsets in S and four 3-subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least three common colors in $\{3,4,5,6\}$, say 3,4 and 5. So each $C\left(u_{i}\right)$ is either $\{1,3,4,5\}$ or $\{2,3,4,5\}$. This is a contradiction.
\diamond If one 2 -subset and one 3 -subset in A are the color sets of vertices in Y, and there exist at most three subsets in S are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least three common colors and there exist at most four subsets which may become the color sets of vertices in X. This is a contradiction.
$2.5 n=41$.
\diamond One subset in S and six 2-subsets in A are not the color sets of vertices in Y. From $\{1,2,3\}$ is a color set of vertex in Y, we can know that each $C\left(u_{i}\right)$ contains $\{1,2\}$. In order to distinguish each u_{i} with vertices in Y, there exist at most two subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If one 3-subset, say $\{1,2,3\}$, and six 2 -subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains $\{1,2\}$, and each $C\left(u_{i}\right)$ is either $\{1,2\}$ or $\{1,2,3\}$. This is a contradiction.
\diamond If two subsets in S, one 2 -subset and four 3 -subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least two common colors in $\{3,4,5,6\}$, say 3 and 4. So each $C\left(u_{i}\right)$ contains $\{1,3,4\}$ or $\{2,3,4\}$. In order to distinguish each u_{i} with vertices in Y, there exist at most three subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If one subset in S, two 2-subsets and four 3-subsets in A are not the color sets of vertices in Y, then we can obtain a contradiction similar to the last paragraph.
\diamond If three 2 -subsets and four 3 -subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least one common color in $\{3,4,5,6\}$, say 3 . So each $C\left(u_{i}\right)$ contains $\{1,3\}$ or $\{2,3\}$. In order to distinguish each u_{i} with vertices in Y, there exist at most three subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If three 2 -subsets and four subsets in S are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least three common colors in $\{1,2,3,4,5,6\}$, say 1,2 and 3 . So there exist at most four subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If three subsets in S and four 3 -subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at
least three common colors in $\{3,4,5,6\}$, say 3,4 and 5 . So each $C\left(u_{i}\right)$ contains $\{1,3,4,5\}$ or $\{2,3,4,5\}$. In order to distinguish each u_{i} with vertices in Y, there exist at most three subsets which may become the color sets of vertices in X. This is a contradiction.

$$
2.6 n=40
$$

\diamond If one subset in S, one 3 -subset and six 2 -subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains $\{1,2\}$ and there exist at most two subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If one 2-subset and four 3-subsets in A and three subsets in S are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least two common colors in $\{3,4,5,6\}$, say 3 and 4. So each $C\left(u_{i}\right)$ contains $\{1,3,4\}$ or $\{2,3,4\}$. In order to distinguish each u_{i} with vertices in Y, there exist at most three subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If two 2-subsets and four 3-subsets in A and two subsets in S are not the color sets of vertices in Y, then we can obtain a contradiction similar to the last paragraph.
\diamond If three 2 -subsets and one 3 -subset in A and four subsets in S are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least one common color in $\{3,4,5,6\}$, say 3 . So each $C\left(u_{i}\right)$ contains $\{1,2,3\}$. From $\{1,4,5\}$ and $\{2,4,5\}$ are the color sets of vertices in Y, we can know that each $C\left(u_{i}\right)$ contains $\{1,2,3,4\}$ or $\{1,2,3,5\}$. So there exist at most four subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If three 2 -subsets in A and five subsets in S are not the color sets of vertices in Y, then we can obtain a contradiction similar to the last paragraph.
\diamond If one subset in S, three 2-subset and four 3-subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least one common color in $\{3,4,5,6\}$, say 3 . So each $C\left(u_{i}\right)$ contains $\{1,3\}$ or $\{2,3\}$. But there exist at most four subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If four 2-subsets in S and four subsets in S are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least one common color in $\{3,4,5,6\}$, say 3 . So each $C\left(u_{i}\right)$ contains $\{1,2,3\}$ and there exist at most four subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If four 3-subsets in S and four subsets in S are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least three common colors in $\{3,4,5,6\}$, say 3,4 and 5 . So each $C\left(u_{i}\right)$ contains $\{1,3,4,5\}$ or $\{2,3,4,5\}$ and there exist at most four subsets which may become the color sets of vertices in X. This is a contradiction.
\diamond If four 2 -subsets and four 3 -subsets in A are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least one common color in $\{3,4,5,6\}$, say 3 . So each $C\left(u_{i}\right)$ contains $\{1,3\}$ or $\{2,3\}$. In order to distinguish each u_{i} with vertices in Y, we can obtain that each $C\left(u_{i}\right)$ is one of $\{1,3\},\{2,3\}$ and $\{1,2,3\}$. This is a contradiction.

Case $3 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive three different colors under f, say 1,2 and 3 . Then the color set $C\left(v_{j}\right)$ does not include color i when $\left|C\left(v_{j}\right)\right|=2, i=1,2,3$ and each $C\left(v_{j}\right)$ is not $\{1,2,3\}$. So the number of the subsets of $\{1,2,3,4,5,6\}$ which may become the color sets of the
vertices in Y is $\binom{6}{2}+\binom{6}{3}+\binom{6}{4}+\binom{6}{5}+\binom{6}{6}-13=44$. A contradiction may arise since 44 subsets can not distinguish n vertices in Y when $45 \leq n \leq 100$.
\diamond If one subset in $\{\{1,2,4\},\{1,2,5\},\{1,2,6\}\}$, one subset in $\{\{1,3,4\},\{1,3,5\},\{1,3,6\}\}$, one subset in $\{\{2,3,4\},\{2,3,5\},\{2,3,6\}\}$ and one subset in $\{\{4,5\},\{4,6\},\{5,6\}\}$ are the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least four common colors in $\{1,2,3,4,5,6\}$, say $1,2,3$ and 4 . So each $C\left(u_{i}\right)$ is one of $\{1,2,3,4\},\{1,2,3,4,5\},\{1,2,3,4,6\}$ and $\{1,2,3,4,5,6\}$. This is a contradiction.

When $n=41,40$.
\diamond If $\{4,5\},\{4,6\}$ and $\{5,6\}$ are not the color sets of vertices in Y, then we may assume that each $C\left(u_{i}\right)$ contains $\{1,2,3\}$. In order to distinguish each u_{i} with vertices in Y, there exist at most two subsets which may become the color sets of vertices in X. This is a contradiction.
$\diamond\{1,2,4\},\{1,2,5\}$ and $\{1,2,6\}$ are not the color sets of vertices in Y. From one subset in $\{\{1,3,4\},\{1,3,5\}$, $\{1,3,6\}\}$, one subset in $\{\{2,3,4\},\{2,3,5\},\{2,3,6\}\}$ and one subset in $\{\{4,5\},\{4,6\},\{5,6\}\}$ are the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least two common colors in $\{3,4,5,6\}$, say 3 and 4 . So each $C\left(u_{i}\right)$ is one of $\{1,3,4\},\{2,3,4\}$ and $\{1,2,3,4\}$. This is a contradiction.
\diamond If $\{1,3,4\},\{1,3,5\}$ and $\{1,3,6\}$ (or $\{2,3,4\},\{2,3,5\}$ and $\{2,3,6\}$) are not the color sets of vertices in Y, then we can obtain a contradiction similar to the last paragraph.

Case $4 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive four different colors under f, say $1,2,3$ and 4 . Then the color sets $C\left(v_{j}\right)$ do not include color i when $\left|C\left(v_{j}\right)\right|=2, i=1,2,3,4$ and each $C\left(v_{j}\right)$ is not $\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}$ or $\{1,2,3,4\}$. So the number of the subsets in $\{1,2,3,4,5,6\}$ which may become the color sets of the vertices in Y is $\binom{6}{2}+\binom{6}{3}+\binom{6}{4}+\binom{6}{5}+\binom{6}{6}-19=38$. A contradiction may arise since 38 subsets can not distinguish n vertices in Y when $40 \leq n \leq 100$.

Case $5 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive five different colors under f, say $1,2,3,4$ and 5 . Then each color set $C\left(v_{j}\right)$ is not a 2 -subset and the number of the subsets in $\{1,2,3,4,5,6\}$ which may become the color sets of the vertices in Y is $\binom{6-1}{2}+\binom{6-1}{3}+\binom{6-1}{4}+\binom{6-1}{5}=26$. A contradiction may arise since 26 subsets can not distinguish n vertices in Y when $40 \leq n \leq 100$.

Hence $K_{5, n}$ does not have a 6-VDET coloring and $\chi_{v t}^{e}\left(K_{5, n}\right) \geq 7$ when $40 \leq n \leq 100$.
Based on $K_{5,39}$ and its coloring f_{39}, we can give a 7-VDET coloring f_{n} of $K_{5, n}(40 \leq n \leq 100)$. In order to distinguish each u_{i} with vertices in Y, subsets $\{1,2,4,5,6,7\},\{1,2,3,4,6,7\},\{1,2,5,6,7\}$ and $\{1,2,3,5,6,7\}$ are not the color sets of any vertices in Y. So $f_{n}=f_{39}+(377777,542116,532116$, $522116,432116,542631, \cdots)$. We can by coloring other vertices v_{j} and its incident edges $(46 \leq j \leq 100)$ according to the method given in Table 1 (in which we let $k=7$). Finally we can obtain the 7 -VDET coloring $f_{n}(40 \leq n \leq 100)$ of $K_{5, n}$.

The proof of Theorem 3 is completed.
Theorem 4. If $101 \leq n \leq 220$, then $\chi_{v t}^{e}\left(K_{5, n}\right)=8$.
Proof. Assume that $K_{5, n}$ has a 7-VDET coloring f. There are five cases we need to consider.

Case $1 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive the same color under
f. We may suppose that $f\left(u_{i}\right)=1, i=1,2,3,4,5$, so none of the $C\left(v_{j}\right)$ include color 1 and the number of the subsets in $\{1,2,3,4,5,6,7\}$ which may become the color sets of the vertices in Y is $\binom{6}{2}+\binom{6}{3}+\binom{6}{4}+\binom{6}{5}+\binom{6}{6}=57$. A contradiction may arise since 57 subsets can not distinguish n vertices in Y when $101 \leq n \leq 220$.

Case $2 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive two different colors under f. We may assume that $f\left(u_{i}\right) \in\{1,2\}, i=1,2,3,4,5$. Then each color set $C\left(v_{j}\right)$ does not include color i when $\left|C\left(v_{j}\right)\right|=2, i=1,2$. So the number of the subsets of $\{1,2,3,4,5,6,7\}$ which may become the color sets of the vertices in Y is $\binom{7}{2}+\binom{7}{3}+\binom{7}{4}+\binom{7}{5}+\binom{7}{6}-11=108$. A contradiction may arise since 108 subsets can not distinguish n vertices in Y when $109 \leq n \leq 220$.

We denoted the set, which contains the 108 subsets except all 2 -subsets in $\{3,4,5,6,7\}$ and $\{\{1,2, i\}: i=$ $3,4,5,6,7\}$, as D.
\diamond There exist at least eight 2 -subsets in $\{3,4,5,6,7\}$ and one subset in $\{\{1,2, i\}: i=3,4,5,6,7\}$ are the color sets of vertices in Y. We can obtain that each $C\left(u_{i}\right)$ contains at least three common colors in $\{3,4,5,6,7\}$, say 3,4 and 5. So each $C\left(u_{i}\right)$ contains $\{1,2,3,4,5\}$ and each $C\left(u_{i}\right)$ is one of $\{1,2,3,4,5\},\{1,2,3,4,5,6\},\{1,2,3,4,5,7\}$ and $\{1,2,3,4,5,6,7\}$. This is a contradiction.
\diamond If one 2 -subset in $\{3,4,5,6,7\}$ and and one subset in $\{\{1,2, i\}: i=3,4,5,6,7\}$ are the color sets of vertices in Y, and there exist at most three subsets in D are not the color sets of vertices in Y, then we can obtain that each $C\left(u_{i}\right)$ contains at least one common color in $\{3,4,5,6,7\}$, say 3. So each $C\left(u_{i}\right)$ contains $\{1,2,3\}$ and there exist at most four subsets which may become the color sets of vertices in X. This is a contradiction.

Next, we only need to consider the following subcases:
When $n=103$ and all the subsets in $\{\{1,2, i\}: i=$ $3,4,5,6,7\}$ are not the color sets of vertices in Y, we can know that each $C\left(u_{i}\right)$ contains at least four common colors in $\{3,4,5,6,7\}$, say $3,4,5$ and 6 . In order to distinguish each u_{i} with vertices in Y, we can obtain that each $C\left(u_{i}\right)$ is either $\{1,3,4,5,6\}$ or $\{2,3,4,5,6\}$. This is a contradiction.

When $n=102$, we have the following two subcases.
\diamond If one 2 -subset in $\{3,4,5,6,7\}$ and all the subsets in $\{\{1,2, i\}: i=3,4,5,6,7\}$ are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least three common colors in $\{3,4,5,6,7\}$, say 3,4 and 5 . From the above discussion, we can obtain that each $C\left(u_{i}\right)$ is either $\{1,3,4,5\}$ or $\{2,3,4,5\}$. This is a contradiction.
\diamond All subsets in $\{\{1,2, i\}: i=3,4,5,6,7\}$ and one subset in D are not the color sets of vertices in Y. From the above discussion, there exist at most three subsets which may become the color sets of vertices in X. This is a contradiction.

When $n=101$, we have the following three subcases.
\diamond One subset in D, one 2 -subset in $\{3,4,5,6,7\}$ and five subsets in $\{\{1,2, i\}: i=3,4,5,6,7\}$ are not the color sets of vertices in Y. Then each $C\left(u_{i}\right)$ contains at least three common colors in $\{3,4,5,6,7\}$, say 3,4 and 5 . From the above discussion, we can obtain that each $C\left(u_{i}\right)$ is either $\{1,3,4,5\}$ or $\{2,3,4,5\}$. This is a contradiction.
\diamond If two 2 -subsets in $\{3,4,5,6,7\}$ and five subsets in $\{\{1,2, i\}: i=3,4,5,6,7\}$ are not the color sets of vertices in Y, then we can obtain a contradiction similar to last
paragraph.
\diamond If three 2 -subsets in $\{3,4,5,6,7\}$ and four subsets in D are not the color sets of vertices in Y, then each $C\left(u_{i}\right)$ contains at least two common colors in $\{3,4,5,6,7\}$, say 3 and 4. So each $C\left(u_{i}\right)$ contains $\{1,3,4\}$ or $\{2,3,4\}$. In order to distinguish each u_{i} with vertices in Y, there exist at most four subsets which may become the color sets of vertices in X. This is a contradiction.
Case $3 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive three different colors under f, say 1,2 and 3 . Then each color set $C\left(v_{j}\right)$ does not include color i when $\left|C\left(v_{j}\right)\right|=2, i=1,2,3$ and each $C\left(v_{j}\right)$ is not $\{1,2,3\}$. So the number of the subsets of $\{1,2,3,4,5,6,7\}$ which may become the color sets of the vertices in Y is $\binom{7}{2}+\binom{7}{3}+\binom{7}{4}+\binom{7}{5}+\binom{7}{6}-16=103$. A contradiction may arise since 103 subsets can not distinguish n vertices in Y when $104 \leq n \leq 220$.
Since one subset in $\{\{1,2, i\}: i=3,4,5,6,7\}$, one subset in $\{\{1,3, i\}: i=4,5,6,7\}$ and one subset in $\{\{2,3, i\}$: $i=4,5,6,7\}$ are the color sets of vertices in Y, we can know that $\{1,2,3\} \subset C\left(u_{i}\right), i=1,2,3,4,5$. But there exist at most two subsets which may become the color sets of vertices in X. This is a contradiction.

Case $4 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive four different colors under f, say $1,2,3$ and 4 . Then each color set $C\left(v_{j}\right)$ does not include color i when $\left|C\left(v_{j}\right)\right|=2, i=$ $1,2,3,4$ and each $C\left(v_{j}\right)$ is not $\{1,2,3\},\{1,2,4\},\{1,3,4\}$, $\{2,3,4\}$ or $\{1,2,3,4\}$. So the number of the subsets in $\{1,2,3,4,5,6,7\}$ which may become the color sets of the vertices in Y is $\binom{7}{2}+\binom{7}{3}+\binom{7}{4}+\binom{7}{5}+\binom{7}{6}-23=96$. A contradiction may arise since 96 subsets can not distinguish n vertices in Y when $101 \leq n \leq 220$.
Case $5 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive five different colors under f, say $1,2,3,4$ and 5 . Then the color set $C\left(v_{j}\right)$ does not include color i when $\left|C\left(v_{j}\right)\right|=2, i=$ $1,2,3,4,5$ and each $C\left(v_{j}\right)$ is not 3 -subset, 4 -subset and 5 -subset in $\{1,2,3,4,5\}$. So the number of the subsets in $\{1,2,3,4,5,6,7\}$ which may become the color sets of the vertices in Y is $\binom{7}{2}+\binom{7}{3}+\binom{7}{4}+\binom{7}{5}+\binom{7}{6}-36=83$. A contradiction may arise since 83 subsets can not distinguish n vertices in Y when $101 \leq n \leq 220$.

Hence $K_{5, n}$ does not have a 7-VDET coloring and $\chi_{v t}^{e}\left(K_{5, n}\right) \geq 8$ when $101 \leq n \leq 220$.
Based on $K_{5,100}$ and its coloring f_{100}, we can give a 8VDET coloring f_{n} of $K_{5, n}(101 \leq n \leq 220)$. In order to distinguish each u_{i} with vertices in $Y,\{1,2,5,6,7,8\}$ is not the color set of any vertex in Y. So $f_{n}=f_{100}+$ $(388888,542671,532671,562711,432671, \cdots)$. We can by coloring other vertices v_{j} and its incident edges $(106 \leq j \leq$ 220) according to the method given in Table 1 (in which we let $k=8$). Finally we can obtain the 8 -VDET coloring f_{n} $(101 \leq n \leq 220)$ of $K_{5, n}$.

The proof of Theorem 4 is completed.
Theorem 5. If $221 \leq n \leq 437$, then $\chi_{v t}^{e}\left(K_{5, n}\right)=9$.
Proof. Assume that $K_{5, n}$ has a 8-VDET coloring f. There are five cases we need to consider.

Case $1 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive the same color under f. We may suppose that $f\left(u_{i}\right)=1, i=1,2,3,4,5$, so none of the $C\left(v_{j}\right)$ include color 1 and the number of the subsets in $\{1,2,3,4,5,6,7,8\}$ which may become the color sets of the vertices in Y is $\binom{7}{2}+\binom{7}{3}+\binom{7}{4}+\binom{7}{5}+\binom{7}{6}=119$. A contradiction may arise since 119 subsets can not distinguish
n vertices in Y when $221 \leq n \leq 437$.
Case $2 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive two different colors under f. We may assume that $f\left(u_{i}\right) \in\{1,2\}, i=1,2,3,4,5$. Then the color set $C\left(v_{j}\right)$ does not include color i when $\left|C\left(v_{j}\right)\right|=2, i=1,2$. So the number of the subsets of $\{1,2,3,4,5,6,7,8\}$ which may become the color sets of the vertices in Y is $\binom{8}{2}+\binom{8}{3}+\binom{8}{4}+\binom{8}{5}+\binom{8}{6}-13=225$. A contradiction may arise since 225 subsets can not distinguish n vertices in Y when $226 \leq n \leq 437$.
Since there exist at least 102 -subsets in $\{3,4,5,6,7,8\}$ and one subset in $\{\{1,2, i\}: i=3,4,5,6,7,8\}$ are the color sets of vertices in Y, we can know that each $C\left(u_{i}\right)$ contains at least three common colors in $\{3,4,5,6,7,8\}$, say 3,4 and 5. So each $C\left(u_{i}\right)$ contains $\{1,2,3,4,5\}$. When $n=$ $225,224,223,222,221$, we can obtain a contradiction since there exist at most four subsets which may become the color sets of vertices in X.

Case $3 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive three different colors under f, say 1,2 and 3 . Then each color set $C\left(v_{j}\right)$ does not include color i when $\left|C\left(v_{j}\right)\right|=2, i=1,2,3$ and each $C\left(v_{j}\right)$ is not $\{1,2,3\}$. So the number of the subsets of $\{1,2,3,4,5,6,7,8\}$ which may become the color sets of the vertices in Y is $\binom{8}{2}+\binom{8}{3}+\binom{8}{4}+\binom{8}{5}+\binom{8}{6}-19=219$. A contradiction may arise since 219 subsets can not distinguish n vertices in Y when $221 \leq n \leq 437$.
Case $4 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive four different colors under f, say $1,2,3$ and 4 . Then each color set $C\left(v_{j}\right)$ does not include color i when $\left|C\left(v_{j}\right)\right|=2, i=$ $1,2,3,4$ and each $C\left(v_{j}\right)$ is not $\{1,2,3\},\{1,2,4\},\{1,3,4\}$, $\{2,3,4\}$ or $\{1,2,3,4\}$. So the number of the subsets in $\{1,2,3,4,5,6,7,8\}$ which may become the color sets of the vertices in Y is $\binom{8}{2}+\binom{8}{3}+\binom{8}{4}+\binom{8}{5}+\binom{8}{6}-27=211$. A contradiction may arise since 211 subsets can not distinguish n vertices in Y when $221 \leq n \leq 437$.
Case $5 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive five different colors under f, say $1,2,3,4$ and 5 . Then the color set $C\left(v_{j}\right)$ does not include color i when $\left|C\left(v_{j}\right)\right|=2, i=$ $1,2,3,4,5$ and each $C\left(v_{j}\right)$ is not 3 -subset, 4 -subset or 5subset in $\{1,2,3,4,5\}$. So the number of the subsets in $\{1,2,3,4,5,6,7,8\}$ which may become the color sets of the vertices in Y is $\binom{8}{2}+\binom{8}{3}+\binom{8}{4}+\binom{8}{5}+\binom{8}{6}-41=197$. A contradiction may arise since 197 subsets can not distinguish n vertices in Y when $221 \leq n \leq 437$.
Hence $K_{5, n}$ does not have a 8-VDET coloring and $\chi_{v t}^{e}\left(K_{5, n}\right) \geq 9$ when $221 \leq n \leq 437$.

Based on $K_{5,220}$ and its coloring f_{220}, we can give a 9VDET coloring f_{n} of $K_{5, n}(221 \leq n \leq 437) . f_{n}=f_{220}+$ $(399999,526781, \cdots)$. We can by coloring other vertices v_{j} and its incident edges $(223 \leq j \leq 437)$ according to the method given in Table 1 (in which we let $k=9$). Finally we can obtain the 9 -VDET coloring $f_{n}(221 \leq n \leq 437)$ of $K_{5, n}$.

The proof of Theorem 5 is completed.
Theorem 6. If $\binom{k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-1}{5}+\binom{k-1}{6}-$ $2(k-1) \leq n \leq\binom{ k}{2}+\binom{k}{3}+\binom{k}{4}+\binom{k}{5}+\binom{k}{6}-2 k-1, k \geq 10$, then $\chi_{v t}^{e}\left(K_{4, n}\right)=k$.

Proof . Firstly, we prove that $K_{5, n}$ does not have a ($k-$ $1)-$ VDET coloring. Assume that $K_{5, n}$ has a $(k-1)-$ VDET coloring f. There are five cases to consider.

Case $1 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive the same color under f. We may suppose that $f\left(u_{i}\right)=1, i=1,2,3,4,5$, so none
of the $C\left(v_{j}\right)$ include color 1 and the number of the subsets in $\{1,2, \cdots, k-1\}$ which may become the color sets of the vertices in Y is $\binom{k-2}{2}+\binom{k-2}{3}+\binom{k-2}{4}+\binom{k-2}{5}+\binom{k-2}{6}<$ vertices in Y is
$\binom{k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-1}{5}+\binom{k-1}{6}-2(k-1) \leq n$, since the $\binom{k-2}{2}+\binom{k-2}{3}+\binom{k-2}{4}+\binom{k-2}{5}+\binom{k-2}{6}$ subsets can not distinguish n vertices of degree 5 . This is a contradiction.

Case $2 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive two different colors under f. We may assume that $f\left(u_{i}\right) \in\{1,2\}, i=1,2,3,4,5$. Each $C\left(v_{j}\right)$ does not include color i when $\left|C\left(v_{j}\right)\right|=2, i=$ 1,2 . The total number of the subsets of $\{1,2,3, \cdots, k-1\}$ which may become the color sets of the vertices in Y is $\binom{k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-1}{5}+\binom{k-1}{6}-2 k+5$. When $n \geq\binom{ k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-1}{5}-2 k+6$, we can obtain a contradiction since $\binom{k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-1}{5}+\binom{k-1}{6}-$ $2 k+5$ sets can not distinguish n vertices in Y.

Since there exist at least $\sum_{i=1}^{k-4} i-5$ 2-subsets in $\{3,4, \cdots, k-1\}$ and one subset in $\{\{1,2, i\}: i=$ $3,4, \cdots, k-1\}$ are the color sets of vertices in Y, we can know that each $C\left(u_{i}\right)$ contains at least $k-6$ common colors in $\{3,4, \cdots, k-1\}$, say $3,4, \cdots, k-5$ and $k-4$. So $\{1,2,3, \cdots, k-4\} \subset C\left(u_{i}\right), i=1,2,3,4,5$. In order to distinguish each u_{i} with vertices in Y, there exist at most three subsets which may become the color sets of vertices in X. This is a contradiction.

Case $3 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive three different colors under f, say 1,2 and 3 . Then the color set $C\left(v_{j}\right)$ does not include color i when $\left|C\left(v_{j}\right)\right|=2, i=1,2,3$ and each $C\left(v_{j}\right)$ is not $\{1,2,3\}$. The total number of the subsets of $\{1,2,3, \cdots, k-1\}$ which may become the color sets of the vertices in Y is $\binom{k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-1}{5}+\binom{k-1}{6}-3 k+$ 8. Note that $\binom{k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-5}{5}+\binom{k-1}{6}-3 k+$ $8<\binom{k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-1}{5}+\binom{k-1}{6}-2(k-1) \leq$ n when $k \geq 10$. So we can obtain a contradiction since $\binom{k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-1}{5}+\binom{k-1}{6}-3 k+8$ sets can not distinguish n vertices of degree 5 .

Case $4 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive four different colors under f, say $1,2,3$ and 4 . Then each color set $C\left(v_{j}\right)$ does not include color i when $\left|C\left(v_{j}\right)\right|=2, i=1,2,3,4$ and each $C\left(v_{j}\right)$ is not $\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}$ or $\{1,2,3,4\}$. So the number of the subsets in $\{1,2, \cdots, k-$ 1\} which may become the color sets of the vertices in Y is $\binom{k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-1}{5}+\binom{k-1}{6}-4 k+9$. As $\binom{k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-1}{5}+\binom{k-1}{6}-4 k+9<\binom{k-1}{2}+$ $\binom{k-1}{3}+\binom{k_{k}^{3}-1}{k}+\binom{4-1}{5}+\binom{5-1}{6}-2(k-1) \leq n$. Thus the $\binom{k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-1}{5}+\binom{k-1}{6}-4 k+9$ sets can not distinguish n vertices of degree 5 . This is a contradiction.
Case $5 u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} receive five different colors under f, say $1,2,3,4$ and 5 . Then the color set $C\left(v_{j}\right)$ does not include color i when $\left|C\left(v_{j}\right)\right|=2, i=1,2,3,4,5$ and each $C\left(v_{j}\right)$ is not 3 -subset, 4 -subset or 5 -subset in $\{1,2,3,4,5\}$. So the number of the subsets in $\{1,2, \cdots, k-$ 1\} which may become the color sets of the vertices in Y is is $\binom{k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-1}{5}+\binom{k-1}{6}-5 k+4$. As $\binom{k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-1}{5}+\binom{k-1}{6}-5 k+4<$ $\binom{k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-1}{5}+\binom{k-1}{6}-2(k-1) \leq n$. Thus the $\binom{k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-1}{5}+\binom{k-1}{6}-5 k+4$ sets can not distinguish n vertices of degree 5 . This is a contradiction.
Next, we will give a k - VDET coloring of $K_{5, n}$ recursively.

In the following, we let $s=\binom{k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+$ $\binom{k-1}{5}+\binom{k-1}{6}-2(k-1), t=\binom{k}{2}+\binom{k}{3}+\binom{k}{4}+\binom{k}{5}+\binom{k}{6}-$ $2 k-1$. Note that s and t depend on k.
When $k \geq 10$, suppose $(k-1)-$ VDET coloring f_{s-1} of $K_{5, s-1}$ has been constructed. Based on $K_{5, s-1}$ and its $(k-1)-$ VDET coloring f_{s-1}, we will give $K_{5, t}$ and its $k-$ VDET coloring f_{t} by coloring each vertex v_{j} and its incident edges $(s \leq j \leq t)$. We arrange all 2 -subsets, 3 -subsets, 4 subsets, 5 -subsets and 6 -subsets of $\{1,2, \cdots, k\}$ which contain k, except for $\{1, k\}$ and $\{2, k\}$, into a sequence P_{k}. Then P_{k} has $\binom{k-1}{1}+\binom{k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-1}{5}-2$ terms. Let the terms in P_{k} be corresponded to vertices $v_{s}, v_{s+1}, \cdots, v_{t}$. Then based on f_{s-1} using colors $1,2, \cdots, k-1$, we can obtain $k-$ VDET coloring f_{t} by coloring vertex v_{j} and its incident edges $(s \leq j \leq t)$ according to the method given in Table 1. Of course, we can obtain $K_{5, n}$ and its $k-$ VDET coloring f_{n} when $s \leq n<t$.
Thus $\chi_{v t}^{e}\left(K_{5, n}\right)=k$ when $\binom{k-1}{2}+\binom{k-1}{3}+\binom{k-1}{4}+\binom{k-1}{5}+$ $\binom{k-1}{6}-2(k-1) \leq n \leq\binom{ k}{2}+\binom{k}{3}+\binom{k}{4}+\binom{k}{5}+\binom{k}{6}-2 k-1, k \geq$ 10.

The proof of Theorem 6 is completed.

IV. Conclusion

By simple computation, we have
$\eta\left(K_{5,5}\right)=\eta\left(K_{5,6}\right)=4$;
$\eta\left(K_{5, n}\right)=l, \quad 2^{l-1}-l-4 \leq n \leq 2^{l}-(l+1)-5, l \geq 5$.
From the six Theorems in Section 2, we know that

1. If $n=5,6$, or $11 \leq n \leq 21$, or $40 \leq n \leq 52$, or $101 \leq n \leq 115$, or $221 \leq n \leq 242$, or $\binom{l-1}{2}+\binom{l-1}{3}+$ $\binom{l-1}{4}+\binom{l-1}{5}+\binom{l-1}{6}-2(l-1) \leq n \leq 2^{l-1}-l-5, l \geq 10$, then $\chi_{v t}^{e}\left(K_{5, n}\right)=\eta\left(K_{5, n}\right)+1$.
2. If $7 \leq n \leq 10$, or $22 \leq n \leq 39$, or $53 \leq n \leq 100$, or $116 \leq n \leq 220$, or $2^{l-1}-\bar{l}-4 \leq n \leq\binom{ l}{2}+\binom{l}{3}+\binom{l}{4}+$ $\binom{l}{5}+\binom{l}{6}-2 l-1, l \geq 10$, then $\chi_{v t}^{e}\left(K_{5, n}\right)=\eta\left(K_{5, n}\right)$.
Thus Conjecture 1 is right for $K_{5, n}$.

REFERENCES

[1] J A Bondy, U S R Murty. Graph Theory[M]. London: Springer, 2008.
[2] Xiang'en Chen. Asymptotic behaviour of the vertex-distinguishing total chromatic numbers of n-cubes[J]. Journal of Northwest Normal University Natural Science Edition, 2005, 41(5): 1-3. (In Chinese)
[3] Xiang'en Chen, Yuping Gao, Bing Yao. Relations of vertex distinguishing total chromatic numbers between a subgraph and its supergraph. Information Sciences, 2014, 288:246-253
[4] Xiang'en Chen, Yuping Gao, Bing Yao. Not necessarily proper total colourings which are adjacent vertex distinguishing. International Journal of Computer Mathematics, 2013,90(11):2298-2307.
[5] Xiang'en Chen, Yue Zu, Zhongfu Zhang. Vertex-Distinguishing E-Total Colorings of Graphs[J]. Arab J Sci Eng, 2011, 36: 1485-1500.
[6] Xiang'en Chen, Yue Zu. Vertex-Distinguishing E-Total Coloring of the graphs $m C_{3}$ and $m C_{4}[\mathrm{~J}]$. Journal of Mathematical Research \& Exposition, 2011, 31: 45-58.
[7] Fang Yang, Xiang'en Chen, Chunyan Ma. On the vertex-distinguishing proper total colorings of complete p-partite graphs with equipotent parts. Ars Combinatoria, 2017, 134: 233-249.
[8] Zhongfu Zhang, Pengxiang Qiu, Jingwen Li, et al. Vertex distinguishing total colorings of graphs[J]. Ars Combinatoria, 2008, 87: 33-45.

[^0]: Manuscript received February 20, 2022; revised August 24, 2022.
 This work was supported by the National Natural Science Foundation of China (11761064).
 Xiang'en CHEN is a professor of College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, P R China (chenxe@nwnu.edu.cn, xiangenchen@163.com).

 Shiling LI is a teacher of School of intelligent engineering and intelligent manufacturing, Hunan University of Tecnology and Business, Changsha 410205, P R China (lishilingjjwai@163.com).

