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Abstract—Given graphs G1 and G2, let E(G1) =
{e1, e2, . . . , em1} be the edge set of G1. A new join of two
graph G1 and G2, denoted by G1 �G2, can be obtained from
one copy of G1 and m1 copied of G2 by adding a new vertex
corresponding to each edge of G1, letting the resulting new
vertex set be U = {u1, u2, . . . , um1}, and joinning ui with
each vertex of i-th copy of G2 and with endpoints of ei for
i = 1, 2, . . .m1. In this paper, the explicit closed formulas of
resistance distance and Kirchhoff index of G1�G2 whenever G1

is an r1-regular graph and G2 is arbitrary graphs are obtianed.

Index Terms—Resistance distance; Kirchhoff index; a new join
of two graphs; Generalized inverse

I. INTRODUCTION

IN 1993 Klein and Randić [1] first came up with the
concept of resistance distance on graphs. The resistance

distance ruv between nodes u and v on the network is defined
as on every edge of a network one puts a unit resistor and the
effective resistance between nodes u and v on the network.
A well-known resistance distance-based parameter, called the
Kirchhoff index, was given by Kf(G) =

∑
{u,v}⊆V (G) ruv .

The resistance distance and Kirchhoff index have attracted
extensive attention due to their wide applications in physics,
chemistry and others. Up till now, many results on the
resistance distance and the Kirchhoff index are obtained. See
([2]-[10]) and the references therein to know more.

Let G = (V (G), E(G)) be a connected graph
with |V (G)| = n and |E(G)| = m. Let DG =
diag(d1, d2, · · · d|V (G)|) be the diagonal matrix with all
vertex degrees of G as its diagonal entries, where di be
the degree of vertex i in G. For a graph G, the matrix
LG = DG −AG is called the Laplacian matrix of G, where
AG denote the adjacency matrix of G. We use µ1(G) ≥
u2(G) ≥ · · · ≥ µn(G) = 0 to denote the eigenvalues of LG.

The hot topic about resistance distance and Kirchhoff
index is computation of two indices. However, it is difficult
to compute the resistance distance and Kirchhoff index
because they are highly sensitive to small perturbations
on the network. Thus this has prompted researchers try to
find some techniques to compute the resistance distance
and Kirchhoff index. In [11], a new join of two graphs
of G1 � G2 is investigated. The adjacency spectrum, the
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Laplacian spectrum and the signless Laplacian spectrum of
G1 � G2 are determined. This paper we will considers the
explicit formulas of resistance distance and Kirchhoff index
of G1 �G2.

Definition 1 [11] Given graphs G1 and G2 with n1, n2
vertices, respectively. let E(G1) = {e1, e2, . . . , em} be the
edge set of G1, the graph G1 � G2 can be obtained from
one copy of G1 and m1 copies of G2 as follows. Firstly,
we add a new vertex corresponding to each edge of G1, the
resulting new vertex set U = {u1, u2, . . . , um}. Then join ui
with each vertex of i-th copy of G2 and with the endpoints
of ei, for i = 1, 2, . . . ,m1.

Note that the graph G1 � G2 in Definition 1 contains
n1+m1(n2+1) vertices. As instance, C4�P3 is as illustrated
in Fig.1.

Up until now, many studies have been focused on com-
posite graph of resistance distance and Kirchhoff index, such
as subdivision-vertex join and subdivision-edge join [12], R-
vertex join and R-edge join [13]. corona and neighborhood
corona [14], circulant graph [15], abelian Cayley graph [16],
noncommutative groups [17]. Motivated by the results, in
this paper, we explore the generalized inverse of G1�G2 in
terms of the generalized inverse of the factor graphs. Thus
the resistance distance and Kirchhoff index of G1 �G2 can
be derived from the resistance distance and Kirchhoff index
of the factor graphs.

II. PRELIMINARIES

The {1}-inverse of M is a matrix X such that MXM = M .
If M is singular, then it has infinite {1}- inverse [7]. For a
square matrix M , the group inverse of M , denoted by M#,
is the unique matrix X such that MXM = M , XMX = X
and MX = XM . It is known that M# exists if and only if
rank(M) = rank(M2) ( [9], [7],). If M is real symmetric,
then M# exists and M# is a symmetric {1}- inverse of M .
Actually, M# is equal to the Moore-Penrose inverse of M
since M is symmetric [9].

It is well known that resistance distances in a connected
graph G can be obtained from any {1}- inverse of G ( [2]).
We use M (1) to denote any {1}- inverse of a matrix M , and
let (M)uv denote the (u, v)- entry of M .

Lemma 2.1 ( [9]) Let G be a connected graph. Then

ruv(G) = (L
(1)
G )uu + (L

(1)
G )vv − (L

(1)
G )uv − (L

(1)
G )vu

= (L#
G)uu + (L#

G)vv − 2(L#
G)uv.

Lemma 2.2 ( [12]) For any graph, we have L#
G1 = 0.

Let 1n denote the column vector of dimension n with all the
entries equal one. We will often use 1 to denote an all-ones
column vector if the dimension can be read from the context.
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Fig.1 Graph C4 � P3

Lemma 2.3 ( [18]) Let

M =

(
A B
C D

)

be a nonsingular matrix. If A and D are nonsingular, then

M−1 =

(
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)

=

(
(A−BD−1C)−1 −A−1BS−1
−S−1CA−1 S−1

)
,

where S = D − CA−1B.

Lemma 2.4 Let G be a connected graph. For any i, j ∈
V (G),

rij(G) = d−1i

1 +
∑

k∈T (i)

rkj(G)− d−1i

∑
k,l∈T (i)

rkl(G)

 .

For a square matrix M , let tr(M) denote the trace of M .

Lemma 2.5 ( [10]) Let G be a connected graph on n
vertices. Then

Kf(G) = ntr(L
(1)
G )− 1TL

(1)
G 1 = ntr(L#

G).

Lemma 2.6 ( [13]) Let G be a graph of order n. For any
a, b > 0 satisfying b 6= a, we have

(LG + aIn −
a

b
jn×n)−1 = (LG + aIn)−1 +

1

a(b− n)
jn×n.

Lemma 2.7( [19]) Let

L =

(
A B
BT D

)
be the Laplacian matrix of a connected graph. If D is
nonsingular, then

X =

(
H# −H#BD−1

−D−1BTH# D−1 +D−1BTH#BD−1

)
is a symmetric {1}-inverse of L, where H = A−BD−1BT .

III. THE RESISTANCE DISTANCE OF G1 �G2

In this section, we focus on determing the resistance distance
of graph G1 �G2 whenever G1 is an r1-regular graph and
G2 is an arbitrary graph.

Theorem 3.1 Let G1 be an r1-regular graph with n1 vertices
and m1 edges, G2 be an arbitrary graph with n2 vertices and
m2 edges. Let Li, Ri be the Laplacian matrix and incidence
matrix of Gi, for i = 1, 2, respectively. Then G1 �G2 have
the resistance distance as follows:

(i) For any i, j ∈ V (G1), we have

rij(G1 �G2) =
2

3
(L#

1 )ii +
2

3
(L#

1 )jj −
4

3
(L#

1 )ij

=
2

3
rij(G1).

(ii) For any i, j ∈ V (G2), we have
rij(G1 �G2)

= ((L2 + En2
− 1

n2 + 2
jn2×n2

)−1 ⊗ Em1
)ii +

((L2 + En2 −
1

n2 + 2
jn2×n2)−1 ⊗ Em1)jj

−2((L2 + En2
− 1

n2 + 2
jn2×n2

)−1 ⊗ Em1
)ij .

(iii) For any i ∈ V (G1), j ∈ V (G2), we have
rij(G1 �G2)

=
2

3
(L#

1 )ii + ((L2 + En2 −
1

n2 + 2
jn2×n2)−1

⊗Em1
)ii −

2

3
(L#

1 )ij .

(iv) For any i ∈ I(G1), j ∈ V (G1) ∪ V (G2), Let uivi ∈
E(G1) denote the edge corresponding to i, we have
rij(G1 �G2)

=
1

2
+

1

2
ruij(G1 �G2) +

1

2
rvij(G1 �G2)

−1

4
ruivi

(G1 �G2).

(v) For any i, j ∈ I(G1), Let uivi, ujvj ∈ E(G1) denote the
edges corresponding to i, j, we have

rij(G1 �G2)

= 1 +
1

4

(
ruiuj

(G1 �G2) + ruivj
(G1 �G2)

+rviuj
(G1 �G2) + rvivj

(G1 �G2)

−ruivi
(G1 �G2)− rujvj

(G1 �G2)
)
.

Proof With a suitable labeling for vertices of G1 �G2, the
Laplacian matrix of G1 �G2 can be written as follows:

L(G1 �G2) =(
r1En1

+ L1 −R1 −1Tm1
⊗ 0n1×n2

−RT
1 (2 + n2)Em1

−1Tn2
⊗ Em1

−1m1
⊗ 0n2×n1

−1n2
⊗ Em1

(En2
+ L2) ⊗ Em1

)
.

Let A = r1En1
+ L1, B =

(
−R1 −1Tm1

⊗ 0n1×n2

)
,

BT =

(
−RT

1

−1m1
⊗ 0n2×n1

)
and

D =

(
(2 + n2)Em1

−1Tn2
⊗ Em1

−1n2 ⊗ Em1 (En2 + L2)⊗ Em1

)
.
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First we compute the D−1. By Lemma 2.3, we have

A1 −B1D
−1
1 C1

= (2 + n2)Em1
− (−1Tn2

⊗ Em1
)

((L2 + En2
)−1 ⊗ Em1

))(−1n2
⊗ Em1

)
= (2 + n2)Em1 − n2Em1 = 2Em1 ,

so (A1 −B1D
−1
1 C1)−1 = 1

2Em1
.

By Lemma 2.3, we have

S = (D1 − C1A
−1
1 B1)

= (L2 + En2)⊗ Em1 − (−1n2 ⊗ Em1)
1

2+n2
(−1Tn2

⊗ Em1
)

= (L2 + En2)⊗ Em1 − 1
n2+2jn2 ⊗ Em1

= (L2 + En2
− 1

n2+2jn2×n2
)⊗ Em1

,

so S−1 = (L2 + En2
− 1

n2+2jn2×n2
)−1 ⊗ Em1

.

By Lemma 2.3, we have

−A−11 B1S
−1

= − 1
n2+2Em1(−1Tn2

⊗ Em1)

(L2 + En2
− 1

n2+2jn2×n2
)−1 ⊗ Em1

= 1
21Tn2

⊗ Em1
.

Similarly, −S−1C1A
−1
1 = 1

21n2 ⊗ Em1 .

So D−1

=
(

1
2
Em1

1
2
1Tn2

⊗ Em1
1
2
1n2 ⊗ Em1 (L2 + En2 − 1

n2+2
jn2×n2

)−1 ⊗ Em1

)
.

Next we begin with the computation of {1}-inverse of
LG1�G2

.

By Lemma 2.7, we have

H = r1En1 + L1 −
(
−R1 1Tn2

⊗ 0n1×n2

)(
1
2
Em1

1
2
1Tn2

⊗ Em1
1
2
1n2

⊗ Em1
(L2 + En2

− 1
n2+2

jn2
)−1 ⊗ Em1

)(
−RT

1

−1n2
⊗ 0n2×n1

)
= r1En1

+ L1 −
(
− 1

2R1 − 1
2R1(1Tn2

⊗ E)
)(

−RT
1

−1n2
⊗ 0n2×n1

)
= r1E + (r1En1 −A(G1))− 1

2 (r1E +A(G1))
= 3

2L1,

so H# = 2
3L

#
1 .

According to Lemma 2.7, we calculate −H#BD−1 and
−D−1BTH#.
−H#BD−1

= − 2
3L

#
1

(
−R1 1Tm1

⊗ 0n1×n2

)(
1
2
Em1

1
2
1Tn2

⊗ Em1
1
2
1n2

⊗ Em1
(L2 + En2

− 1
n2+2

jn2
)−1 ⊗ Em1

)
= − 2

3L
#
1

(
− 1

2R1 − 1
2R1(1Tn2

⊗ Em1
)
)

=
(

1
3L

#
1 R1

1
3L

#
1 R1(1Tn2

⊗ Em1)
)

and
−D−1BTH#

= −2
(

1
2
Em1

− 1
2
1Tn2

⊗ Em1

− 1
2
1n2

⊗ Em1
(L2 + En2

− 1
n2+2

jn2
)−1 ⊗ E

)(
−RT

1
−1m1 ⊗ 0n2×n1

)
L#
1

= −
(

1
3R

T
1 L

#
1

1
3 (1n2

⊗ Em1
)RT

1 L
#
1

)
.

We are ready to compute the D−1BTH#BD−1. Let M =
1n2 ⊗ Em1 , then D−1BTH#BD−1

=
(

1
2
Em1

1
2
1Tn2

⊗ Em1
1
2
1n2

⊗ Em1
(L2 + En2

− 1
n2+2

jn2×n2
)−1 ⊗ Em1

)
L#
G1

( −R1 1Tm1
⊗ 0m1×n2 )(

1
2
Em1

1
2
1Tn2

⊗ Em1
1
2
1n2

⊗ Em1
(L2 + En2

− 1
n2+2

jn2×n2
)−1 ⊗ Em1

)
=

(
1
6
RT

1 L
#
1 R1

1
6
RT

1 L
#
1 R1MT

1
6
MRT

1 L
#
1 R1

1
6
MRT

1 L
#
1 R1MT

)
.

Let P = (L2 +En2
− 1

n2+2jn2×n2
)−1 ⊗Em1

,Q = 1
6 (1n2

⊗
Em1)RT

1 L
#
G1
R1(1Tn2

⊗ Em1), T = 1
6R

T
1 L

#
1 R1(1Tn2

⊗ Em1
)

and M = 1
3L

#
1 R1(1Tn2

⊗ Em1
).

Based on Lemma 2.3 and 2.7, the following matrix
N =(

2
3
L
#
1

1
3
L
#
1 R1 M

1
3
RT

1 L
#
1

1
2
Em1

+ 1
6
RT

1 L
#
1 R1

1
2
1Tn2

⊗ Em1
+ T

MT 1
2
1n2

⊗ Em1
+ TT P + Q

)
(1)

is a symmetric {1}-inverse of LG1�G2
.

For any i, j ∈ V (G1), by Lemma 2.1 and the Equation (1),
we have

rij(G1 �G2) =
2

3
(L#

1 )ii +
2

3
(L#

1 )jj −
4

3
(L#

1 )ij

=
2

3
rij(G1),

as stated in (i).

For any i, j ∈ V (G2), by Lemma 2.1 and the Equation (1),
we have

rij(G1 �G2)

= ((L2 + En2 −
1

n2 + 2
jn2×n2)−1 ⊗ Em1)ii +

((L2 + En2
− 1

n2 + 2
jn2×n2

)−1 ⊗ Em1
)jj

−2((L2 + En2
− 1

n2 + 2
jn2×n2

)−1 ⊗ Em1
)ij ,

as stated in (ii).

For any i ∈ V (G1), j ∈ V (G2), by Lemma 2.1 and the
Equation (1), we have

rij(G1 �G2)

=
2

3
(L#

1 )ii + ((L2 + En2
− 1

n2 + 2
jn2×n2

)−1

⊗Em1
)ii −

2

3
(L#

1 )ij ,

as stated in (iii).

For any i ∈ I(G1), j ∈ V (G1) ∪ V (G2), Let uivi ∈ E(G1)
denote the edge corresponding to i, By Lemma 2.4, we have
rij(G1 �G2)

=
1

2
+

1

2
ruij(G1 �G2) +

1

2
rvij(G1 �G2)

−1

4
ruivi

(G1 �G2),

as stated in (iv).

For any i, j ∈ I(G1), Let uivi, ujvj ∈ E(G1) denote the
edges corresponding to i, j, By Lemma 2.4, we have
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rij(G1 �G2)

=
1

2
+

1

2
ruij(G1 �G2) +

1

2
rvij(G1 �G2)

−1

4
ruivi(G1 �G2)

= 1 +
1

4

(
ruiuj

(G1 �G2) + ruivj
(G1 �G2)

+rviuj
(G1 �G2) + rvivj

(G1 �G2)

−ruivi
(G1 �G2)− rujvj

(G1 �G2)
)
,

as stated in (v).

IV. THE KIRCHHOFF INDEX OF G1 �G2

In this section, we focus on determing the Kirchhoff index
of graphs of G1 � G2 whenever G1 is an r1-regular graph
and G2 is an arbitrary graph.

Theorem 4.1 Let G1 be an r1-regular graph with n1 vertices
and m1 edges, G2 be an arbitrary graph with n2 vertices and
m2 edges. Let Li, Ri be the Laplacian matrix and incidence
matrix of Gi, for i = 1, 2, respectively. Then G1 �G2 have
the Kirchhoff index as follows:

Kf(LG1�G2)

= (n1 +m1(n2 + 1))

(
2

3n1
Kf(G1)

n2∑
i=1

1

µi(G2) + 1

+tr(
1

6
(1n2

⊗ Em1
)RT

1 L
#
G1
R1(1Tn2

⊗ Em1
)

+
3m1 − n1 + 1

6

)
− m1 + n22(n2 + 2)

2
.

Proof Let m = n1 +m1(n2 + 1). By Lemma 2.5, we have
Kf(LG1�G2)

= m

(
2

3
tr(L#

G1
) + tr(

1

2
Em1 +

1

6
RT

1 L
#
G1
R1)+

tr((L2 + En2
− 1

n2 + 2
jn2×n2

)−1 ⊗ Em1
) +

tr(
1

6
(1n2

⊗ Em1
)RT

1 L
#
G1
R1(1Tn2

⊗ Em1
)

)
−1TN1

= m

 2

3n1
Kf(G1) +

m1

2
+

1

6

∑
i<j,i,j∈E(G1)

[(2L#
G1

)ii

+ (2L#
G1

)jj − rij(G1)] + tr((L2 + En2
−

1

n2 + 2
jn2

)−1 ⊗ Em1
) + tr(

1

6
(1n2

⊗ Em1
)RT

1 L
#
G1

R1(1Tn2
⊗ Em1

)
)
− 1TN1

= m

(
2

3n1
Kf(G1) +

m1

2
+

1

6
tr(DG1L

#
G1

)− n1 − 1

6

+tr((L2 + En2
− 1

n2 + 2
jn2×n2

)−1 ⊗ Em1
)+

tr(
1

6
(1n2

⊗ Em1
)RT

1 L
#
G1
R1(1Tn2

⊗ Em1
)

)
− 1TN1.

By Lemma 2.6, we have(
(L2 + En2 − 1

n2+2jn2×n2)−1 ⊗ Em1

)−1
= (LG2

+ En2
)
−1

+
1

2
jn3×n3

.

Note that the eigenvalues of (LG2 + In2) are µ1(G2) +
1, µ2(G2) + 1, ..., µn2(G2) + 1. Then
tr((L2 + En2

− 1
n2+2jn2×n2

)−1 ⊗ Em1
)

= m1

n2∑
i=1

1

µi(G2) + 1
. (2)

Next, we calculate the 1T (L
(1)
G )1. By Lemma 2.2, L#

G1 = 0,
then

1TN1

=
m1

2
+

1

6
1T
(
RT

1 (G1)L#
G1
R(G1)

)
1 + 1T

(
1

6
RT

1

L#
G1

(1Tn2
⊗ Em1

)
)

1 + 1T
(

1

2
1Tn2
⊗ Em1

)
1 +

1

6

1T ((1n2 ⊗ Em1)RT
1 L

#
GR1)1 +

1

2
1T (1n2 ⊗ Em1) 1

+1T ((L2 + En2
− 1

n2 + 2
jn2×n2

)−1 ⊗ Em1
)1

+
1

6
1T ((1n2 ⊗ Em1)RT

1 L
#
G1
R1(1Tn2

⊗ Em1))1.

Note that R1 = π, where π = (d1, d2, ..., dn), then

1TN1

=
m1

2
+

1

6
πTL#

G1
π +

1

6
1T
(
RT

1 L
#
G1

(1Tn2
⊗ Em1)

)
1

+1T
(

1

2
1Tn2
⊗ Em1

)
1 +

1

6
1T ((1n2

⊗ Em1
)RT

1

L#
GR1)1 +

1

2
1T (1n2

⊗ Em1
) 1 + 1T ((L2 + En2

− 1

n2 + 2
jn2)−1 ⊗ Em1)1 +

1

6
1T ((1n2 ⊗ Em1)RT

1

L#
G1
R1(1Tn2

⊗ Em1
))1.

Since 1TRT = R1 = r1 · 1, then

1T ((1n2
⊗ Em1

)RT
1 L

#
G1
R1(1Tn2

⊗ Em1
))1

=
(

1Tm1
1Tm1

· · · 1Tm1

)
Em1

Em1

· · ·
Em1


RT

1 L
#
G1
R1

(
Em1

Em1
· · · Em1

)
1m1

1m1

· · ·
1m1

 = m2
11Tm1

RT
1 L

#
G1
R11m1

= 0.

1TRT
1 L

#
G1

(1Tn2
⊗ Em1

)1

= 1TRT
1 L

#
G1

(
Em1

Em1
· · · Em1

)
1m1

1m1

· · ·
1m1


= 1TRT

1 L
#
G1

1m1
= 0. (3)

Similarly, 1T
(

(1n2
⊗ Em1

)RT
1 L

#
GR1

)
1 = 0,

1T
(
1
21Tn2

⊗ Em1

)
11T

(
1
21n2

⊗ Em1

)
1 = 0.

Let P =
(

(L2 + En2
− 1

n2+2jn2×n2
)−1 ⊗ Em1

)
)
⊗In, then
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1TP−11 =
(

1Tn2
1Tn2

· · · 1Tn2

)
P−1 0 0 ... 0

0 P−1 0 ... 0
0 0 ... ... 0
0 0 0 ... P−1




1n2

1n2

· · ·
1n2


= n21Tn2

(L2 + En2
− 1

n2 + 2
jn2×n2

)−11n2

= n22
n2 + 2

2
. (4)

Plugging (2), (3) and (4) into Kf(LG1�G2), we obtain the
required result in vi).
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