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Abstract—A single-valued neutrosophic set is practical to 

catch up incomplete information by employing three degrees 

namely membership degree, indeterminacy degree and 

non-membership degree, and thus has been widely used in 

recent years. Moreover, technique for order preference by 

similarity to an ideal solution (TOPSIS) is one of the effective 

methods for multiple attribute decision making problems 

(MADM). However, in some special cases, TOPSIS algorithms, 

which consider only the relative closeness coefficients (RCCs) of 

the alternatives with respect to the positive ideal solution (PIS), 

are not reliable. Therefore, in this paper, a novel TOPSIS 

method, which takes into consideration both the PIS closeness 

and the RCC, is proposed based on a new concept of closeness 

coefficient. In addition, two illustrative examples are presented 

to demonstrate the applicability and effectiveness of the 

proposed approach. Sensitivity analysis verifies the robustness 

of the proposed method. 

 
Index Terms—blending closeness coefficient, decision making, 

single-valued neutrosophic set, TOPSIS 

 

I. INTRODUCTION 

ULTIPLE attribute decision making problems 

(MADM) play an important role in modern science of 

decision making. They are widely used in fields such as 

medical diagnosis, supplier selection, business, and so on. To 

process fuzzy information, Zadeh proposed the concept of 

fuzzy set (FS), in which the real number between 0 and 1 is 

used to represent the membership degree [1]. However, it is 

difficult to express the fuzzy information by the affiliation 

function only, so to express the non-membership degree, 

Atanassov proposed intuitionistic fuzzy set (IFS) on the basis 

of FS [2]. Further, Torra and Narukawa put forward hesitant 

fuzzy set (HFS) to express the degree of hesitation [3]. In the 

family of FS, the sum of several affiliation functions is 1, but 

this is not necessarily true in real life. Therefore, in order to 

express fuzzy information more flexibly, Smarandache added 

an independent uncertainty to IFS and proposed the 

neutrosophic set (NS) [4]. Subsequently, Wang et al. defined 

single-valued neutrosophic set (SVNS) based on NS, and 

proposed a MADM method [5]. In some cases, the 
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membership degree, indeterminacy degree and 

non-membership degree of a problem can not be accurately 

described by single numerical values, so Wang et al. defined 

interval neutrosophic set (INS) [6]. Furthermore, Wang and 

Li proposed the concept of multi-valued neutrosophic set 

(MVNS), whose membership degree, indeterminacy degree 

and non-membership degree are all finite sets of discrete 

values [7]. 

Technique for order preference by similarity to an ideal 

solution (TOPSIS), which was proposed by Hwang and Yoon, 

is one of the popular decision making methods [8]. Abo-Sinna 

used TOPSIS method to solve multi-objective dynamic 

programming problem [9]. Deng et al. used TOPSIS method 

to solve the problem of comparison between companies [10]. 

Chen extended TOPSIS method to FS to solve MADM 

problems [11]. Boran et al. extended TOPSIS method to the 

problem of multiple attribute intuitionistic decision making 

[12]. Pramanik and Mukhopadhyaya extended TOPSIS 

method to solve the problem of teacher selection in 

intuitionistic fuzzy environment [13]. Chi and Liu discussed 

an extended TOPSIS method for INS MADM problems [14]. 

Biswas and Pramanik extended TOPSIS method to MADM 

problems based on SVNS [15]. Selvachandran et al. 

presented a modified TOPSIS method with maximizing 

deviation method based on SVNS [16]. Nancy and Garg 

developed a novel TOPSIS method for solving single-valued 

neutrosophic MADM with incomplete weight information 

[17]. Biswas et al. developed a nonlinear programming 

approach based on TOPSIS method to determine relative 

closeness intervals of alternatives [18]. Nancy and Garg 

extended TOPSIS method to solve the group decision making 

problems [19]. Karaaslan and Hunu developed a multiple 

attribute group decision making method based on TOPSIS 

approach under the type-2 single-valued neutrosophic 

environment [20]. Ashraf and Butt developed a single-valued 

neutrosophic N-soft TOPSIS method based on single-valued 

neutrosophic N-soft aggregate operators to cumulate the 

decisions of all experts according to their opinions and 

parameters related to each alternative [21]. Sun and Cai 

developed a flexible decision-making method for green 

supplier selection integrating TOPSIS and grey relational 

analysis [22]. 

The traditional, and existing expanded TOPSIS methods 

rank alternatives according to the relative closeness 

coefficients (RCCs) of the alternatives with respect to the 

positive ideal solution (PIS). They are effective in most cases. 

But, if the RCC of the optimal alternative is close to the RCC 
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of the suboptimal alternative, the rankings of TOPSIS 

methods are not robust thus making it difficult to produce 

reliable results. 

Based on the above gap, this paper will propose a novel 

technique, which considers both the PIS closeness and the 

RCC of the alternatives based on a new concept of closeness 

coefficient, to improve existing methods. 

 

II. PRELIMINARIES 

A. Basic Definition 

In this section, some important definitions related to NS are 

provided to facilitate a better understanding of the paper. 

Definition 1 [4]. Let X be a non-empty set. A neutrosophic 

set N over the universe of discourse X is defined as: 

 ( , ( ), ( ), ( )) ,N N NN x T x I x F x x X   (1) 

where TN (x), IN (x), FN (x): X → ]-0,1+[ are the degrees of 

“membership”, “indeterminacy” and “non-membership” such 

that -0 ≤ sup TN (x) + sup IN (x) + sup FN (x) ≤ 3+. 

Definition 2 [5]. Let X be a non-empty set. A single-valued 

neutrosophic set N over the universe of discourse X is defined 

as: 

 ( , ( ), ( ), ( )) ,N N NN x T x I x F x x X   (2) 

where TN (x), IN (x), FN (x)∈[0,1] and for each x∈X.  

The triplet (TN (x), IN (x), FN (x)) is called single-valued 

neutrosophic number (SVNN). 

Definition 3 [5]. For two SVNNs N1 = (T1, I1, F1) and N2 = 

(T2, I2, F2) and a positive real number λ, some operations are 

defined as: 

(i) 1 2N N  if 1 2 1 2 1 2, , .T T I I F F    

(ii) 1 2 1 2 1 2 1 2(min( , ), max( , ), max( , )).N N T T I I F F  

(iii) 1 2 1 2 1 2 1 2(max( , ),min( , ),min( , )).N N T T I I F F  

(iv) 1 2N N  if and only if 1 2N N and 2 1.N N  

(v) 1 1 1 1( ,1 , ).CN F I T   

(vi) 1 2 1 2 1 2 1 2 1 2( , , ).N N T T T T I I F F     

(vii) 1 2 1 2 1 2 1 2 1 2 1 2( , , ).N N T T I I I I F F F F       

(viii) 1 1 1 1(1 (1 ) , ( ) , ( ) ).N T I F       

(ix) 1 1 1 1( ) (( ) ,1 (1 ) ,1 (1 ) ).N T I F         

Definition 4 [23]. For two SVNSs N1 = {(x, TN1
(x), IN1

(x), 

FN1
(x))| x∈X} and N2 = {(x, TN2

(x), IN2
(x), FN2

(x))| x∈X} over 

a finite universe X = {x1, x2, ···, xn}, two distance measures 

between N1 and N2 are defined as follows: 

(i) The Hamming distance measure between N1 and N2 is 

defined as: 

1 2

1 2 1 2

1 2 1
( , ) {| ( ) ( ) |

| ( ) ( ) | | ( ) ( ) |}.

n

H N i N ii

N i N i N i N i

d N N T x T x

I x I x F x F x


 

   


 (3) 

 (ii) The normalized Hamming distance measure between 

N1 and N2 is defined as: 

1 2

1 2 1 2

1 2 1

1
( , ) {| ( ) ( ) |

3

| ( ) ( ) | | ( ) ( ) |}.

n

HN N i N ii

N i N i N i N i

d N N T x T x
n

I x I x F x F x


 

   


 (4) 

 (iii) The Euclidean distance measure between N1 and N2 is 

defined as: 

1 2

1 2

1 2

2

1

2

1 2

2

{( ( ) ( ))

( , ) ( ( ) ( )) .

( ( ) ( )) }

n

N i N ii

E N i N i

N i N i

T x T x

d N N I x I x

F x F x




  

 


 (5) 

 (iv) The normalized Euclidean distance measure between 

N1 and N2 is defined as: 

1 2

1 2

1 2

2

1

2

1 2

2

1
{( ( ) ( ))

3

( , ) ( ( ) ( )) .

( ( ) ( )) }

n

N i N ii

EN N i N i

N i N i

T x T x
n

d N N I x I x

F x F x




  

 



  (6) 

 

B. TOPSIS Method 

TOPSIS method, proposed by Hwang and Yoon in 1981, is 

commonly used to determine the optimal alternative. This 

method can make full use of the information of original data, 

and the results can accurately show the gaps between different 

alternatives. According to TOPSIS method, the best 

alternative should have the shortest distance to the PIS and the 

farthest distance to the negative ideal solution (NIS).  

Let A = {A1, A2, ···, Am} be the set of alternatives, C = {C1, 

C2, ···, Cn} be the set of attributes with the weight vector W = 

{w1, w2, ···, wn}, and D = (dij)m×n, i =1, 2, ···, m, j =1, 2, ···, n 

be the decision matrix.  

The procedures of TOPSIS method can be described as 

follows [15]: 

Step 1. Normalization of the decision matrix 

To eliminate the effects of different attributes, we need to 

normalize two types of attributes including benefit type and 

cost type. 

Let dij
N
 be the normalized value, it can be calculated as 

follows: 

,

,

,

ij j

j jN

ij

j ij

j j

d d
benefit type

d d
d

d d
cost type

d d



 



 

 



 


 

 (7) 

where max( )j ij
i

d d   and min( )j ij
i

d d  . 

Step 2. Calculation of the weighted normalized decision 

matrix 

The weighted normalized value vij is calculated as the 

following way: 

,N

ij j ijv w d   (8) 

where wj is the weight of the j-th attribute such that 0jw   for 

i = 1, 2, ···, m, j = 1, 2, ···, n and 
1

1
n

jj
w


 . 

Step 3. Determination of the PIS and the NIS 

The PIS and the NIS are derived as follows: 

1 2

1 2

PIS { , , , }

{(max | ), (min | )},

n

ij ij
ii

v v v

v j J v j J

  

  
 (9) 

1 2

1 2

NIS { , , , }

{(min | ), (max | )},

n

ij ij
i i

v v v

v j J v j J

  

  
 (10) 

where J1 and J2 are the sets of benefit type and cost type 

attributes, respectively. 
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Step 4. Calculation of the distance measures 

The distance between the alternative Ai and the PIS can be 

measured by using the n-dimensional Euclidean distance, 

which is given as: 

2

1
( ) , 1,2, , .

n

i ij jj
D v v i m 


    (11) 

Similarly, the distance measure between the alternative Ai 

and the NIS is calculated as: 

2

1
( ) , 1,2, , .

n

i ij jj
D v v i m 


    (12) 

Step 5. Calculation of the RCCs 

The RCC of the alternative Ai with respect to the PIS is 

given as: 

, 1,2, , .i

i

i i

D
C i m

D D



 
 


 (13) 

Step 6. Ranking the alternatives 

Rank the alternatives according to the RCCs. The larger 

value of Ci indicates the better alternative Ai. 

The above process is illustrated with the following 

example. 

Example 1. An elementary school wants to order a batch of 

uniforms from one of five suppliers denoted by A1 , A2 , A3, A4 , 

A5. The selection is held on the basis of two different 

attributes, namely, quality (C1) and price (C2). C1 is benefit 

type, and C2 is cost type with the attribute weight vector W = 

{0.5, 0.5}. The decision matrix is given as: 

0.3 0.3

0.4 0.4

1 1

0 0

0.3 0.5

D

 
 
 
 
 
 
 
 

. 

Step 1. Normalized decision matrix is computed by using 

(7) as follows: 

0.3 0.7

0.4 0.6

1 0

0 1

0.3 0.5

ND

 
 
 
 
 
 
 
 

. 

Step 2. Weighted normalized decision matrix is calculated 

by using (8) as follows: 

0.15 0.35

0.2 0.3

0.5 0

0 0.5

0.15 0.25

V

 
 
 
 
 
 
 
 

. 

Step 3. Determination of the PIS and the NIS:  

PIS = {0.5, 0.5}, NIS = {0, 0}. 

Step 4. Calculation of the distance measures 

Using (11) and (12), we compute the distance measures as 

follows: D1
+ 
= 0.3808, D2

+ 
= 0.3606, D3

+ 
= 0.5, D4

+ 
= 0.5, D5

+ 

= 0.4301, D1
– 
= 0.3808, D2

– 
= 0.3606, D3

– 
= 0.5, D4

– 
= 0.5, 

D5
– 
= 0.2915. 

Step 5. Calculation of the RCCs 

Using (13), we calculate the RCCs as follows:  

C1 = C2 = C3 = C4 = 0.5, C5 = 0.404. 

Step 6. Ranking the alternatives 

The RCCs of alternatives A1, A2, A3, A4 are the same, and 

larger than the value of A5. So, it is difficult to determine the 

best alternative. As can be seen from this example, the above 

TOPSIS method fails to select the optimal alternative. 

In what follows, we will propose a new approach to 

calculate the closeness coefficients of the alternatives. 

 

III. PROPOSED TOPSIS METHOD FOR SVNS  

TOPSIS method ranks the alternatives according to the 

RCCs of the alternatives with respect to the PIS. If the RCCs 

of two alternatives are equal, the decision maker usually 

prefers the alternative which has the shortest distance to the 

PIS. By integrating the relative distance measure and the 

absolute distance measure, we introduce the blending 

closeness coefficient (BCC) to characterize the distance 

measure between the alternatives and the ideal solutions. 

Definition 5. Let Di
–
 be the distance measure between the 

i-th alternative and the PIS, Di
+
 be the distance measure 

between the i-th alternative and the NIS, i = 1, 2, ···, m, the 

PIS-closeness coefficient of the i-th alternative is defined as: 

,
max

PIS i

i

i
i

D
D

D




  (14) 

the BCC of the i-th alternative is defined as: 

(1 )(1 ),PISi

i i

i i

D
BCC D

D D
 



 
   


 (15) 

where θ∈[0,1] is called relative closeness level (RCL). 

Remark 1. The BCC is reduced to the RCC with θ = 1. 

Remark 2. If the RCCs of alternatives are equal, the smaller 

absolute distance measure between the alternative and the PIS 

implies the larger BCC with fixed θ. 

By definition 5, we can calculate the BCCs with θ = 0.8 in 

Example 1 as follows: BCC1 = 0.4477, BCC2 = 0.4558, BCC3 

= 0.4, BCC4 = 0.4, BCC5 = 0.3511. BCC2 is larger than the 

others, which indicates that the 2nd alternative A2 is the 

optimal one. 

Consider a MADM problem with m alternatives and n 

attributes. Let A = {A1, A2, ···, Am} be a discrete set of 

alternatives, and C = {C1, C2, ···, Cn} be the set of attributes, 

with the weight parameters W = {w1, w2, ···, wn} fully or 

partially unknown satisfying wj∈[0,1] and 
1

1
n

jj
w


 . Let 

( )ij m nD d   be the decision matrix, where ( , , )ij ij ij ijd T I F  

takes the form of SVNNs for alternative Ai with respect to 

attribute Cj. The values associated with the alternatives for 

MADM problems are presented in the following decision 

matrix: 

1 2

1 11 12 1

2 21 22 2

1 2

( )

n

n

ij m n n

m m m mn

C C C

A d d d

D d A d d d

A d d d



 
 

 
 
 
 
 

. 

The procedures of TOPSIS method with SVNS based on 

the concept of BCC can be described as follows: 

Step 1. Normalization of the decision matrix 
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Let ( )N

ij m nD r   be the normalized decision matrix, the 

normalized value ijr  can be calculated as follows: 

,
,

,

ij

Cij

ij

d benefit type
r

d cost type


 


 (16) 

where 
C

ijd  is the complement of ijd . 

Step 2. Calculation of the attribute weights 

Since the attribute weights are fully or partially unknown, 

we use the maximizing deviation method, which is proposed 

by Wang [24], to calculate the attribute weights. The basic 

idea is that an attribute will play a less important role with 

minor difference for all alternatives. According to the 

maximizing deviation method, the deviation values of 

alternative Ai to all the other alternatives under the attribute Cj 

are defined as: 

1
( ) ( , ) ,

m

ij j ij kj jk
D w d r r w


  (17) 

the total deviation values of all alternatives to the other 

alternatives for the attribute Cj are defined as: 

1 1 1
( ) ( ) ( , ) .

m m m

j j ij j ij kj ji i k
D w D w d r r w

  
    (18) 

An optimization model is constructed as follows: 

1 1 1

2

1

max ( ) ( , )
.

. . 1

m m m

j ij kj jj i k

n

jj

D w d r r w

s t w

  



 






  


 (19) 

Solving the above model, we get 

1 1

2

1 1 1

( , )
, 1, 2, , .

( , )

m m

ij kji k

j
n m m

ij kjj i k

d r r
w j n

d r r

 

  

 
 

  
 (20) 

Normalizing the solutions, we get 

1 1

1 1 1

( , )
, 1,2, , .

( , )

m m

ij kji k

j n m m

ij kjj i k

d r r
w j n

d r r

 

  

 
 

  
 (21) 

Step 3. Calculation of the weighted matrix 

The weighted matrix can be calculated with the weight 

vector W = {w1, w2, ···, wn} as follows: 

1 11 2 12 1

1 21 2 22 2

1 1 2 2

.

n n

n n

m m n mn

w r w r w r

w r w r w r
V

w r w r w r

 
 
 
 
 
 

 (22) 

Step 4. Determination of the PIS and the NIS 

1 2PIS { , , , }

{(max ,min ,min ) | 1,2, , },

n

ij ij ij
i ii

v v v

T I F j n

  

 
 (23) 

1 2NIS { , , , }

{(min ,max ,max ) | 1,2, , }.

n

ij ij ij
i i i

v v v

T I F j n

  

 
 (24) 

Step 5. Calculation of the distance measures 

The distance measure between the alternative Vi and the 

PIS, denoted by Di
+
, and the distance measure between the 

alternative Vi and the NIS, denoted by Di
–
, can be calculated 

by using (6), (11), and (12): 

1

1

( , )
, 1, 2, , .

( , )

n

i EN ij jj

n

i EN ij jj

D d v v
i m

D d v v

 



 



 










 (25) 

Step 6. Calculation of the PIS-closeness coefficients 

The PIS-closeness coefficient of the i-th alternative is given 

by definition 5 as follows: 

, 1,2, , .
max

PIS i

i

i
i

D
D i m

D




   

Step 7. Calculation of the BCCs 

Fix the real number θ∈ [0,1], and the BCC of the 

alternative Vi is calculated by definition 5 as follows: 

(1 )(1 ), 1,2, , .PISi

i i

i i

D
BCC D i m

D D
 



 
    


 

Step 8. Ranking the alternatives 

The larger value of the BCC indicates the better alternative. 

 

IV. ILLUSTRATIVE EXAMPLES  

A. Selection of product suppliers (adapted from [25]) 

Example 2. A manufacturing company is going to select a 

product supplier from ten alternatives: A1, A2, A3, A4, A5, A6, 

A7, A8, A9, A10. Suppliers are evaluated based on six attributes: 

service quality, pricing and cost structure, financial stability, 

environmental regulation compliance, reliability, relevant 

experience, denoted by C1, C2, C3, C4, C5, C6. 

Suppose the attribute weights are unknown. The final 

decision information can be presented by the SVNNs, and 

shown in Table I. 

Step 1. Normalization of the decision matrix 

As attributes are all benefit type, there is no need of 

normalization. 

Step 2. Calculation of the attribute weights 

The attribute weights calculated by (21) are as follows:  

TABLE I (a) 

DECISION MATRIX IN TERMS OF SVNNS  

A C1 C2 C3 

A1 (0.7,0.5,0.1) (0.7,0.5,0.3) (0.8,0.6,0.2) 

A2 (0.6,0.5,0.2) (0.7,0.5,0.1) (0.6,0.3,0.5) 

A3 (0.6,0.2,0.3) (0.6,0.6,0.4) (0.7,0.7,0.2) 

A4 (0.5,0.5,0.4) (0.6,0.4,0.4) (0.7,0.7,0.3) 

A5 (0.7,0.5,0.5) (0.8,0.3,0.1) (0.7,0.6,0.2) 

A6 (0.5,0.5,0.5) (0.7,0.8,0.1) (0.7,0.3,0.5) 

A7 (0.6,0.8,0.1) (0.7,0.2,0.1) (0.6,0.3,0.4) 

A8 (0.7,0.8,0.3) (0.6,0.6,0.5) (0.8,0,0.5) 

A9 (0.6,0.7,0.1) (0.7,0,0.1) (0.6,0.7,0) 

A10 (0.5,0.7,0.4) (0.9,0,0.3) (1,0,0) 

 

TABLE I (b) 

DECISION MATRIX IN TERMS OF SVNNS  

A C4 C5 C6 

A1 (0.9,0.4,0.2) (0.6,0.4,0.7) (0.6,0.5,0.4) 

A2 (0.6,0.4,0.3) (0.7,0.5,0.4) (0.7,0.8,0.9) 

A3 (0.5,0.5,0.3) (0.6,0.8,0.6) (0.7,0.2,0.5) 

A4 (0.9,0.4,0.2) (0.7,0.3,0.5) (0.6,0.4,0.4) 

A5 (0.7,0.5,0.2) (0.7,0.5,0.6) (0.6,0.7,0.8) 

A6 (0.4,0.8,0) (0.7,0.4,0.2) (0.6,0.6,0.3) 

A7 (0.3,0.5,0.1) (0.6,0.3,0.6) (0.5,0.2,0.6) 

A8 (0.7,0.3,0.6) (0.6,0.8,0.5) (0.6,0.2,0.4) 

A9 (0.7,0.4,0.3) (0.6,0.6,0.7) (0.7,0.3,0.2) 

A10 (0.5,0.6,0.7) (0.5,0.2,0.7) (0.8,0.4,0.1) 
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w1 = 0.1379, w2 = 0.1689, w3 = 0.1935, w4 = 0.1777, w5 = 

0.1392, w6 = 0.1828. 

Step 3. Calculation of the weighted matrix 

Weighted matrix is calculated by using (22). 

Step 4. Determination of the PIS and the NIS 

PIS = {(0.1530, 0.8010, 0.7280), (0.3222, 0, 0.6778), (1, 0, 

0), (0.3359, 0.8074, 0), (0.1543, 0.7993, 0.7993), 

(0.2549,0.7451, 0.6565)}, NIS = {(0.0912, 0.9697, 0.9088), 

(0.1434, 0.9630, 0.8895), (0.1625, 0.9333, 0.8745), (0.0614, 

0.9611, 0.9386), (0.0919, 0.9694, 0.9516), (0.1190, 0.9600, 

0.9809)}. 

Step 5. Calculation of the distance measures 

The distance measures calculated by (25) are as follows:  

D1
+ 

= 0.4343, D2
+ 

= 0.4585, D3
+ 

= 0.4572, D4
+ 

= 0.4471, 

D5
+ 

= 0.4385, D6
+ 

= 0.4194, D7
+ 

= 0.4273, D8
+ 

= 0.4219, D9
+ 

= 0.3610, D10
+ 

= 0.2412, D1
– 
= 0.1159, D2

– 
= 0.0895, D3

– 
= 

0.0907, D4
– 

= 0.1060, D5
– 

= 0.0984, D6
– 

= 0.2385, D7
– 

= 

0.1270, D8
– 
= 0.2359, D9

– 
= 0.3256, D10

– 
= 0.4393. 

Step 6. Calculation of the PIS-closeness coefficients 

The PIS-closeness coefficients are given by (14) as 

follows: 

D1
PIS 

= 0.9474, D2
PIS 

= 1, D3
PIS 

= 0.9973, D4
PIS 

= 0.9753, 

D5
PIS 

= 0.9564, D6
PIS 

= 0.9147, D7
PIS 

= 0.9320, D8
PIS 

= 0.9203, 

D9
PIS 

= 0.7874, D10
PIS 

= 0.5261. 

Step 7. Calculation of the BCCs 

The BCCs calculated by using (15) with 0.8   are as 

follows: 

BCC1 = 0.1791, BCC2 = 0.1307, BCC3 = 0.1330, BCC4 = 

0.1582, BCC5 = 0.1554, BCC6 = 0.3071, BCC7 = 0.1969, 

BCC8 = 0.3028, BCC9 = 0.4219, BCC10 = 0.6113. 

Step 8. Ranking the alternatives 

The ranking of the alternatives is given as below: 

10 9 6 8 7 1 4 5 3 2 .A A A A A A A A A A  

Therefore, the best alternative is supplier A10. 

Some recent works in this area are tabulated in Table II. It 

can be seen that different methods result different rankings 

and optimal alternatives. The main reason for the difference is 

that the attribute weights are calculated differently. For 

example, the method proposed in [27] used the subjective 

weighting method to calculate the attribute weights, while the 

method in [25] used the weighted arithmetic average operator 

and geometric average operator, respectively. The approach 

proposed in this paper uses the BCC, which considers both the 

relative distance measure and the absolute distance measure, 

to rank the alternatives. Therefore, it is understandable that 

different ways of calculating weights lead to different results.  

The value of   determines the proportion of RCC in BCC. 

As   decreases from 0.9 to 0.1, we find the best alternative 

remains the same, which implies the robustness of the 

proposed method. 

For critical analysis, we apply the proposed approach to a 

problem about selection of the best seller. 

 

B. Selection of the best seller (adapted from [28]) 

Example 3. A book publisher wants to publish the best 

seller. There are ten alternatives: Java Language, C 

Language, C++ Language, Python Language, C# Language, 

PHP Language , Java-script Language, Visual Basic.NET 

Language, Perl Language, Assembly Language, denoted by 

A1, A2, A3, A4, A5, A6, A7, A8, A9 and A10, respectively. Five 

attributes, popularity, innovation, price, interaction, 

readability, denoted by C1, C2, C3, C4, C5, are evaluated. C1, 

C2, C4, C5 are benefit type, and C3 is cost type. Suppose the 

attribute weights are completely unknown. The final decision 

information presented by the SVNNs is shown in Table III. 

Step 1. Normalization of the decision matrix 

Normalized decision matrix is listed in Table IV. 

TABLE II 

COMPARISON FOR EXAMPLE 2  

Method Ranking 

arithmetic 

operator [25] 
A1 A4 A9 A5 A7 A2 A10 A8 A3 A6 

geometric 

operator [25] 
A10 A9 A8 A1 A5 A7 A4 A2 A6 A3 

Biswas [26] A10 A9 A7 A1 A4 A6 A5 A8 A2 A3 

measure [16] A1 A9 A4 A7 A5 A2 A10 A6 A8 A3 

Ye [27] A9 A7 A1 A4 A2 A10 A5 A8 A3 A6 

our method A10 A9 A6 A8 A7 A1 A4 A5 A3 A2 

 

TABLE III (a) 

DECISION MATRIX IN TERMS OF SVNNS  

A C1 C2 C3 

A1 (0.6,0.7,0.8) (0.4,0.5,0.8) (0.4,0.7,0.2) 

A2 (0.5,0.6,0.8) (0.5,0.6,0.7) (0.4,0.8,0.1) 

A3 (0.6,0.7,0.9) (0.5,0.7,0.8) (0.3,0.6,0.1) 

A4 (0.6,0.8,0.7) (0.5,0.5,0.7) (0.4,0.7,0.3) 

A5 (0.5,0.8,0.9) (0.6,0.5,0.7) (0.5,0.7,0.2) 

A6 (0.6,0.7,0.8) (0.4,0.5,0.8) (0.4,0.6,0.2) 

A7 (0.4,0.6,0.7) (0.5,0.6,0.7) (0.4,0.8,0.1) 

A8 (0.6,0.6,0.9) (0.4,0.7,0.8) (0.3,0.5,0.1) 

A9 (0.7,0.8,0.7) (0.5,0.5,0.6) (0.3,0.7,0.2) 

A10 (0.6,0.8,0.9) (0.6,0.6,0.7) (0.5,0.7,0.2) 

 

TABLE IV (a) 

NORMALIZED DECISION MATRIX 

A C1 C2 C3 

A1 (0.6,0.7,0.8) (0.4,0.5,0.8) (0.2,0.3,0.4) 

A2 (0.5,0.6,0.8) (0.5,0.6,0.7) (0.1,0.2,0.4) 

A3 (0.6,0.7,0.9) (0.5,0.7,0.8) (0.1,0.4,0.3) 

A4 (0.6,0.8,0.7) (0.5,0.5,0.7) (0.3,0.3,0.4) 

A5 (0.5,0.8,0.9) (0.6,0.5,0.7) (0.2,0.3,0.5) 

A6 (0.6,0.7,0.8) (0.4,0.5,0.8) (0.2,0.4,0.4) 

A7 (0.4,0.6,0.7) (0.5,0.6,0.7) (0.1,0.2,0.4) 

A8 (0.6,0.6,0.9) (0.4,0.7,0.8) (0.1,0.5,0.3) 

A9 (0.7,0.8,0.7) (0.5,0.5,0.6) (0.2,0.3,0.3) 

A10 (0.6,0.8,0.9) (0.6,0.6,0.7) (0.2,0.3,0.5) 

 

TABLE III (b) 

DECISION MATRIX IN TERMS OF SVNNS  

A C4 C5 

A1 (0.5,0.7,0.8) (0.6,0.2,0.3) 

A2 (0.4,0.6,0.9) (0.5,0.1,0.3) 

A3 (0.4,0.6,0.9) (0.4,0.2,0.2) 

A4 (0.6,0.8,0.7) (0.7,0.1,0.4) 

A5 (0.5,0.7,0.7) (0.6,0.2,0.3) 

A6 (0.5,0.7,0.8) (0.6,0.2,0.3) 

A7 (0.5,0.6,0.9) (0.6,0.1,0.3) 

A8 (0.4,0.7,0.9) (0.6,0.2,0.2) 

A9 (0.6,0.8,0.8) (0.7,0.2,0.4) 

A10 (0.5,0.6,0.7) (0.6,0.2,0.3) 
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Step 2. Calculation of the attribute weights 

The attribute weights calculated by using (21) are as 

follows: 

w1 = 0.2255, w2 = 0.1941, w3 = 0.2028, w4 = 0.2133, w5 = 

0.1643. 

Step 3. Calculation of the weighted matrix 

Weighted matrix is calculated by using (22). 

Step 4. Determination of the PIS and the NIS 

The PIS and the NIS derived by (23) and (24) are as 

follows: 

PIS = {(0.2378, 0.8912, 0.9227), (0.1629, 0.8741, 0.9056), 

(0.0698, 0.7215, 0.7834), (0.1775, 0.8968, 0.9267), (0.1795, 

0.6850, 0.7676) }, NIS = {(0.1088, 0.9509, 0.9765), (0.0944, 

0.9331, 0.9576), (0.0211, 0.8689, 0.8689), (0.1032, 0.9535, 

0.9778), (0.0805, 0.7676, 0.8602) }. 

Step 5. Calculation of the distance measures 

D1
+ 

= 0.0468, D2
+ 

= 0.0471, D3
+ 

= 0.0595, D4
+ 

= 0.0417, 

D5
+ 

= 0.0525, D6
+ 

= 0.0523, D7
+ 

= 0.0468, D8
+ 

= 0.0621, D9
+ 

= 0.0438, D10
+ 

= 0.0486, D1
– 
= 0.0431, D2

– 
= 0.0538, D3

– 
= 

0.0435, D4
– 

= 0.0577, D5
– 

= 0.0428, D6
– 

= 0.0383, D7
– 

= 

0.0567, D8
– 
= 0.0445, D9

– 
= 0.0621, D10

– 
= 0.0462. 

Step 6. Calculation of the PIS-closeness coefficients 

The PIS-closeness coefficients are given by (14) as 

follows: 

D1
PIS 

= 0.7541, D2
PIS 

= 0.7578, D3
PIS 

= 0.9571, D4
PIS 

= 

0.6720, D5
PIS 

= 0.8455, D6
PIS 

= 0.8411, D7
PIS 

= 0.7541, D8
PIS 

= 1, D9
PIS 

= 0.7049, D10
PIS 

= 0.7822. 

Step 7. Calculation of the BCCs 

The BCCs calculated by using (15) with θ = 0.9 are as 

follows: 

BCC1 = 0.4559, BCC2 = 0.5042, BCC3 = 0.3847, BCC4 = 

0.5550, BCC5 = 0.4196, BCC6 = 0.3968, BCC7 = 0.5176, 

BCC8 = 0.3758, BCC9 = 0.5572, BCC10 = 0.4605. 

Step 8. Ranking the alternatives 

The ranking of the alternatives is given as below: 

9 4 7 2 10 1 5 6 3 8 .A A A A A A A A A A  

Therefore, the optimal alternative is A9: Perl Language. 

We compare different methods and tabulate the results in 

Table V. As can be seen, our proposed method picks the same 

optimal alternative as the others although they have little 

differences in rankings. This shows that the proposed TOPSIS 

method is effective. 

Sensitivity analysis is tabulated in Table VI. As the value of 

θ decreases from 0.9 to 0.8, the optimal alternative changes 

from A9 to A4. This indicates that the critical value is between 

0.8 and 0.9. As θ decreases from 0.8 to 0.1, the optimal 

alternative remains the same, which implies the robustness of 

the proposed method. 

 

V. CONCLUSIONS 

By integrating the relative distance measure and the 

absolute distance measure, we introduce the concept of BCC 

to measure the distance between each alternative and the PIS. 

An improved TOPSIS method is proposed on the basis of 

BCC. In some special cases, the decision maker will obtain 

different rankings as the value of RCL θ changes. By 

changing the value of θ, our method also enables the decision 

maker to test the robustness of the rankings. 

Next, we shall extend the application of the proposed 

method to INS environment as well as multiple attribute 

group decision making problems. 
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