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Abstract—In this paper, based upon the Gom-
pertz model of population growth, we have refor-
mulated the stochastic Lotka-Volterra Competition
model with N interacting species. By means of Ito’s
lemma and some simple changes of variables, we have
succeeded in deriving the N-dimensional joint prob-
ability density function of the stochastic modified
multi-species Lotka-Volterra model in closed form.
With this joint probability density function, an an-
alytical likelihood function can be constructed read-
ily, and thus model-fitting procedures become feasible
and efficient.
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1 Introduction

Competition is by all means ubiquitous in the natural
world. Whenever there is a limited supply of common
resources, organisms of the same or different species in-
evitably need to compete for the limited resources. For
instance, plants often compete for access to a limited sup-
ply of nutrients, water, sunlight and space, whilst animals
compete for food, water and space to live. Intraspecific
competition occurs when individuals of the same species
vie for access to essential resources, and becomes intense
whenever populations of a species are crowded. On the
other hand, interspecific competition plays a prominent
role if individuals of different species are crowded and
have similar requirements of resources. Mathematical
models have been proposed to study ecological competi-
tion which affects the community structure in an ecosys-
tem and places evolutionary pressure on the development
of adaptations in a population. One particular model,
which has been studied extensively because of its theo-
retical and practical significance, is the classical Lotka-
Volterra Competition (LVC) model with N interacting
species [1, 2]:

dxi

dt
= xi

⎧⎨
⎩bi −

N∑
j=1

aijxj

⎫⎬
⎭ (1)
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for i = 1, 2, 3, ...., N , where xi and bi denote the popula-
tion size and intrinsic growth rate of the i-th species at
time t, respectively. Here aii is the intraspecific compe-
tition rate of the i-th species, and aij is the interspecific
competition rate between the i-th and j-th species. It
should be noted that all model parameters are positive
definite.

Since population systems are naturally subject to en-
vironmental noises, a better model is needed to reflect
the external randomness that affects the dynamical be-
haviour of the system. The simplest stochastic version
can be derived via assuming that the variability of envi-
ronmental conditions induces fluctuations in the intrinsic
growth rate bi of the i-th species. By assuming that the
intrinsic growth rate varies in time according to [3]

θi (t) = bi + σiε (t) (2)

for i = 1, 2, 3, ...., N , where bi is the constant mean value
of θi (t), σi is the diffusion coefficient, and ε (t) is a Gaus-
sian white noise process, the stochastic LVC model is
defined by the system of stochastic differential equations
(s.d.e.’s):

dxi = xi

⎧⎨
⎩bi −

N∑
j=1

aijxj

⎫⎬
⎭ dt+ σixidWi (3)

for i = 1, 2, 3, ...., N , where dWi denotes the stan-
dard Wiener process. Unfortunately, the stochastic LVC
model does not have an analytical N -dimensional joint
probability density function (p.d.f.), so details of the dy-
namical behaviour of the system needs to be uncovered
in an indirect manner [3− 8]. In the absence of an ana-
lytical likelihood function, the only methods available to
fit the model to data are thus simulation based, i.e. the
LVC model has to generate simulated data for each pro-
posed set of parameters in order to calculate any measure
of fit. As a result, model-fitting procedures are extremely
slow, and a thorough investigation of model-fitting proce-
dures, recoverability and identifiability of the LVC model
has not been performed for multi-species cases. Accord-
ingly, it is the aim of this communication to propose a
new reformulation of the LVC model such that the N -
dimensional joint p.d.f. can be derived in closed form
readily.
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2 Modified LVC model

First of all, by taking a closer look at the classical LVC
model, one can easily realize that it is a simple extension
of the logistic growth model for N interacting species
[1, 2]. When the N species are growing independently and
only intraspecific competition is present, their population
growth is governed by the first-order differential equaton
defining the logistic growth model:

dxi

dt
= xi {bi − aiixi} (4)

for i = 1, 2, 3, ...., N . It is well known that the Gompertz
model is an alternative popular approach of modelling
population growth and can be derived from Eq.(4) via
simply substituting the term aiixi by aii lnxi [9, 12]. By
including the interspecific competition in a similar man-
ner, the classical LVC model can be reformulated as fol-
lows:

dxi

dt
= xi

⎧⎨
⎩bi −

N∑
j=1

aij lnxj

⎫⎬
⎭ (5)

for i = 1, 2, 3, ...., N .

Next, in order to account for the impact of environmental
noises on the dynamical behaviour of the system, we may
derive a stochastic version of the modified LVC model by
assuming that the environmental noises induce fluctua-
tions in the intrinsic growth rate bi of the i-th species
in accordance with Eq.(2). The stochastic modified LVC
model is then defined by

dxi = xi

⎧⎨
⎩bi −

N∑
j=1

aij lnxj

⎫⎬
⎭ dt+ σixidWi (6)

for i = 1, 2, 3, ...., N , where dWi denotes the standard
Wiener process. For simplicity, it is reasonable to as-
sume that σi = ξ, aii = κ and aij = β for i �= j, where κ
and β represent the common intraspecific and interspe-
cific competition rates, respectively. Accordingly, Eq.(6)
can be rewritten as

dxi

xi
=

⎧⎨
⎩bi − κ lnxi − β

N∑
j �=i

lnxj

⎫⎬
⎭ dt+ ξdWi . (7)

Beyond question, the number of model parameters is dra-
matically reduced while most of the basic features of the
system are being retained.

In the following section we demonstrate how to derive the
closed-form N -dimensional joint p.d.f. of the stochastic
modified LVC model, which in turn enables us to con-
struct an analytical likelihood function for model-fitting.

3 Probability density function

Prior to deriving the joint p.d.f. P ({xi} , t) associated
with the stochastic variables {x1, x2, x3, . . . , xN}, we first

apply multi-dimensional Ito’s lemma (see Appendix A;
[13]) to express Eq.(7) in terms of the new stochastic
variables {yi = lnxi} as

dyi =

⎧⎨
⎩Ii − (κ− β) yi − β

N∑
j=1

yj

⎫⎬
⎭ dt+ ξdWi , (8)

where Ii = bi− 1
2ξ

2. It should be noted that the logarithm
of population size of each species can assume any real
values and follow the Ornstein-Uhlenbeck (OU) process
in the absence of interspecific competition, i.e. β = 0.
Then, by means of the change of variables:

zi = yie
(κ−β)t + ηi (t) , (9)

where

ηi (t) =
β
(∑N

j=1 Ij

)
κ+ β (N − 1)

{
e(κ−β)t − 1

κ− β
− 1− e−βNt

βN

}

−Ii

{
e(κ−β)t − 1

κ− β

}
, (10)

Eq.(8) is reduced to

dzi = −βNz̄dt+ ξe(κ−β)tdWi , (11)

where z̄ is simply the mean of the stochastic variables
{z1, z2, z3, . . . , zN}:

z̄ =
1

N

N∑
i=1

zi , (12)

in accordance with multi-dimensional Ito’s lemma (see
Appendix A; [13]). Obviously, every member of the set
of s.d.e.’s in Eq.(11) has the same drift, i.e. −βNz̄,
and diffusion coefficient, i.e. ξe(κ−β)t, implying that the
stochastic variables {z1, z2, z3, . . . , zN} are statistically-
independent and are all distributed in the same way.

The joint p.d.f. P ({zi} , t) associated with the stochastic
variables {z1, z2, z3, . . . , zN} can be derived by solving the
associated multi-dimenstional Fokker-Planck equation:

N∑
i=1

∂

∂zi

⎧⎨
⎩
⎛
⎝1

2
ξ2e2(κ−β)t ∂

∂zi
+ β

N∑
j=i

zj

⎞
⎠P ({zi} , t)

⎫⎬
⎭

=
∂P ({zi} , t)

∂t
. (13)

By a simple change of variables:

ZN =
1

N

N∑
j=i

zj and Zi = zi − 1

N

N∑
j=i

zj (14)

for i = 1, 2, 3, ...., N − 1, Eq.(13) can be re-written as

∂

∂ZN

{(
1

2N
ξ2e2(κ−β)t ∂

∂ZN
+ βNZN

)
P ({Zi} , t)

}

+
N−1∑
i=1

N−1∑
i=1

1

2
ξ2e2(κ−β)t

(
δij − 1

N

)
∂2P ({Zi} , t)

∂Zi∂Zj

=
∂P ({Zi} , t)

∂t
. (15)
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It is not difficult to show that the stochastic variables
{Z1,Z2,Z3, . . . ,ZN} satisfy the set of s.d.e.’s:

dZN = −βNZNdt+
ξ√
N

e(κ−β)tdWN (16)

dZi =

√
1− 1

N
ξe(κ−β)tdWi (17)

for i = 1, 2, 3, ...., N − 1, where the two distinct Wiener
processes dWi and dWj are correlated as

dWidWj = ρijdt = − 1

N − 1
dt (18)

for i �= j. Obviously, the stochastic variable ZN fol-
lows an OU process with a time-dependent varaince and
a long-term mean equal to zero, whilst the remaining
N − 1 stochastic variables are described by a (N − 1)-
dimensional normal process with a time-varying covari-
ance matrix. The corresponding closed-form joint p.d.f.
is then given by

P ({Zi} , t)
=

1√
(4π)

N−1
det (Ω)

×

exp

⎧⎨
⎩−1

4

N−1∑
i,j=1

(Zi −Zi0)
(
Ω−1

)
ij
(Zj −Zj0)

⎫⎬
⎭×

eβNt√
2πΔ(t)

exp

{
−
(
eβNtZN −ZN0

)
2Δ (t)

}
(19)

where

Δ (t) =
ξ2

N

{
e2[κ+(N−1)β]t − 1

2 [κ+ (N − 1)β]

}
. (20)

Here the (N − 1)× (N − 1) matrix Ω (t) is defined by its
elements as follows:

Ωij (t) =
ξ2

2

[
e2(κ−β)t − 1

2 (κ− β)

](
δij − 1

N

)
, (21)

and Ω−1 (t) is its inverse.

4 Discussion and conclusion

The Monte Carlo method based upon the strong order
1.5 Taylor scheme [14] is employed to generate the time
series of the stochastic modified LVC model. With the
closed-form joint p.d.f., maximum-likelihood analyses are
then applied to calibrate the model parameters and check
whether the actual values can be recovered. In Table
1 the input model parameters and the calibrated values
(based upon 100 simulated time series) are presented for
the case of two species. The corresponding standard er-
rors and z-scores of the calibrated values are tabulated,
too. It is evident that the calibrated values are in excel-
lent agreement with the exact values. Table 2 presents
the same set of informations for the case of three species,

and the same conclusion is reached. Hence, the calibra-
tion of parameters is both efficient and accurate. Fur-
thermore, the calibration is carried out using a 4.7GHz
Intel Core i7-10700K PC, and the average elapsed time
for the maximum-likelihood estimation per time series for
the two illustrative cases is less than a second. In fact,
the calibration can be completed within a minute even
for a large number of species.

Table 1: Calibrated results for the case of two species
κ β I1 I2 ξ

exact value 4 1 0.9 1.1 0.25

calibrated value 4.02 1.00 0.904 1.11 0.254

standard error 0.10 0.11 0.03 0.03 0.00045

z-score 39.9 10.0 26.45 32.3 560

Table 2: Calibrated results for the case of three species
κ β I1 I2 I3 ξ

exact 4 1 0.9 1.1 0.98 0.25

value

calibrated 4.02 1.00 0.904 1.11 0.987 0.254

value

standard 0.12 0.09 0.025 0.025 0.025 0.0003

error

z-score 68.8 11.5 35.7 43.7 39.0 679

In conclusion we have reformulated the stochastic
LVC model by simply replacing the competition term
−∑N

j=1 aijxj in Eq.(3) by −∑N
j=1 aij lnxj as shown in

Eq.(6). In other words, whilst the classical LVC model is
a simple extension of the logistic growth model for N in-
teracting species, the modified LVC model is derived from
the Gompertz model of population growth. By means of
Ito’s lemma and some simple changes of variables, we
have succeeded in deriving the N -dimensional joint p.d.f.
of the stochastic modified LVC model in closed form.
With the joint p.d.f., an analytical likelihood function
can be constructed readily, and thus model-fitting proce-
dures become feasible and efficient. In addition, we have
demonstrated that the calibration of model parameters
based upon the Monte Carlo simulated time series is in-
deed both efficient and accurate.
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