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Abstract—This paper present a review of mathematical and
physical approaches of homogenization, fractal and multifractal
methods for the study of roughness effect in the bonded mate-
rials. In particular, attention is paid to the effects of roughness
on materials joined through an adhesive. Firstly, considering
the periodic roughness, the different homogenization methods
are presented, including mathematical and physical approaches.
Secondly, when the rough surface is no longer considered
periodic and taking into account multi-scale of asperities, the
article focuses on fractal methods. Lot of research has focused
on the effect of roughness irregularities on surface contact,
friction or wear, crack propagation using fractal theory. Mul-
tifractal analysis was introduced in the 80s and has overcome
the limitations of fractal analysis. The multifractal analysis of
fractal functions is performed using wavelets instead of boxes
like in the classical multifractal formalism.

Index Terms—Materials, roughness, homogenization, frac-
tals, wavelet, multifractals, adhesion, bonded assembly

I. INTRODUCTION

For a large number of industrial applications, bonding
assembly is proving to be a very interesting alternative
to other more conventional assembly techniques because it
allows in some cases to simplify the design of the assembly,
a considerable weight saving, a reduction cost and a more
homogeneous distribution of stresses in the joint. However,
we must remain cautious because the gluing, to be effective,
requires a sometimes restrictive implementation. To obtain a
high-performance bonding, a surface treatment to be bonded
must be considered. We are particularly interested in polymer
/ metal bonding assemblies [16]. The quality of a bonded
assembly depends on the contact at the interface of the two
materials to be assembled. it is necessary to understand the
interphase mechanism to control the adhesion and durability
of joints. Adhesion is defined as the energy expended to
separate the two parts of an assembly if the failure is
interfacial. Many factors have a significant influence on the
adhesion of glued assemblies. Among the factors that affect
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grip is roughness. Poorly adapted surface roughness can be
detrimental to bonding. It can in particular create interfacial
stresses at the level of the bumps and hollows. It can also
cause areas of initiation of rupture.

Among those that affect the mechanical, physical or
chemical properties of the interfacial bonds responsible for
adhesive / substrate adhesion, we are interested in roughness.
The roughness of a surface refers to the roughness and
variations in altitude that distinguish this surface from a
completely smooth surface. The surface roughness can be
described qualitatively or quantitatively, which explains the
large number of parameters proposed for its description.
Among the quantitative measurements are the statistical
parameters often used to model roughness: Ra, Rq, Rz.
They are based on the calculation of the average peak
heights and / or average depths of the valleys measured
on the profile. A number of standard roughness criteria
are internationally recognized by an ISO standard. Among
the measurement tools are those based on optics and in
particular those using the principle of light interference.
The interferometer and the scanning electron microscope
(SEM) are the main tools based on the interference of light.

Many engineering surfaces are rough and induced effects
that need particular attention especially in thin films. Various
methods of modelling that consider the influence of surface
roughness have been developed. In this paper, it is therefore
a question of reviewing the mathematical and numerical
techniques and concepts which make it possible to model and
analyze the phenomena of roughness in the assemblies. More
and more researchers in applied mathematics are interested
in roughness models and similarly, more and more physicists
are using mathematical and numerical methods to study the
difficulties associated with these problems. One of the aims is
to find an improvement in the adhesion between the substrate
and the adhesive.

In order to justify the condition of adhesion generally im-
posed by the adhesive on the rough walls of the domains, the
microscopic details of the walls must be taken into account
in the models. However, due to the exorbitant computation
costs, the phenomenon described is simplified by replacing
the interactions taking place within the system considered,
by the description of an average tendency. Such roughness
is usually modeled by defining the edges of the domain
using periodic functions that oscillate rapidly. One of the
approaches, which we will see in this paper, corresponds to
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the homogenization method which amounts to rewriting the
problem posed in two others: a local problem and a homoge-
nized problem. The coefficients of the global problem depend
on the solution of the local problems. Among the techniques
which seem to be the most efficient for taking roughness into
account in gluing assembly problems, we will see fractals
and the theory of wavelets. These mathematical methods
have given rise to a rich literature in the study of fracture,
initiation and crack propagation. Modeling of bonded joint
began with the problem of two adherents joined by a thin
adhesive film of thickness ε. An asymptotic expansion gives
a simplified model in which the adhesive is treated as a
material surface. Many mathematicians have studied the
phenomena of roughness in thin films. They are interested in
the case of thin and rough domains of size ε2 and show that
we can see these roughness as a disturbance or as an effect
of the main order effect of to fluid mechanics problems.
The homogenization method for the problems of roughness
effect in thin films and films interfaces have been adapted
by physicists in optical, mechanical, wetting ... In particular
in the field od adhesion, lubrication, contact, friction.

Fractal analysis is another very popular mathematical model
to characterize roughness. The concept of fractal was de-
scribed by Mandelbrot, and many lines of research have
emerged applying fractal analysis for the characterization,
description, measurement of rough surfaces. In fact, the
fractal approach to roughness does not only result in the
search for intrinsic surface parameters but in reconsidering
numerous surface phenomena, taking into account the multi-
scale nature of roughness. Some researchers have studied the
effect of roughness irregularities on contact, friction or wear
of a surface using fractal theory [...]. These issues intricate
the multifractal nature of the composition of surfaces. Mul-
tifractal formalism is the concepts related to the estimation
of the spectrum of singularities of a singular mathematical
measure whose variations are subject to wide variations. This
formalism based on the theory of wavelets was introduced
in the 1990s by Mallat [41] [42], Arnéodo [6] [7] [8], Bacry
[54] and Muzy [54]. The wavelet transformation is a math-
ematical tool that appeared in the 1980s in signal analysis
and was introduced by two French researchers, Morlet and
Grossmann [29] within the framework of the analysis of
seismic signals. It consists in decomposing a signal on a set
of functions characterized by a position parameter and a scale
parameter. The wavelet transform is particularly suitable for
analyzing the scale invariance properties of fractal objects.
It allows you to zoom in on well-localized structures by
adjusting the scale parameter. Singularities and irregular
structures often correspond to essential information in the
analyzed signal. The local regularity of the signal can then
be described by the decrease in the modulus of the wavelet
transform across the scales.

In recent years, the researchers combined the two methods
for introducing a multifractal analysis of irregular signals
based on the wavelet transform modulus maxima (WTMM).
The WTMM methodology has been generalized in 2D for
multifractal analysis of rough surfaces [22]. The evolution
of the Transform Modules Maximas into Wavelet through
the analysis scales makes it possible to estimate the Holder
exponent h(x0). This approach becomes more stable than

the old standard box-counting methods ... Then it can be
applied in the field of fracture mechanics to study the process
of crack propagation. Obviously, Wavelet Transform prove to
be an effective tool for multiscale characterization of surfaces
and their main advantages are their ability to perform local
analysis and to reveal singularities.

The main idea of this paper is to provide a sort of toolbox to
tackle the roughness effect problems of complex surfaces
joined by an adhesive. A brief review is given of the
various mathematical methods that have been adapted to
the problems of surface roughness in the physical domains
of adhesion, contact, rupture in bonded assemblies. They
are approached according to two approaches: one when the
roughnesses are considered periodic, the other when the
rough surfaces are characterized by a fractal geometry. In
the first part, the homogenization methods applied in dif-
ferent models are reviewed with mathematical and physical
approaches. Some of these mathematical models are not
directly related to the problem of adhesion of assemblies,
but these methods of homogenization can be applied to
them. The second part is reserved for models applying fractal
geometry. Finally the multifractal analysis is discussed with
in particular the application of the wavelet transform modulus
maxima method.

II. HOMOGENIZATION METHODS

As glued assemblies are made up of adhesives and a thin
layer of adhesive, we will first provide a theoretical review of
mathematical methods, specifically homogenization methods,
for thin adhesive layers. Then we will see in the following
paragraphs the study of the effect of roughness in thin
layers. Before therefore presenting the mathematical method
modelling the mechanical and physical behavior of bonding
and roughness interfaces. The first paragraph is dedicated
to the mathematical homogenization of an adhesive thin
layer with a soft interface. it constitutes an introduction
before the study and the modeling of bonded joints on
rough surfaces which are studied in the following paragraphs.
As the thickness of the joint is small with respect to the
other adherents, the adhesive joint is considered as a small
parameter ε. One injects the displacement and the stresses
indexed by ε into the mechanical problem. Homogenizing the
problem consists in studying the limit problem, i.e. studying
the asymptotic behavior of the solution when ε tends to 0.

A. Homogenization asymptotic of thin layers

From the problem of thin films in fields such as aero-
nautics, nuclear ... arose from modeling methods called
multiscale methods to respond to scaling problems. Many
works have been developed for the mathematical and me-
chanical modeling of adhesive assemblies based on asymp-
totic methods [25], [28], [37], [62]. In various works, the
modeling of the thin layers of assemblies was based on the
homogenization asymptotic method [51], [60], [69].

1) Energy Asymptotical Method: We illustrate this method
with the model introduced by Dumont et al. [23] which study
the asymptotic first order analysis of two structures bonded
together : they consider two cases the gluing of an elastic
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Figure 1. (a) Initial, (b) rescaled, and (c) limit configuration of a solid
glued to a rigid base.

Figure 2. Interphase/interface problem. Left: the initial problem with an
interphase of thickness ε. Middle: the rescaled problem with interphase
height equal to 1. Right: the limit interface problem.

structure with a rigid body and the gluing of two elastic
structures.

They extend the imperfect interface law given in [39] to
the case of a very thin interphase whose stiffness is of the
same order of magnitude as that of the adherents. And the
Lamé’s coefficients of the interphase do not depend on the
thickness ε of the interphase. For the asymptotic analysis for
an elastic body glued to a rigid base, they introduce a small
parameter ε which defines the thickness of the glue. Body
force f is applied in Ωε

+, and the interface Γ is considered
as a plane normal to the third direction e3. The system of
equations is given by:

divσε + f = 0 in Ωε
+ ∪Bε (1)

σεn = g on Γ1 (2)
uε = ud on Γ0 (3)
uε = 0 on Γ (4)
σε = A+e(u

ε) in Ωε
+ (5)

σε = Âe(uε) in Bε. (6)

where e(uε) is the strain tensor eij(u
ε) = 1

2 (uij +

uji), i, j = 1, 2, 3 and where A+,Â are the elasticity tensors
of the deformable adherent and the adhesive, respectively.

Using asymptotic expansions with respect to the parameter
ε and the very small interface, the equilibrium problem is

written as a minimization problem of the total energy:

Jε(uε) =

1

2

∫
Ωε

+

A+e(u
ε) · e(uε)dx−∫

Ωε
+

f · uε −
∫
Γ1

g · uε − 1

2

∫
Bε

+

Âe(uε) · e(uε)dx

(7)

Moreover, they introduced a change of variables to
reformulate the mechanical energy in an interphase domain
independent of ε in the glue and the adherent:

(z1, z2, z3) = (x1, x2,
x3
ε
) (x1, x2, x3) ∈ Bε (8)

(z1, z2, z3) = (x1, x2, x3 + 1− ε) (x1, x2, x3) ∈ Ωε
+ (9)

After scaling et minimizing the energy, they obtained the
following problem at the order zero:

div(A+(e(u
0))) + f̄ = 0 in Ω0

+ (P0) (10)

A+(e(u
0))n = g on Γ1 (11)

A+(e(u
0))n = 0 on ∂Ω0

+ (Γ1 ∪ Γ) (12)

u0 = 0 on Γ (13)

and the problem at the first order:

div(A+(e(u
1))) = 0 in Ω0

+, (P1) (14)

A+(e(u
1))n = 0 on ∂Ω0

+ \ Γ (15)

u1 = ((K̂33)1(A+(e(u
0)))n)− u03, on Γ (16)

And in the case of plane strain in the plane (x1, x2),
the interface between the glue and the adhesive is a line
orthogonal to the direction e2. They reobtain the problem
P0 and the problem P1 modified as:

div(A+(e(u
1))) = 0 in Ω0

+, (P1) (17)

A+(e(u
1))n = 0 on ∂Ω0

+ Γ (18)

u1 = ((K̂22)−1(A+(e(u
0)))n)− u02, on Γ (19)

where the matrices K̂jl, j, l = 1, 2, 3 are defined by

K̂jl
ki := Âijkl. (20)

For the case of the gluing of two elastic bodies, satisfy-
ing the plane strain hypothesis, the displacement along the
interface is replaced by a jump of the displacement across
the interface between the two bodies. Numerical experiments
have shown the validity of the interface law method when
the interphase thickness becomes smaller. The interface law
is able to reproduce the mechanical behavior. The numerical
scheme, implemented in a finite element, for the adhesion of
two deformable bodies, was based on the Nitsche’s method.
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2) Matched Asymptotic Expansion Method: Another ap-
proach successfully applied many times to adhesive assem-
blies is that of matched asymptotic expansions see [1],
[63], which consist in defining two approximations: one, far
from the disturbance and a second in the vicinity of the
disturbance. The connection of the two approximations de-
fines the approximate solution of the sought field. Adhesive
assemblies contain a layer of negligible thickness e compared
to a length L characteristic of the assembly. Then a small
parameter ε = e

L is introduced. Two problems are analyzed:
one external (outer problem) where the thin layer plays
the role of disturbance, and the other ”undisturbed” which
rests on the homogeneous structure. One then introduces an
asymptotic development which restores the behavior far from
the joint and which brings into play the parameter ε:

u(x, y) = u0(x, y) + ϵu1(x, y)... (21)

The displacement is then characterized by the undisturbed
continuous field u0 with its corrector ϵu1 in connection
with the thin layer. The joint is replaced by an interface
of discontinuity, when ε → 0. For the second development,
in the near field, the rapid variation of u(x, y)ε is accounted
introducing the variable y = y

ε

u(x, y)ε = U0(x, y) + ϵU1(x, y)... (22)

It describes the behavior of u near the thin film.

Due to the separation into two subspace, the question of
boundary conditions arises. There are missing boundary
conditions in the near field when y → 0, there are missing
conditions in the far field when x → 0±. These missing
conditions for near and far fields are provided by so-called
matching conditions which ensure the continuity of the so-
lutions in an intermediate region. We want the two solutions
to correspond in this intermediate region, for this purpose a
Taylor expansion is then applied to the outer expansion 21
around y = 0. The specific connection rules linking the two
developments give

lim
y →±∞

(U0±(x, y)− u0±(x, 0)) = 0,

lim
y →±∞

(U1±(x, y)− y∂u0±(x,0)
∂y − u1±(x, 0)) = 0

This approach therefore allows a multi-scale modeling of
structures with thin layers, however to go further we will be
interested in works which study the influence of roughness
on the quality of the assembly.

B. Study of the influence of roughness in thin layers by
homogenization methods: a mathematical approach

The next step is the study of the phenomena of roughness
in thin films in particular when the substrate has a rough sur-
face at the interface. In bonding assembly, surface roughness
influence is very important. The low thickness of the joint
makes all process particularly sensitive to these irregularities,
which can have a significant impact on their performance.
From the point of view of calculation, the mesh at the scale
of these irregularities entails prohibitive calculation costs, so
that other approaches are necessary to take into account the
average effects of these roughness. Mathematicians have also
been interested in the problems of roughness in thin films, in

particular if one considers that the roughness is periodic the
homogenization methods for periodic structures have been
used. Among the classic periodic homogenization methods
we have the multiple scale method of A. Bensoussan, JL
Lions and G. Papanicolaou [10], the oscillating test functions
method of L. Tartar [66], the double scale convergence
method of G. Nguetseng [53] and G. Allaire [4] and the
method of periodic unfolding of D. Cioranescu et al. [17].

Here, the two models for studying the effects of roughness
on thin films by homogenization methods, which will be
exposed in the paragraphs below do not directly concern
bonded assemblies but rather the mathematical analysis of
problems resulting from the fluid mechanics. However the
two following models can be applied in adapting it to glued
joints.

1) Influence of roughness on the Elrod-Adams model:
Many mathematicians have studied influence of roughness
in thin flows. G. Bayada, C. Vazquez and S. Martin in
[9], [14] studied the influence of surface roughness on the
Elrod-Adams model. The surface roughness, assumed to be
periodic, was modeled by considering a strongly oscillating
height

h := h0(x, x/ε), ε ≤ 1, (23)

and the influence of these roughness was studied by tech-
niques multi-scale homogenization. The oscillating function
h involves two distinct scales: a slow scale, described by
the usual variable x, and a fast scale described by the
variable y = x/ε with this variable y living on the unit
cell Y :=]0, 1[2, the ε parameter measuring the frequency
of roughness.

Thus, instead of calculating the solution of the direct
problem at fixed ε, we will be interested in determining
an approximate solution by studying the asymptotic when
ε→ 0.

In their work, the homogenization of the Reynolds equa-
tion was extended to take into account the non-linearity
introduced by the Elrod-Adams model. They described the
homogenized models taking into account surface defects
whose scale ratios vary significantly with the following form
h := h0(x, x/ε, x/ε2...). They generalized the study in order
to take into account nonlinear phenomena such as the elastic
deformation of the surfaces which confine the flow and the
piezoviscosity of the fluid which makes the problem non-
local

h := h0(x, x/ε) +
∫
Ω

k(x, z)p(z)dz, µ = µ0e
αp (24)

with h0, the rigid contribution of the spacing between sur-
faces, k the Hertz kernel function which depends on the type
of contact considered and which aims to weight the effects
of high pressure on the elastic deformation of surfaces and
α ≥ 0 le piezoviscosity parameter.

2) Influence of roughness at main order: In their work
[15] [18] Chupin et al. show that even small roughness can
have an effect on the main order. Thus, in a thin domain of
order ε and roughness of order ε2 they approach the Stokes
equations by a modified Reynolds equation. The modification
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is explicitly given according to the roughness, they show the
flow can be accelerated by the roughness. The limit problem
is justified thanks to the double scale convergence. Indeed,
the problem has two small scales: that related to the thin
domain and that related to roughness. The height is of the
form

hε(x) = εh1(x) + ε2h2(
x

ε2
) (25)

on the domain defined by:

Ωε = {(x, z) ∈ R×R; 0 < x < 1 et 0 < z < hε}. (26)

Figure 3. The domain

The Stockes equations considered are: −∆uε +∇pε = 0 on Ωε

div(uε) = 0,
uε|z=0 = (s, 0) and uε|z=hε = (0, 0).

First, they start to scale only the macroscopic domain and
not the roughness, the slow variable x is separated from
the fast oscillation variable X = x

ε2 by setting h(x,X) =
εh1(x)+ε

2h2(X). Next, the change of variable Z = z
h(x,X)

is performing. Then the following development is injected
into the problem II-B2:

uε = u0 + εu1 + ε2u2 + ..., (27)
wε = w0 + εw1 + ε2w2 + .. (28)

pε =
1

ε2
p0 +

1

ε
p1 + p2...ε

2u2 + .... (29)

The following theorem D. Bresch, C. Choquet, L. Chupin,
T. Colin, and M. Gisclon is obtained:

Theorem: Let, (uε, wε, pε)p>0 be a series of Stokes
solutions II-B2 in the domain Ωε. The suite brought up to
scale {(uε, w

ε

ε , ε
2pε◦(x, hεZ)}ε>0 converges double scale to

the weak solution (u0, w1, p0) of the following generalized
Reynolds system:

 −∂2ZZu0 + h21∂xp0 +MZ∂Zu0 = 0,
∂Zp0 = 0,
∂x(h1u0) + ∂Z(w1 − Z∂xh1 · u0) = 0

with M =
∫
T |h

′
2(X)|2dX .

For the proof, after having given the estimations on the
speed field then on the pressure:

∥uε∥L2(Ω) ≤ 1, ∥∇uε∥L2(Ω) ≤
1

ε
,

∥∂Zuε∥L2(Ω) ≤ 1
(30)

∥pε∥L2(Ω) ≤
1

ε2
, ∥∇uε∥H−1(Ω) ≤

1

ε
,

∥∇pε∥L2(Ω) ≤
1

ε2
, ∥∂Zpε∥L2(Ω) ≤

1

ε
,

(31)

One can then extract the subsequences which two-scale con-
verge towards the following limits, for p0 ∈ L2(Ω, L2(T)),
u0 ∈ L2(Ω, H1(T)) and w0 ∈ L2(Ω, L2(T))

∥uε∥L2(Ω) ≤ 1, ∥∇uε∥L2(Ω) ≤
1

ε
,

∥∂Zuε∥L2(Ω) ≤ 1
(32)

∥pε∥L2(Ω) ≤
1

ε2
, ∥∇uε∥H−1(Ω) ≤

1

ε
,

∥∇pε∥L2(Ω) ≤
1

ε2
, ∥∂Zpε∥L2(Ω) ≤

1

ε
,

(33)

One can then extract the subsequences which two-scale con-
verge towards the following limits, for p0 ∈ L2(Ω, L2(T)),
u0 ∈ L2(Ω, H1(T)) and w0 ∈ L2(Ω, L2(T))

ε2pε ⇀ 2p0, uε ⇀ 2u0 and wε ⇀ 2w0. (34)

Then by passing to the limit in Stokes equations, they
show that the limit (u0, w1, p0) satisfies the system II-B2,
with the vertical speed

w1 =

∫
T
η1dX (35)

C. Study of the influence of roughness in thin layers by
homogenization methods: a physical approach

The paragraph reviews, in the recent literature, the study
of the influence of roughness in adhesion problems thanks
to homogenization. In general, mechanics and physicists
use homogenization methods differently: the most popular
approach is a representative volume element, i.e. a sample
of size larger than the heterogeneity but still small compared
to the size of the overall producing domain, in mean, the
effective properties of the material. However, physicists have
applied in their work the different methods of homogeniza-
tion, asymptotic analysis and interface models, specifically,
in the area of the adhesion, in the mechanical contact issues,
the adhesive and cohesive failure for the fracture model in
material and for rough interface. What we will see in the
following paragraphs.
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1) Influence of roughness in adhesion problems: The
implementation of numerical modeling and the use of ho-
mogenization methods in the work of G. Bresson in [12]
allowed the evaluation of the local and effective properties
of the structural adhesive, with a view to its application
on a prototype space launcher. Significant surface analysis
work has been carried out to set up a stable and efficient
assembly process: indeed, the adhesion of glues on the
aluminum substrate strongly depends on the composition and
the roughness of the surface to be glued. An increase in the
surface roughness to be bonded should lead to an increase in
the contact surface see [72]. However, too much roughness
decreases the penetrating capacity of the adhesive, which
increases the formation of voids and introduces additional
stress concentrations see [24]. The roughness parameters
[27] presented: Ra, arithmetic mean roughness, Rp, peak,
Rv , valley, Rt, max profile height, Rq , root mean square
roughness of the profile, Rz , arithmetic mean of the 5 highest
peaks and the 5 deepest troughs, Rku, amplitude distribution
curve flattening factor (kurtosis), Rsk, skewness factor, make
it possible to estimate the shape of the profiles generated by
the treatment (here sandblasting). This led to the conclusion
that it was wise to increase the roughness of the substrate in
order to increase the surface on which the glue applied.

The author used the homogenization method, the aim
being to predict the mechanical behavior of an epoxy matrix
material reinforced by particles but weakened by air bubbles
in the matrix. The average local mechanical properties of the
microstructure are evaluated in order to determine the elastic
properties of the matrix reinforced by the particles. Mori-
Tanaka’s homogenization model [52] is preferred to that
of the self-consistent model [38]. The Mori-Tanaka model
[11] is defined for a heterogeneous medium, for example
a particulate medium, consisting of inclusions distributed
isotropically behaving, on average, like isolated inclusions
in an infinite matrix. This method makes it possible to
analyze the heterogeneity of the mechanical properties of
the adhesive as well as the volume fraction of porosities
which makes it possible to estimate the effective local stress
leading to the overall stress in the adhesive. The porosities
redistribute the stresses to nearby elements in the adhesive
joint.

In [70] Verhoosel et. al proposed a computational ho-
mogenisation framework to model cohesive and adhesive
failure in materials with complex microstructures. They
considered the Hill-Mandel energy condition to define the ho-
mogenization relations. For the cohesive crack, the averaging
relations are applied to a finite element model representing
the bulk material in the vicinity of a crack. For the adhesive
crack, the material in the adhesive layer is represented
by the micro-scale model. For both cases the macroscopic
traction-opening relations are only defined on macroscopic
cracks, the proposed averaging scheme can be regarded as
a homogenisation procedure applied along the macroscopic
cracks.

However, physicists and mechanics have adapted mathemat-
ical methods of periodic homogenization to their structural
roughness problems.

[13] developed a tool, thanks multi-scale homogenization

method, of combined effects of surface roughness and lu-
bricant rheology on the hydrodynamic contact of inclined
slider bearing. The pad surface is rough and stationary but
the lower surface is assumed to be smooth and moving. The
rheological behavior of the lubricant flowing between the
two surfaces is performed by the V.K. Stokes couple stress
fluid model. The behavior of a non-Newtonian polar fluid in
stationary, isothermal and laminar flow regimes is described
by the equation:

∇ ·G(h, l)∇p = Λ
∂h

∂x1
on D = (0, L)× (0, B) (36)

where

G(h, ) = h3 − 12l2h+ 24l3 tanh
( h
2l

)
(37)

and
Λ = 6µU (38)

where l =
√

η
µ is the parameter of the stress couple, with

µ the dynamic viscosity of the lubricant and η the physical
constant of the fluid. The pressure field unsatisfying 36 the
equation and the following Dirichlet limiting condition:

p = 0 on∂D (39)

The authors used multiple scale homogenization method
for study the effects of surface roughness on hydrody-
namic contact performance. To homogenize the modi-
fied Reynolds equation, local coordinates are introduced
(y1, y2) = (x1

ε ,
x2

ε ) with (y1, y2) ∈ Y = (0, 1) × (0, 1) and
the thickness of the film is expressed by:

h(x1, x2, y1, y2) = h0(x1, x2) + h1(y1, y2) (40)

The asymptotic expansion of the pressure

p(x1, x2, y1, y2) =

p0(x1, x2) + εp1(x1, x2, y1, y2) + ε2p2(x1, x2, y1, y2) + ...
(41)

where p1, p2) are periodicals in relation to variables (y1, y2),
and the following differentiation rule

∇ = ∇x +
1

ε
∇y (42)

lead to the homogenized problem:

∇x · (A(x)∇p0) = ∇x· (43)

and the cellular problem

∇y · (G(h, l))∇yv1 = − ∂G

∂y1
on Y (44)

∇y · (G(h, l))∇yv2 = − ∂G

∂y2
on Y (45)

∇y · (G(h, l))∇yv3 = Λ
∂h

∂y1
on Y (46)

Homogenized pressure satisfies p0 = 0 on the border
∂D. Numerical simulations were performed for transverse,
longitudinal and anisotropic roughness patterns, and various
values of the couple stress parameter.
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Thanks to homogenization methods, they concluded: that
multi-scale homogenization is efficient for all three rough-
ness patterns, and surface roughness and stress torques due
to the presence of polymeric additives in the lubricant have
significant effects on the hydrodynamic performance of the
contact.

In [56] J. Orlik used homogenization methods for a physical
problem: a contact problem of two elastic bodies with
periodically rough surfaces at the interface is considered.
She takes the size of the micro-peaks and valleys very small
compared with the macro-size of the bodies. The period of
the micro-roughness on the contacting interface is of order
ε.

She considers the equilibrium equations and constitutive
elastic relations with contact and boundary conditions. She
develops a method that allows deriving a macro-contact
condition on the interface using the two-scale asymptotic
homogenization procedure that takes into account the micro-
geometry of the interface layer and the stiffnesses of ma-
terials of both domains. A two-scale algorithm for the
solution of the contact problem was performed to solve
homogenized problem by the Finite element method and the
cell-problem. The averaged contact stiffness obtained allows
the replacement of the interface layer in the macro-model
by the macro-contact condition. The advantages of two-scale
homogenization in the mechanical sense are:

• The fact of starting with the frictionless contact micro-
problem with a rough interface, but ending up with the
macro-problem containing friction.

• Two-scale homogenization allows to reduce contact
problem with two different size scales on the micro and
macro-levels to a single-scale problem.

III. FRACTALS, MULTIFRACTALS AND WAVELETS
METHODS

A. Fractal measurment of rugosity

The modeling of roughness in physics calls upon var-
ious mathematical theories, fractals, spectral analysis and
its derivations, Fourier transform, wavelet transform. More
concretely, the analysis of deterministic signals is linked to
classical analysis, a field in which the functions are piecewise
”regular”. The notion of regularity is related to the notion of
differentiability. We can immerse the deterministic functions
(the classical functions) in a larger space which also model
the impulses: this is the space of distributions of L. Schwartz
[61]. In this space, certain discontinuous functions are dif-
ferentiable..... For its functions, long considered classic, the
notion of roughness has no place.In the study of random
signals, there are many examples of ”pathological” signals,
white noise, Brownian motion,... these signals are part of a
new class of functions which have the property of being non-
differentiable everywhere. They are special cases of fractals,
so named by B. Mandelbrot [46] at the very beginning of
computer science.

Fractal geometry, is a the right tools to model the rough-
ness of a shape. In this theory, the notion of dimension
of topological spaces can be generalized. Its value can be
non-integer. In fractal theory, the dimension is calculated by
another method: we talk about similarity or scale dimension.

Figure 4. Fractal images from Multibrot sets for various exponents of d

This method restores the classical (topological) dimension
for regular objects (rectifiable curve), regular ”pavable”
surface...), but also adapts to irregular objects. It makes
it possible to make measurable objects that would not be
measurable in the classical sense. The classical dimension
of a piece of wool of negligible thickness is one. but from
the point of view of the scale dimension, this is not always
exact: if we compress a piece of wool into a ball that we place
in a cube, or any other regular volume, its dimension n is no
longer 1 but 3. The similarity dimension therefore leads to
consider intermediate dimensions, and to measure interme-
diate physical objects between curve, surface, volumes... and
can be non-integer. An object can be of infinite measure if
the dimensional space in which it is measured is not adapted.
On the other hand, it will be of finite measure if its scale
dimension corresponds to it. In this review, we will revisit the
notion of fractal, the calculation of the fractal dimension and
the resulting roughness measurement, we will then talk about
spectral analysis and in particular the Fourier transform, and
the Wavelet transform as well as the link with fractals. We
will also evoke a generalization of fractals: multifractals
which make it possible to stick to natural phenomena as
closely as possible.

B. Simalarity dimension

The similarity dimension generalizes the classical dimen-
sion of regular objects. A good piece of curve will also have
a scale dimension equal to 1, a good piece of surface, a
scale dimension equal to 2....etc. However, a rough object
contained in a plane or more generally a piece of regular
surface may have a dimension between 1 and 2, the excess
of dimension compared to 1 characterizes the roughness.
Similarly, an object contained in a straight line or a piece
of regular curve, may have a dimension between 0 and 1,
we then speak of dust. One method for calculating the scale
dimension is the box dimension, more precisely a ball of
wool compressed in a cubic box, will have a box size of 3.

C. Fractals applications

B. N. J. Persson and E. Tosatti have studied in [58] the
influence of surface roughness on the adhesion of elastic
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solids. They consider, as in reality, different length scales
for surfaces roughness. They take the case that the roughness
surfaces are described by a self-affine fractal, and they show
that the adhesion force may be strongly reduced or may van-
ish when the fractal dimension Df is greater than 2, 5. They
consider the block-substrate pull-off force as a function of
roughness, they find a partial detachment transition preceding
the full detachment with single scale roughness. They found
in good agreement with experimental data, that the partial
detachment results in a very substantial reduction in the pull-
off force prior to full detachment.

In [68] X. Yin, K. Komvopoulos derived an adhesive
wear model of rough surfaces in normal contact based on
plasticity-induced wear behavior that accounts for adhesion
between interacting asperities. In this paper, the equivalent
rough fractal surface is assumed to be isotropic and self-
affine, then the 3D surface topography is represented by a
(2D) surface profile.

The truncated segment is approximated by an asperity with
a spherical cap shape with a base radius r′ which is equal to
one-fourth of the asperity’s base wavelength and height equal
to the local interference δ define by (Yan and Komvopoulos,
[67])

δ = 2G(D−2)(ln γ)
1
2 (2r′)(3−D) (47)

where D and G are the fractal dimension and fractal rough-
ness, respectively, and γ (γ > 1) controls the density of
frequencies in the surface profile. These asperity contacts,
fundamental in contact mechanics, follow an island distribu-
tion see Mandelbrot [44]. This island distribution obeys the
power-law relationship:

N(a′) = (
a′L
a′

) (48)

where N(a′) is the number of asperities with truncated areas
larger than a′, a′L is the largest truncated contact area at a
given global interference h. And the total truncated area is
expressed as

S′ = (
D − 1

(3−D
)a′L[1− (

a′S
a′L

)
(3−D)

2 ] (49)

The adhesive wear analysis of rough surfaces in normal
contact indicates that both the wear rate and the wear
coefficient depend on the elastic–plastic material properties,
fractal parameters, surface energies, material compatibility,
interfacial adhesion, and total normal load through the total
truncated contact area. Numerical simulation was performed
revealed the effects of material properties, roughness, surface
compatibility, and environmental conditions on the adhesive
wear rate and wear coefficient. They concluded that plastic
deformation at asperity contacts is controlled by the critical
truncated contact area, which depends on the elastic–plastic
material properties, roughness, and work of adhesion of the
contacting surfaces. Particulary, the wear rate and the wear
coefficient decrease with the interfacial adhesion and increase
with the roughness of the contacting surfaces. The material
properties, surface roughness, and work of adhesion that
depends on the surface energies of the contacting surfaces of
the contacting surfaces affect the adhesive wear coefficient.

More recently, thanks to fractal dimension in, [59]

E.Saborowski et al evaluated the interlaminar shear and
tensile strength of mechanically interlocked polymer–metal
interfaces.

Figure 5. Box-counting algorithm.

The fractal dimension of the interface line D is given by

D =
1

k

k∑
i=1

di (50)

where k = log2 rmax and the individual box sizes d are
difined by

di = log2 ni+1 − log2 ni (51)

The image is divided in squares of size r, then for each ri
correspond a certain number of squares ni. Roughness mea-
surements were carried out with a stylus. They concluded that
tactile measured surface roughness slope is an appropriate
measure for coarse structures, but not for undercut, densely
arranged, and small-scaled profile elements. Whereas fractal
dimension is an appropriate, scale-independent measure for
describing the surface structure.

In his work [64], C.Secrieru characterizes the topography
of the fracture surface of materials using the fractal dimen-
sion. From the comparative study of the methods of calcu-
lating the fractal dimension applicable to fracture surfaces,
effective methods have been highlighted: the Box Counting
method, the oscillations method and the Hurst exponent
method. In the case of Charpy specimens and for hardened
XC 65 and 316L stainless steel steels, the determination of
the fractal dimension of the fracture surfaces by the classic
island method (Slit Island) was applied. It has been shown in
this work that the energy at failure by a single shock varies
inversely with the fractal dimension.

D. Multifractals analysis

We have seen the efficiency of fractal analysis methods
to describe roughness, however the fractal dimension is not
always sufficient to describe the irregularity. For a complex
object, the fractal dimension alone cannot characterize the
complexity completely. We then introduce the local fractal
dimension to describe the fluctuations in roughness at each
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point Stoyan et al [65], when the fractal dimension changes
from one point to another, we say that the object is multi-
fractal. Multifractal analysis first appeared with Mandelbrot’s
multiplicative cascade models for the study of energy dissi-
pation in the context of turbulence. He also observed in 1984
[45] that the fracture surfaces exhibit properties of magnitude
scale-invariances. The concept of fractal geometry has been
shown to be an effective tool for fractographic study. In [36]
Jing et al studied the morphology of the fracture surfaces
of certain metallic and ceramic materials and concluded that
these surfaces exhibit a multifractal character.

The bases of multifractal formalism were introduced in 1985
by Parisi and Frisch [26] in their article where they introduce
the very notion of multifractality and allow the introduction
of the Holder exponent. Their goal was to calculate the
spectrum of singularities not directly from its definition, but
rather from auxiliary quantities that can be easily estimated
numerically. With the appearance of the wavelet transform,
and the development of numerical computational tools, Mal-
lat and Hwang [40] were able to implement a theory which
links the evolution of local Maxima of the Moduli of the
Wavelet Transform (WTMM) through the analysis scales and
the Hölder exponent.

1) The wavelet transform modulus maxima method: The
WTMM method based on the continuous wavelet transform
and developed in the early 90s by Arneodo and his col-
laborators, helps to determine the singularity or multifrac-
tal spectrum of the signal. The local maxima modulus of
continuous wavelet transform WTMM of the signal gives
the Hölder exponent estimation. Decoster in his thesis work
[21] presented the theory, the numerical implementation and
the application to the statistical analysis of multifractal rough
surfaces of the 2D WTMM method.

D. Ait Aouit and A. Ouahabi in [3] introduced a multi-
fractal analysis to discriminate the irregular fracture signals
of materials based on the continuous Wavelet Transform
Modulus Maxima method (WTMM). The goal is is to define
in each fracture profile point the velocity variation law.
Fracture surfaces are considered as an anisotropic fractal
sets (multifractal). To determine the multifractal spectrum,
using WTMM method, they calculate the wavelet transform
(WT) of the signal at multiple scales, find the local maxima
of wavelet transforms in each scales and chain the wavelet
maxima across scales. The partition function in terms of
WTMM coefficients is defined by:

Z(q, s) =
∑

l∈L(s)

( sup
(u,s′)∈l,s′≤s

|WX(u, s′)|q), (52)

where WX(u, s) is is the continuous wavelet transform of
the signal X:

∀u ∈ R,∀s > 0, (53)
WX(u, s) = 1√

s

∫
R
X(x)ψ(x−u

s )dx. (54)

q the order of moments and l is the line of local maxima.
The scaling function τ(q) measuring the asymptotic decay

of Z(q, s) at fine scales s is given by:

τ(q) = lim infs→0
logZ(q, s)

log s
(55)

which means that

Z(q, s) ∼ sτ(q) (56)

Finally, the spectrum of singularities D(α) is defined by :

D(α) = inf
q∈R

(qα− τ(q) + c) (57)

where the exponent α measures the local singularity force
and α = dτ(q)

dq
Then they applied the WTMM method to the study of

crack propagation. They have calculated the fractal dimen-
sions of the 1D profiles according to the distance from the
site of the crack initiation.

Three profiles were distinguished in the 3D digitized
fracture surface: zone 1 correspond to the crack initiation
zone, zone 2 is the crack propagation one, and zone 3
corresponds to final rupture zone. Multifractal analysis of
these surfaces was investigated: the multifractal spectra was
estimated on the three crack zones with the Box-Counting
method and compared to the WTMM. The WTMM method
allowed a better characterization and differentiation of these
zones, it is considered as an efficient numerical tool for
fracture irregularity processing and for detect with better
accuracy the values of the singularities stamped by the
cracking.
In [57] the authors used multifractal functions to characterize
vibratory signals whose regularity may change abruptly from
one point to the next, because the study investigates the use of
vibration measurements to perform the tool-failure detection.
Using WTMM method applied to vibratory signals, Ouahabi
et al. have shown that the vibratory response acquired
during machining process has a multifractal behavior (the
multifractal spectra f(α) was calculated from vibratory re-
sponses acquired during tool life). This made it possible to
characterize the wear of the tools by multifractal analysis,
and it is shown that it is an efficient tool wear monitoring
system.

2) The wavelet leaders method: The wavelet leaders
l(j, k) was initiated by Jaffard et al. [31], defined from the
discrete wavelet coefficients d(j, k) see [33]. The construc-
tion of leaders is carried out from small to large scales. The
leader l(j, k) is defined as the maximum, in absolute value,
of the coefficients d(j, k1), d(j, k), d(j, k+1), as well as of
all the parents of these three coefficients at finer scales.

In [35] Jaffard et al; compare mathematically multifractal
formalisms based on the wavelet transform modulus maxima
approach and on wavelet leader approach. They illustrate
the theoretical comparison between WTMM and the wavelet
leaders approach with an application in image processing
fractography. With the discrete wavelet transform, a = 2j ,
the partition function is given by:

Z(j, q) =
1

n

nj∑
k=1

|dx(j, k)|q, (58)
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where nj denotes the number of wavelet coefficients dx
available at scale 2j .

Z(j, q) =
1

n

nj∑
k=1

|lx(j, k)|q, (59)

where nj denotes the number of wavelet coefficients lx
available at scale 2j . Then the spectrum of singularity of
process X in Rd is :

D(h) = min
q ̸=0

(d+ qh− τ(q)) (60)

Authors showed that wavelet leader brings substantial theo-
retical, conceptual and practical improvements.

3) The wavelet packet transform method: The wavelet
packet transform developed by Coifman in 1992 [20] was
born from the desire to adapt to the time-frequency charac-
teristics of signals. The wavelet method is a generalization
of the wavelet decomposition, which offers a richer signal
analysis. A transform level is indexed by three parameters:
position, scale, and frequency. For an orthogonal wavelet
function, the method generates a set of bases, called wavelet
packet bases. Each of these bases offers a particular possibil-
ity of encoding the signal, while preserving its global energy,
and an exact reconstruction.

Xiao Wang et al. investigated in [71] wavelet packet
transform (WPT) for surface roughness characterization and
surface texture extraction. Surface textures are analysed and
separated by using wavelet packet transform in 2D simulation
and they noticed that the reconstructed roughness and wavi-
ness coincide well with the original ones. They calculated the
profile (Ra, Rq, Rc, Rku, and Rsk) and areal (Sa, Sq, Sv, Sp,
Sku, and Ssk) roughness parameters of different surfaces to
quantify the characterization results and they compared with
those measured by a profile meter. They shown that extracted
textures clearly exhibit the surface structure and the basic
tool marks, performing texture classification and surface
estimation. They concluded that WPT can characterizing
surface finishes, including evaluating surface roughness and
extracting surface texture.

IV. CONCLUSION

Various mathematical and physical models for the charac-
terization of rough surfaces in adhesion problems of glued
assemblies have been reviewed in this paper. These models
included two different approaches to explain the roughness
effect on the adhesion in thin films. Some models presented
do not directly concern the adhesion of assemblies but could
however be adapted to this problem and to other physical
situations. The first approach is based on the homogenization
method corresponding to a periodic rough surface. Con-
versely, in the second approach, the surface with multi-scale
properties is characterized by fractal geometry.
Homogenization methods are highly valued techniques for
studying the influence of roughness both among physicists
and mathematicians. This method has once again recently
demonstrated its effectiveness: one of the advantages, for
example, of two-scale homogenization procedure, is that it
reduces the problem with two different size scales on the

micro and macro-levels to a single-scale problem. Now, if we
consider that the surface is fragmented and discontinuous,
this is the fractal geometry which is the powerful tool for
the characterization of roughness. The advantage of fractal
geometry compared to the homogenization method is that
it incorporates the irregularities of the rough surface. The
fractal analysis of rough surfaces in the context of glued as-
semblies is based on the fractal dimension. But for a complex
structure, the fractal dimension alone cannot characterize
the complexity completely specifically with a multifractal
behaviour. Then to detect the multi in multifractal scaling
the multifractal analysis is used to compute a singularity
spectrum, a set of fractal dimensions. In order to determine
the spectrum of singularities there exists an efficient and
accurate numerical algorithm: the wavelet transform modulus
maxima (WTMM) which makes it possible to determine the
singularity spectrum D(h) via the scaling exponents of some
partition functions (q) defined on the skeleton. Using wavelet
transform, the WTMM method has already made it possible
to better understand many different problems and has been
generalized for 2D signal for multifractal analysis of rough
surfaces. However, other methods are discussed which seem
very effective, it appears that to compute the multifractal
spectra, the discrete wavelet techniques based on the wavelet
leaders are the most robust.

The purpose of this article was to provide a detailed overview
of the mathematical toolbox for mechanics and physicists, in
therange of rough assembly surfaces. The different methods
discussed will be relevant to this area of research.
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[2] P. Abry, P. Gonçalves, J. Lévy-Véhel Eds., Lois d’Echelle, Fractales
et Ondelettes Lavoisier (Coll. Hermes) (2002)

[3] D. Ait Aouit. A. Ouahabi. Nonlinear fracture signal analysis using
multifractal approach combined with wavelets. Fractals, Vol. 19, No.
2 (2011) 175–183. World Scientific Publishing Company

[4] G. Allaire, Homogenization and two-scale convergence, SIAM J.
Math. Analysis, Vol. 23, (1992), p. 1482-1518.

[5] M. Cid Alfaro, A. Suiker, C. Verhoosel, R. de Borst, Numerical
homogenization of cracking processes in thin fibre-epoxy layers,
European Journal of Mechanics - A/Solids 29 (2) (2010) 119–131.

[6] A. Arneodo, F. Argoul, E. Bacry, J. Elezgaray, J.-F. Muzy, Ondelettes,
multifractales et turbulence : de l’ADN aux croissances cristallines,
Diderot Editeur, Arts et Sciences, Paris, 1995.

[7] A. Arneodo, B. Audit, N. Decoster, J.-F. Muzy, C. Vaillant, Wavelet-
based multifractal formalism : applications to DNA sequences, satel-
lite images of the cloud structure and stock market data, dans : ”The
Science of Disasters” ; A. Bunde, J. Kropp, H. J. Schellnhuber eds.,
Springer pp. 27-102 (2002).

[8] A. Arneodo, E. Bacry, J.-F. Muzy, The thermodynamics of fractals
revisited with wavelets, Physica A, Vol. 213, pp. 232-275 (1995).

[9] G. Bayada, S. Martin, et C. Vazquez. Effets d’anisotropie par ho-
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