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Abstract—An important technique for converting 2D videos
into 3D is depth image-based rendering (DIBR), which creates
virtualized perspectives with textured images and correspond-
ing depth maps. Yet, the majority of the currently used
methods struggle in handling the disocclusion holes in warped
virtual images. This research presents a unique deep learning-
based disocclusion hole-filling approach in stereoscopic vision
synthesis as a solution to this issue. Firstly, we explicitly take
into account some particular limitations of the synthesized
virtual views and designate them as scene influence maps in the
network, which might offer some significant extra scene cues to
lessen hallucinated content mixing among various layers. Then,
an enhanced directional scene influence map, which diffuses
using a novel anisotropic diffusion equation under consistent
stereoscopic constraints, is further investigated for efficient
disocclusion hole filling. Empirical analyses and comparisons on
the Middlebury and KITTI datasets confirmed that our approach
outperforms previous deep learning-based generative inpainting
algorithms for disocclusion hole filling in the warped views.

Index Terms—disocclusion hole filling, deep learning, scene
influence map, stereoscopic synthesis.

I. INTRODUCTION

RECENT developments in three-dimensional (3D)
videos provide more immersive visual experiences to

viewers than traditional two-dimensional (2D) videos. A
rising demand for 3D content is a result of the subsequent
3D industry growth. Currently, most material available for
3D TV broadcasting is produced by capturing a few image
streams and transmitting them towards a receiver for viewing.
Meanwhile, the procedure is time-consuming and expensive
due to shot planning, camera rig management, costly hard-
ware, and the substantial post-processing needed to correct
stereographic inaccuracies.

Depth image-based rendering (DIBR) can confidently be
considered as an alternative approach that allows the creation
of virtual views by utilizing only one referencing texture and
its coordinate depth map [1]. DIBR is a practical way to
convert 2D to 3D and it requires only a single viewpoint.
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The corresponding depth information can be extracted from
monocular image sequences using computer vision tech-
niques [2]. This lowers the total cost of the system and, more
crucially, makes it possible to utilize massive 2D multimedia
libraries that already exist.

The key technique of DIBR is referred to as 3D warping
[3]. This involves projecting every pixel in the reference
picture into world coordinates by utilizing the depth data,
then reprojecting all of the resultant points onto the object’s
viewing plane. However, a major drawback of DIBR is the
potential for artifacts to display within the virtual image.
Once a specific foreground available in the referenced view
obscures the background, disocclusion may be seen in the
virtual view [4]. The disocclusions look like voids since
no pixels get warped into such regions, which significantly
lowers the virtual view’s visual quality. This DIBR drawback
requires filling these holes, for which many algorithms have
been developed.

There are two sorts of traditional techniques. For the first
one, in order to minimize the size of the hole, the depth map
must first be preprocessed by adding a low-pass filter [5].
The foreground-background depth difference is a factor in
the creation of occlusions. Deep discontinuities often lead to
significant disocclusion. These techniques consistently high-
light the use of depth map refining prior to DIBR to prevent
holes [6]; however, they may contribute additional geometric
distortions or artifacts near the disocclusion regions. Several
improved approaches have been proposed to mitigate this
problem, such as asymmetric smoothing [7], [8], scene
structure, and content-dependent adaptive filters [9], [10].
Such approaches avoid extra smoothing in areas that aren’t
holes by maintaining greater smoothing in a few designated
limited regions rather than the full picture. However, these
approaches may reduce the 3D effect with depth maps’
smoothing. Furthermore, only tiny baseline conditions are
appropriate for such depth preprocessing techniques. For
larger baselines, a single smoothing is no longer sufficient
due to the increased disocclusion area.

The second technique fills up the disocclusion through
utilizing the textural correlation between neighboring pixels.
The inpainting-based approach to filling holes is another
available option [11]. The example-based inpainting algo-
rithm proposed in [12] can determine the priority of the
pixels at hole boundaries based on confidence and data terms.
The background texture must be used to fill the revealed
regions with uneven fills, though, as they are a part of the
backdrop. Employing the technique of [12] may introduce
some foreground textures into the hole regions, causing the
foreground to blend. To address this flaw, various methods
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employ depth [13], [14], [15] or background-foreground
knowledge [16], [17] as viable limitations to eliminate fore-
ground textures during filling in depth-based view synthesis.
However, in intricate sceneries with non-repeating patterns,
they would not create convincing contents. Furthermore, they
are computationally expensive due to their iterative nature.

To solve these issues and outperform prior conventional
approaches, deep learning-based algorithms were subse-
quently investigated. These deep learning-based techniques
are motivated by deep learning’s effectiveness in a variety
of uses, including picture denoising [18], super-resolution
[19], and target recognition [20], [21], [22]. Several studies
have built networks to deal with disocclusion holes that
arise after DIBR procedures. To restore the obstructed parts
of the warped images, researchers specifically approach the
disocclusion topic in the form of a creative picture inpainting
task, in which they apply deep learning-based inpainting
algorithms [23], [24]. Recent work includes designing CNN
architectures to handle irregularly shaped holes better [25],
[26] and two-stage approaches that employ structural-content
separation, such as predicting structures (e.g., contours/edges
of missing sections), then completing features according to
the forecasted structures [27], [28], [29]. Our disocclusion
hole-filling model is inspired by these recent two-stage
methods with two key differences, which are our main
contributions in this study.
• First, the majority of existing deep learning-based in-

painting techniques make the assumption that CNNs
may implicitly learn the scene structure and layer in-
formation with no additional guidance. As a result,
they would not offer any other details regarding this
model. Although some two-stage approaches have used
additional cues as predicted structures to improve the
results, important implicit priors in the DIBR process
still have not been fully considered, which may cause
quality degradation in the warped views as a result
of low foreground-background spatial correlation near
the boundary areas. To overcome these limitations,
in this study, we explore various unique constraints
of the synthesized virtual views and define them as
scene influence maps to reduce hallucinatory structural
combinations in the warped views in the network.

• Second, the goal of picture inpainting is to provide
convincing substance to the empty spaces in images.
Traditionally, holes are supposed to be filled with
available texture information in a visually plausible
manner without other constraints, so many approaches
fill the holes using all valid image content. However, this
greedy way can cause undesired visual inconsistency in
the warped view by failing to consider the consistency
between the hole and surrounding areas. Usually, dis-
occlusion holes are localized within transitional regions
of different layers, where neighboring information from
the background is more reliable for recovering such
information. Considering these, our proposed scene
influence maps in this study are generated by diffusing
from anchor points in the hole regions. Furthermore,
an enhanced directional scene influence map, which
diffuses using a novel anisotropic diffusion equation
under consistent stereoscopic constraints, is explored for
efficient disocclusion hole filling.

The other sections covered in this article have been
structured as follows. The technological framework related
to these suggested approaches is thoroughly presented in
Section II. Section III examines and highlights the main
experimental findings. Section IV includes a few closing
notes.

II. PROPOSED APPROACH

The assumption made by the GAN-based frameworks
included in early image inpainting approaches [27], [28],
[29] projected the network’s ability to implicitly acquire
some of the required information about the layout and
quality of the image. This was one of the most challenging
optimization issues for neural networks. Modern techniques
have provided more specific information, like edges [27],
structure constraints [28], [29], and semantic labels [30],
to provide realistically textured content with a credible
structural foundation. Though, disocclusion hole filling in
the stereoscopic synthesis cannot be regarded simply as a
generative inpainting problem, so adding the aforementioned
additional information to the network is still insufficient to
address these issues effectively.

Fig.1 demonstrated a scenario covering the hole filling in
warped images. Clear disocclusion hole region is marked
with blue in Fig.1(a). The hole region is dispersed along
the areas that separate the contents of the foreground-
background. If we are only assessing the visual quality of
the image, a state-of-the-art generative inpainting method,
like EdgeConnect (EC), can obtain visually realistic results,
as shown in Fig.1(b). However, the zoomed rectangular
region of Fig.1(b) shows that the newly reconstructed bound-
ary does not along the hole edges. The underlying reason
for this problem is that the restored contents in the hole
mixed the texture information from both the foreground
and background contents. The background content and the
disocclusion zone are frequently thought to be part of the
same physical surface, hence their texture patterns must be
identical. Therefore, although the restored region of Fig.1(b)
is semantically meaningful, it did not meet the implicit
constraints in the 3D warped scene, which may cause a
serious stereo-mismatching problem when displayed in a
stereo projection system. In our study, some special scene
cues in the warped view are extracted and then represented
by a scene influence map. Thus, our approach can further
optimize the final result under the stereoscopic constraints
more naturally, as shown in the zoomed rectangular region
of Fig.1(c), where the reconstructed layer boundaries match
the original texture image well. Fig.1(d) is the corresponding
ground-truth image. We will present the suggested approach
in the following subsections.

A. Framework of the proposed approach

Fig.2 demonstrates that to restore the hole areas in the
warped view step by step and to enable the model to be
aware of the scene contextual information, the framework of
our deep learning-based hole-filling approach comprises two
stages:

(1) Stage I: scene cue extraction
In the first stage, the underlying stereoscopic constraints,

which are more useful in guiding hole inpainting in the
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(a) (b)

(c) (d)

Fig. 1. Example of hole filling in the warped view. (a) warped image with a disocclusion hole, (b) hole-filling results with EdgeConnect (EC) [27], (c)
results of the suggested approach, and (d) ground-truth image

Fig. 2. Framework of the suggested deep learning-based disocclusion hole-filling method

warped view, are extracted in the form of a scene influence
map, that is defined as:

Sc = F1(Iw,Mw) (1)

where F1 represents a subnetwork, which acts as a scene
cue extractor and produces scene influence maps Sc in the
warped view. Mw represents the mask that differentiates
different regions. It is in the form of a binary matrix
in accordance with the hole locations within the distorted
picture/warped image Iw, where 1 represents the hole region
and 0 represents the background.

Two subnetwork learning schemes with different con-
straints, named Stage I S1 and Stage I S2 as displayed in
Fig.2, were investigated in this stage to extract the underlying
implicit scene stereoscopic cues of different levels, which
will be discussed respectively and thoroughly in the below
subsections.

(2) Stage II: texture reconstruction

In the second stage, a generative image inpainting-based
network, F2, is used with the extracted Sc as the priori
information to enhance texture prediction I ′w in the hole
regions:
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I ′w = F2(Iw,Mw, Sc) (2)

The latent characteristics in the stereoscopic synthesis may
be organically merged into the network with the aid of
a scene influence map, preventing unnecessary foreground
pixels from becoming distorted in these holes. As a result,
disocclusion hole filling in this virtual viewpoint outperforms
current generative inpainting algorithms in terms of perfor-
mance.

B. Stage I S1: Hole filling with scene stereoscopic con-
straints in the warped view

Generating meaningful structures from the surrounding
background contents for the missing regions is a challenge
of hole-filling tasks in the warped view. Therefore, we first
design a scene cue extractor, F1, to achieve this goal. It aims
to learn the implicit constraints in the warped scene to the
network and is realized by training with a scene influence
map. In order to create the scene influence map, the initial
anchor points are diffused. They are specified as:

Sanchor(p) =

{
1− exp(−Dl(p)), if p ∈ RH
0, if p /∈ RH

(3)

where RH represents the warped hole regions, Dl(p) repre-
sents the distance from the point p to the boundaries between
the foreground and background in the layer boundary map
Sl, which is represented by:

Sl(p) =

{
sgn(p), if Mw(pl) > Mw(pr)
1− sgn(p), otherwise

...

..., for p ∈ ∆(Mw)

(4)

where ∆(.) represents the Laplacian operator, pl and pr
represent the left and right pixels of p, respectively, and sgn
represents an indicator function. For the left virtual view in
our work, sgn(p) = 1, and for the right, sgn(p) = 0.

For stereoscopic synthesis, the restored textures in the
warped view should have similar patterns to the background.
Therefore, the anchor points adjacent to background re-
gions are assigned large values, meaning they have a high
influence-degree coefficient. Thus, when a domain transform-
based filter [31] is used to diffuse the initial anchor points
of the hole regions into the inner background regions and
generate a scene influence map, the heuristics from the
backdrop may be used to better guide hole filling in the
virtual perspective. This processing can be expressed as:

ct(u) =

∫ u

0

σH
σs

+
σH
σr
|Igt(x)|dx (5)

where ct(u) indicates the transformed domain, and
σH , σs, σr represent all the terms utilized in controlling the
diffusion impact of the initial anchor point distribution map.
Igt denotes the ground-truth picture of the warped view.

In the transformed domain, the final scene impact map
may be stated with a recursive form as follows:

{
Sc[n] = (1− ad)Sanchor[n] + adSc[n− 1]
d = ct(un)− ct(un−1)

(6)

where a = exp(−
√

2/σH), and which is also the feedback
coefficient of this filter. d denotes the distance between
neighbor samples un and un−1 in the transformed domain
defined in Eq.(5), which controls the diffusion strength
delivered from the transformed domain to influence maps.

By this means, taking Sanchor as the original scene
influence map to be processed, Sc is produced through joint
filtering with texture image Igt operated by the recursive
domain transform filter as discussed in Eqs.(5) and (6).

C. Stage I S2: Enhanced scene cues with directional con-
straints in the warped view

The anchor points defined by Eq.(3) provide only a soft
stereoscopic constraint. If the foreground contents around
disocclusion holes have a rich texture, the current hybrid
constraints in Eq.(5) are insufficient to completely prevent
anchor points around layer boundaries from flowing into
the neighboring foreground areas. To address this issue, this
section further explores the scene context by restricting the
influence map to the background area. More precisely, it
is realized by adding a hard directional constraint to the
domain transform-based diffusion equation. Then Eq.(5) can
be rewritten as:

ct(u) =

∫ u

0

σH
σs

+
σH
σr
eβSl(p) |Igt(x)|dx (7)

where β represents a directional reference factor, which has
been given a value of 5 in this work. Sl represents the layer
boundary map defined in Eq.(4), which indicates the layer
boundaries between the foreground and background.

Therefore, when processing the layer boundary regions,
the propagation chains would be stopped by this added
constraint in the transformed domain, and the diffusion
strength delivered from Eq.(6) is correspondingly decreased.
Then, the generated influence map Sc d, which we define as
a directional scene influence map, will mainly represent the
relationships between the hole regions and backgrounds.

Furthermore, to enable the network to learn the implicit
function mapping between the directional scene influence
map and the warped view more easily, we also add the
layer boundary map as an additional input to the scene cue
extractor sub-network. Then, Eqs.(1) and (2) can be rewritten
as:

Sc d = F1(Iw,Mw, Sl) (8)

I ′w = F2(Iw,Mw, Sc d) (9)

D. Network design and training strategy

Fig. 2 displays the general design of the suggested ap-
proach. The process requires some key components, includ-
ing a scene cue extractor network F1 and a GAN-based
texture reconstruction network F2. We elaborate on each of
these components in the following.

The scene cue extractor network F1 outputs a directional
scene influence map from the concatenation of warped pic-
ture/mask along with the associated layer boundary map. In
this step, pictures are downsampled twice by encoders, trailed
with 8 residual blocks, and upsampled to their original size
by decoders using an encoder-decoder network design. In
the residual layers, dilated convolutions having a dilation

IAENG International Journal of Applied Mathematics, 53:2, IJAM_53_2_09

Volume 53, Issue 2: June 2023

 
______________________________________________________________________________________ 



parameter equivalent to 2 are utilized in place of conventional
convolutions.

The GAN-based texture reconstruction network F2 further
restores the disocclusion holes using the scene influence
map Sc d, extracted in the last stage as an additional key
cue to guide the following inpainting process, that uses an
adversarial model. In other words, the stage normally com-
prises and includes the generator-discriminator combination
{G,D}. This scene cue extractor shares the same network
architecture as Generator G. We employ the PatchGAN
architecture, which detects if overlapping picture patches are
genuine, for discriminator D. A 2 × 2 pixel stride is used
by all convolutional layers to reduce picture resolution while
maximizing the allowable output filters.

Although our approach consists of two different stages,
with each stage aimed at a specific subtask, all the layers
of the suggested framework are differentiable. Therefore,
the entire network is capable of undergoing an end-to-end
training.

An adversarial loss and the reconstruction loss together
make up the total loss. The reconstruction loss Lrec is
composed of two parts {L1, L2}, which establishes the
differences in errors between the forecasts and the ground
truth in the two stages, respectively. The reconstruction loss
function is defined as: Lrec = γ1L1 + γ2L2

L1 = ‖Sc d − Sgt‖
L2 = ‖Mw � (I ′w − Igt)|

(10)

where � is pixel-wise multiplication and ‖.‖ is the Euclidean
norm. Sgt is the directional scene influence map ground
truth, which is generated with texture image ground truth
Igt conducted using recursive domain transform filter which
has been further defined in Eqs.(5) and (6). γ1, γ2 are the loss
term weights, which are adaptively set during training. We set
γ1 = 2, γ2 = 1 in the 1st half of overall training iterations,
and γ1 = 1, γ2 = 1 for the remaining iterations. This strategy
helps the network to learn scene cues with higher priority at
the beginning, which is beneficial for boosting the training
phase.

The distribution of data is not guaranteed to be the same
as that of the natural pictures since the reconstruction loss
only penalizes the pixel-wise inaccuracy. Consequently, the
outcomes of the inpainting might very well be hazy. By
enforcing adversarial losses that are based on a generative
adversarial network (GAN) [32], this can be reduced. The
following is the definition of the adversarial loss:

Ladv = max
D

E [logD (Igt,Mw)

+ log (1−D (I ′w,Mw))]
(11)

Thus, the total loss function can be obtained using the
following:

L = λrecLrec + λadvLadv (12)

where λrec, λadv represent the weights of the loss terms. In
this research, we chose λrec = 1, λadv = 0.1.

III. EXPERIMENTAL EVALUATION

A. Experimental setup
Our approach was implemented using the TensorFlow

platform with a batch size of 16 using a PC having a GPU

specification of 32GB NVIDIA Quadro. Adam optimizer has
been employed in enhancing the model with β1 = 0.0005
and β2 = 0.9. We used open-source datasets to show how
well the suggested hole-filling approach for stereoscopic
vision synthesis performed: the Middlebury stereo vision and
KITTI 2015 databases. The training was completed using
48236 sub-images at 256 × 256 resolution, some obtained
by from the Middlebury datasets and the others by the
KITTI datasets. The remaining data from both databases were
adopted for testing to validate our proposed network.

In the following subsections, we first evaluate the experi-
mental results qualitatively and quantitatively. Some experi-
mental details of the proposed approach and an analysis of
the outcomes of the collected directional scene restrictions
are then reviewed.

B. Visual image evaluations

In this part, we first visually evaluate the Middlebury and
KITTI test sets that resulted from the following approaches:

• EdgeConnect (EC) [27], a representative, cutting-edge
deep learning-based image inpainting method, that uses
the processing scheme covered in [24] to fill disocclu-
sion holes through generative image inpainting.

• The proposed approach with different scene cues. The
first (Scheme1) uses the extracted scene influence map
Sc as the scene constraints, and the second (Scheme2)
uses the enhanced directional influence maps Sc d.

Figs.3 and 4 each show a distinct illustration of the
experimental findings. The original pictures of these test
sets are regarded as left views. According to Figs.3(a) and
4(a), the newly revealed hole regions for the right views
are on the right half of foreground objects. The structural
information surrounding the holes is always unique and
pertains to the foreground and background independently.
With no right direction, it is challenging for EC to rebuild the
holes by just using background texture signals. As seen by
red-colored rectangles displayed in both Figs.3(b) and 4(b),
content mixtures are introduced by EC at different levels.
For comparison, our approach with Scheme1 generates more
reasonable results. However, when we zoom in on the details,
a mixture of shadows can still be seen in the yellow rectan-
gles of Figs.3(c) and 4(c). The best results are generated by
our approach with Scheme2, where the enhanced influence
maps effectively prevented foreground contents from flowing
into the hole regions, particularly in the green rectangles of
Figs.3(d) and 4(d). As can be seen, the proposed approach
provides more professional disocclusion hole filling in the
warped views, even in some complex scenes, such as Midd2
in Fig.3(d), where the boundaries on the right of the hat can
be distinguished clearly after the neighboring hole regions
are restored.

C. Quantitative evaluations

We employed a number of common measures for quanti-
tative evaluations to further analyze the performances of the
suggested ways: peak signal-to-noise ratio (PSNR), Frechet
inception distance (FID), and structural similarity index
(SSIM), according to [27].
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(a)

(b)

(c)

(d)

Fig. 3. Virtually observed pictures through the use of the Middlebury datasets including (from left to right) Midd2 and Plastic: (a) warped pictures with
holes, and holes filled with (b) EC, (c) Scheme1, and (d) Scheme2.
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(a)

(b)

(c)

(d)

Fig. 4. Virtually observed pictures through the use of the KITTI dataset: (a) warped picture with holes, and holes filled with (b) EC, (c) Scheme1, and
(d) Scheme2

TABLE I
QUANTITATIVE EVALUATION RESULTS

(↑ :HIGHER IS BETTER,↓ :LOWER IS BETTER)

Database EC Scheme1 Scheme2

PSNR(dB)↑ Middlebury 27.23 29.24 30.96
KITTI 27.56 29.52 31.41

SSIM↑ Middlebury 0.8818 0.9084 0.9193
KITTI 0.8873 0.9107 0.9232

FID↓ Middlebury 6.12 3.87 2.76
KITTI 5.43 3.16 2.24

According to Table I, our approach surpasses the gen-
erative inpainting method EC in all the metrics. The pro-
posed approach with Scheme2 produced the best scores.

Like the experimental results that we previously discussed
regarding the visual qualities, the lower performance of EC
is unsurprising because it does not use any special stereo-
scopic consistent constraints in the warped view, such as the
scene/enhanced influence maps extracted by our approaches.

TABLE II
SUBJECTIVE QUALITY EVALUATION RESULTS

Database EC Scheme1 Scheme2

Test1 Middlebury 4.0 4.2 4.3
KITTI 3.9 4.1 4.2

Test2 Middlebury 3.8 4.2 4.4
KITTI 3.8 4.2 4.3

Using these test datasets, ten people having normal or
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(a) (b) (c)

(d)

Fig. 5. Chosen synthesized 3D anaglyph images that were obtained from the test samples through the suggested method: (a) Bowling1, (b) Midd2, (c)
Plastic, and (d) KITTI.

those falling within the description of corrected-to-normal vi-
suality and stereo vision conducted subjective human testing.
Furthermore, we ran two experiments to gauge the picture
quality for restored virtual views (Test1) and the stereoscopic
perception for synthetic 3D anaglyph pictures (Test2). Each
was graded using a scale range 0-5, where a higher number
denotes better picture quality or a more stereoscopic experi-
ence. Within every test, users were requested to score their
pleasure after viewing the virtual or synthetic 3D pictures
in a random sequence. As stated in Table II, the mean
scores received had been utilized to represent the gauge of
the subjective assessment. Bold font is used to display the
optimum findings. This table demonstrates how the suggested
method using Scheme2 outperformed other methods in terms
of picture quality for virtual views and stereoscopic percep-
tion for artificially created 3D anaglyph images. Note that the
generative inpainting method EC was scored closer to ours
in Test1 than in Test2, where the scoring differences were
larger. This occurred because, as we discussed concerning
Fig.1(b), in some scenes, depth perception had been affected
despite the repaired quality of the visual image due to content
mixtures in the warped perspective. The assessment test sets’
demonstrations of synthetic 3D anaglyph pictures are shown
in Fig.5.

D. Implementation details

In this subsection, we present further experiments in Fig.6
to demonstrate the effects of the implementation details in
our approach. In Figs.6(a) and (d), hole regions are outlined
in blue and the green rectangle areas are regions of interest
(ROIs), which we primarily focus on in the intermediate
experimental results. For right views, the layer boundary
maps, marked with red lines, appear along the left side
of each hole. With their guidance, the enhanced influence
maps generated for the ROIs in Figs.6(c) and (f) show more
directional characteristics than those without the constraints

in Figs.6(b) and (e). For example, for test set Midd2, the
enhanced influence map in the ROI of Fig.6(c) is only diffuse
on the right side of the corresponding layer boundary line
shown in Fig.6(a), unlike the one which is diffuse on both
sides in the ROI of Fig.6(b). Thus, in the texture reconstruc-
tion stage, just as the results displayed in the experiments of
Fig.3(d), the contents in the hat were no longer introduced
into the hole regions. Furthermore, this experiment proves
that the extracted directional scene influence map can provide
enough information to realize efficient disocclusion hole
filling under the consistent stereoscopic constraints in our
proposed scheme.

IV. CONCLUSION

Throughout this research, a stereoscopic vision synthesis
method was suggested on the basis of a deep learning-based
disocclusion hole-filling methodology with directional scene
cue guidance. Scene cue extraction and texture reconstruction
are the two steps of our method for breaking the work down.
In the first stage, a directional influence map, which diffuses
in a novel anisotropic manner, is defined and extracted.
In the second stage, the extracted scene influence map
provides key additional heuristic cues and plays an important
role in efficient disocclusion hole filling under consistent
stereoscopic constraints. Experimental results verified that
the suggested approach greatly improves the disocclusion
hole-filling performance in the warped views over the results
of conventional generative inpainting methods.
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