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Abstract—Many classes of finite words have notice-
able properties with reference to their palindromic
factors and one among them are the words having zero
palindromic defect i.e., words rich in palindromes. In
this paper we introduce rich partial word and discuss
its combinatorial properties. We show that the palin-
dromic richness of a partial word can be studied by
including the positions of the missing symbols in that
word. The significant difference between rich and rich
partial word is that a rich word of length n contains
exactly n + 1 distinct palindromic factors whereas a
rich partial word of length n contains at least n + 1
distinct palindromic factors. These factors differ from
the classical palindromes due to the presence of holes.

Keywords: palindromes, rich words, factors, partial

words, primitivity.

1 Introduction

In the study of the various properties of words with
finite length [8] such as structural and combinatorial
properties, palindromes are natural objects which play
a vital role in word combinatorics, automata theory
and formal languages. Palindromes often occur in DNA
and are extensively present in human cancer cells [11].
In biological context, complement DNA characters are
considered by palindromes. By identification of these
segments of DNAs, the instability of genomes could be
understood. Biologists believe that palindromes play
an major role in cell processes and other regulation
gene activity because these are frequently noticed near
introns, promoters and specific untranslated regions. So,
locating palindromic factors in any genome sequence
is vital. Also for comparison study, locating common
palindromes in two genome sequences can be a major
criterion. A palindromic word is a word when taken
in reverse order gives the same word. Many classes of
words have prominent properties with regard to their
palindromic factors [7]. Algorithmic and combinatorial
studies of palindromes are considered as a favorable tool
to construct linear-time recognizable languages [3, 15].
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In the study of palindromes, one of the recent topics
of interest concerns an interesting class of finite words
termed as rich words. Words comprising the greatest
number of distinct and palindromic factors are rich
words and are called as words with zero palindromic
defect [2, 12, 13, 14, 17]. In [18], X. Droubay et al.
showed that a finite word x of length ∣x∣ has maximum ∣x∣
distinct palindromic factors, excluding the empty word.
Characterized by this palindromic richness property in
[3], the authors launched a unified study of words with
finite and infinite length. Accordingly we say that a finite
word x is rich if and only if it has exactly ∣x∣ + 1 distinct
palindromic factors. In various contexts, rich words
have appeared such as complementation-symmetric
sequences, episturmian words and a certain class of
words associated with β-expansions where β represents a
simple Parry number. The number of rich binary words
of length n can be referred in https://oeis.org/A216264.

Partial words are nothing but words with holes and are
considered in gene comparisons [1, 9, 16]. For instance,
alignment of two DNA sequences which are genetic
information carriers can be regarded as formation of two
compatible partial words. The DNA sequence is treated
as a finite word in DNA computations, and is used
to encode information. When encoding information,
some parts of the information may be hidden or not
visible, which are revealed by using a partial word which
represents the position of a missing symbol in a word.
Initial research on partial words was initiated by Berstel
and Boasson [10] and later expanded by Blanchet-Sadri
[4, 5, 6]. Partial words and palindromicity of words are
classical topics in molecular biology and language theory
which inspired and initiated a unified study of rich
words and partial words. The hole(s) present in partial
words is not a character of the alphabet but survives
as a back-up symbol for the unknown letter. Since it
is compatible to any of the letter(s) in the alphabet,
if a hole in a rich partial word over the alphabet is
replaced by a letter in the alphabet, the rich partial
word turns out to be a rich word. On the other hand,
since holes do not belong to the alphabet, we study the
palindromic richness of a partial word by including the
positions of the missing symbols in that word. This
paper introduces rich partial words and study some
combinatorial properties. We initially recall in Section
2 the fundamental notions and properties. We define
rich partial words and discuss some properties based on
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their palindromic richness in Section 3. In Section 4 we
discuss the relation between partial palindromic perfect
factors and partial palindromic perfect subwords of rich
partial words followed by conclusion in Section 5.

2 Preliminaries

Let the finite alphabet A represent a non-empty set of
symbols (or letters). A total word (or string) is a sequence
of letters over A. The length (or size) of a total word
x = x[1 . . . n] is n. The length of a total word x is denoted
by ∣x∣. Alph(x) denotes the set of all elements in x. λ
denotes the empty word. A

∗ denotes the set of all total
words from A including λ and A

+ denotes the set of all
total words from A excluding λ. A language L is a subset
of A∗.

The total word x is a subword (or factor) of y if the total
words u and v exists such that y = uxv. If u, v ≠ λ then
x is a proper subword of y. If u = λ then x is a prefix of
y. If v = λ then x is a suffix of y. A finite total word x
is called a palindrome if x = xR where xR is the reversal
(mirror image) of x. A total word x is rich if it has exactly
∣x∣ + 1 distinct factors that are palindromic including the
empty word λ. A non-empty factor x of a finite word u is
unioccurrent in y if x has exactly one occurrence in y. If
x has more than one occurrence in y, then there exists a
factor z of y having exactly two distinct occurrences of
x, one as a prefix and other as a suffix. Such a factor z is
called a complete return to x in y. For example, bbcacbb
is a complete return to bb in the rich word bbcacbbba.
The sequence of symbols that contains a number of “do
not know symbols” or “holes” denoted as ◊ is termed as
a finite partial word (or partial word).

The partial word of u denoted by u◊ is the total function
u◊ ∶ {1,2, . . . , n} → A◊ = A ∪ {◊} defined by

u◊(i) =
⎧⎪⎪
⎨
⎪⎪⎩

u(i) if i ∈D(u)

◊ if i ∈H(u).

where D(u) represents the domain set and H(u) denotes
the set of holes in u The set of all partial words over A◊
is denoted as A∗◊. A

+
◊ denotes the set of all partial words

excluding the empty word. A partial language L◊ ⊆ A
∗
◊

is a set of all partial words over A◊.

We note that,
(i) A total word is a partial word with zero holes and the
empty word is not a partial word.
(ii) The symbol ◊ does not belong to the alphabet A but
a standby symbol for the unknown letter.
(iii) The symbol ◊ is compatible to the letters of the
alphabet A.
(iv) The symbol ◊ alone of any length cannot exist as a
word. In other words, the hole of any length is neither a
total word nor a partial word.

A partial word u◊ = u◊[1 . . . n] is primitive (non-periodic)
if no word v exists such that u◊ ⊂ v

i with i ≥ 2. Partial
words that are not primitive are said to be periodic partial
words. If u◊ and v◊ are two partial words of equal length
and if all the elements in domain of u◊ are also in domain
of v◊ with u◊(i) = v◊(i) for all i ∈ D(u◊), then u◊ is
contained in v◊ and is denoted by u◊ ⊂ v◊. Two partial
words u◊ and v◊ are compatible, denoted by u◊ ↑ v◊ if
u◊(i) = v◊(i) for all i ∈ D(u◊) ∩ D(v◊). Equivalently,
the partial words u◊ and v◊ are compatible if a partial
word (or a total word) w◊ exists such that u◊ ⊂ w◊ and
v◊ ⊂ w◊. A finite partial word u◊ is a palindrome if u◊
is compatible with its reversal (denoted by u◊ ↑ u

R
◊ ). For

instance u◊ = ◊ab◊aba◊ is a palindrome.

3 Rich Partial Words

This section defines rich partial words in view of their
palindromic richness and discusses their combinatorial
properties. The empty word λ is regarded as a palin-
drome.

Definition 1. A factor p◊ of a partial word u◊ over A◊

is called a partial palindromic proper factor if p◊ is com-
patible with its reversal (denoted by p◊ ↑ p

R
◊ ). The set of

all non-empty partial palindromic proper factors of u◊ is
denoted by PPPF (u◊).

Example 1. Consider a partial word u◊ = baab◊b over
A◊ = {a, b} ∪ {◊} . The palindromic factors of u◊ are

{λ, a, b, aa, b◊,◊b, ab◊, b◊b, baab} .

Here the factors {b◊,◊b, ab◊, b◊b} are termed as partial
palindromic factors.

Definition 2. Any partial word over A◊ with length n
is a rich partial word if it has at least n distinct partial
palindromic proper factors.

Example 2. Consider a partial word u◊ = ba◊aba over
A◊ = {a, b} ∪ {◊} with ∣u◊∣ = 6.
The set of all distinct palindromic proper factors of u◊
are

{λ, a, b, a◊,◊a, ba◊, a◊a,◊ab, aba, ba◊ab, a◊aba} .

Among the above set, the set of all distinct partial palin-
dromic factors of u◊ are

{a◊,◊a, ba◊, a◊a,◊ab, ba◊ab, a◊aba} .

Here the number of distinct partial palindromic proper
factors is equal to ∣u◊∣ + 1. Hence u◊ is a rich partial
word.

Example 3. Consider a partial word v◊ = ◊ababb with
length ∣v◊∣ = 6 over A◊ = {a, b} ∪ {◊} . Then the partial
palindromic proper factors of v◊ are

v◊ = {◊a,◊ab,◊abab} .
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Algorithm 1: To determine whether the given
partial word is rich

Input: S -Partial word of length n
Output: F- Partial Palindromic proper factors of

S of length at least n, S is rich
1 Define a partial word with one hole S = s1s2s3...sn
2 for i in range n do
3 for j in range (i + 1, n + 1) do
4 all possible factors with one hole and of

length at most equal to n
5 if factors are palindromes then
6 count++
7 end

8 end

9 end
10 if count ≥ n + 1 then
11 return Given partial word with one hole is

rich
12 end

Here the number of distinct partial palindromic proper
factors is less than ∣v◊∣. Hence v◊ is not a rich partial
word.

Remark 1. Every factor of a rich word is rich but every
factor of a rich partial word need not be rich.

Remark 2. A partial word u◊ is rich iff every prefix
(resp. suffix) of u◊ has a unioccurent palindromic suffix
(resp. prefix).

Example 4. Consider a rich partial word u◊ = ab◊bba
over A◊. The set of all prefixes of u◊ with unioccurrent
palindromic suffixes (underlined) are

{ab◊bba, ab◊bb, ab◊b, ab◊, ab, a}.

The set of all suffixes of u◊ with unioccurrent palindromic
prefixes (underlined) are

{ab◊bba, b◊bba,◊bba, bba, ba, a}.

Theorem 1. For any partial word u◊ over A◊, u◊ is
rich iff each non-palindromic proper factor r◊ of u◊ is
uniquely represented as a pair p◊q◊ of distinct palin-
dromes such that
(i)p◊ and q◊ are not equal;
(ii)p◊ and q◊ are not factors of one another;
(iii)q◊ is the palindromic suffix (denoted as pals) of r◊
with maximum length;
(iv)p◊ is the palindromic prefix (denoted as palp) of r◊
with maximum length.

Proof. Suppose u◊ is a rich partial word. By Remark 2,
a non-palindromic factor r◊ of u◊ with prefix p◊ has a
unioccurrent suffix q◊. Also ∣r◊∣ ≥ max{∣p◊∣, ∣q◊∣}. In-
evitably this follows that p◊ and q◊ are not equal and

also p◊ as well as q◊ are not factors of one another. Here
the factors p◊ and q◊ are unioccurrent and p◊ ≠ q◊. Also
p◊ and q◊ are the prefix and suffix of u◊ with maximum
length and not factors of one another.

To prove the uniqueness, for any finite rich partial word
u◊ with factors v◊ and r◊ having the same palp p◊ and
same pals q◊ with maximum length. We have to show
that v◊ = r◊. Let us prove by contradiction. Suppose
v◊ ≠ r◊ such that both v◊ and r◊ are not palindromes.
Then v◊ and r◊ are not factors of one another and p◊
and q◊ are unioccurent in each of v◊ and r◊. Let k◊ be a
factor of u◊ of least length. Let us assume that the factor
v◊ is the prefix and the factor r◊ is the suffix of k◊. Then
p◊(resp.q◊) occurs twice in k◊ as a prefix (resp.suffix)
of each of v◊ and r◊ respectively. Since p◊ and q◊ are
unioccurent in v◊ and r◊ respectively, we conclude that
a factor say l◊ has a proper prefix (resp.suffix) starting
with v◊(resp.r◊) and concluding with r◊(resp.v◊) which
is a contradiction for the minimality of k◊. Hence v◊ = r◊.

Conversely, to prove u◊ is a rich partial word, we have
to verify that each prefix of u◊ has a unioccurrent pals.
Consider the prefix of u◊ as v◊ and the pals of u◊ with
maximum length as q◊. Suppose v◊ is palindromic then
v◊ = q◊ and thus q◊ is unioccurrent in v◊ . Suppose v◊
is not palindromic, then let p◊ be the palp of v◊ with
maximum length. If q◊ is not unioccurrent in v◊ then v◊
has a proper factor r◊ starting with p◊ and ending with q◊
where p◊ and q◊ are not factors of one another. Then p◊
is the palp of r◊ with maximum length. Similarly we can
show that q◊ is the pals of r◊ with maximum length which
contradicts our assumption. Hence q◊ is unioccurrent in
v◊.

Theorem 2. If u◊ is a rich partial word over A◊ and
u◊r◊ has a unioccurent pals q◊ such that r◊ ∈ A◊ and
2∣q◊∣ ≥ ∣u◊r◊∣ then u◊r◊ is a rich partial word.

Proof. Let us assume that q◊ is the pals of u◊r◊ with
maximum length. Suppose q◊ is not unioccurent in u◊r◊
such as if q◊ has another occurrence in u◊r◊, then as
2∣q◊∣ + 1 ≥ ∣u◊r◊∣, the two occurences overlap each other
or separated from each other by maximum of one letter
of A◊. Thus both the occurences form a pals of u◊r◊
such that they are strictly longer than q◊ which is a con-
tradiction. Therefore q◊ is the unioccurent pals of u◊r◊
such that u◊r◊ is rich. Hence the proof.

Theorem 3. If the rich partial word u◊ over A◊ is the
product of two rich palindromic factors p◊ and q◊ and
satisfies the conditions:

(i)∣u◊∣ − 4 ≤ 2∣q◊∣

(ii)∣u◊∣ − 4 ≤ 2∣p◊∣,

then the products p◊q◊p◊ and q◊p◊q◊ are also rich partial
words.
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Proof. Let us prove by contradiction. Consider the rich
partial word u◊ = p◊q◊ satisfying the condition ∣u◊∣ − 4 ≤
2∣q◊∣ such that p◊q◊p◊ is not rich. Let r◊ ∈ A◊, s◊ ∈
{Alph(u◊)} with r◊s◊ as the prefix of p◊ of minimum
length such that p◊q◊r◊s◊ is not rich. Let k◊ be the pals
of p◊q◊r◊s◊ with maximum length. Then as s◊r

R
◊ q◊r◊s◊

is the suffix of p◊q◊r◊s◊, we have ∣q◊∣ + 2∣r◊∣ + 2 ≤ ∣k◊∣
which further infers that ∣u◊∣ ≤ ∣u◊∣ + 4∣r◊∣ ≤ 2∣q◊∣ + 4∣r◊∣ +
4 ≤ ∣k◊∣. Thus by Theorem 2 we get p◊q◊r◊s◊ to be
a rich partial word which contradicts our assumption.
Therefore p◊q◊p◊ is a rich partial word only if u◊ = p◊q◊
is rich and ∣u◊∣ − 4 ≤ 2∣q◊∣. Similarly we can prove that
q◊p◊q◊ is a rich partial word.

Example 5. Let u◊ = p◊q◊ over A◊ = {a, b} ∪ {◊} be a
rich partial word with rich palindromic factors p◊ = ab◊ba
and q◊ = b. Also

(i)∣u◊∣ − 4 = 2 = 2∣q◊∣

(ii)∣u◊∣ − 4 = 2 < 2∣p◊∣.

Then the products p◊q◊p◊ = ab◊babab◊ba and q◊p◊q◊ =
bab◊bab are also rich partial words.

Theorem 4. For any non-empty rich partial word u◊
over A, if u◊u◊ ↑ v◊u◊w◊ for some rich partial words
v◊, w◊ such that v◊ = λ or w◊ = λ then u◊ is primitive.

Proof. Let us assume that u◊u◊ ↑ v◊u◊w◊ such that v◊ =
λ or w◊ = λ. Suppose to the contrary that u◊ is not
primitive then a non-empty rich word x exists such that
u◊ ⊂ xm where m ≥ 2 is an integer. But then u◊u◊ ↑
xm−1u◊x, and using our assumption we get xm−1 = λ or
x = λ, a contradiction. Therefore u◊ is a primitive rich
partial word.

Example 6. Assume the rich partial words u◊, v◊ and
w◊ over A◊ = {a, b, c}∪{◊} such that u◊ = ac◊ccb, v◊ = λ
and w◊ = acc◊cb. Then u◊ is primitive since

u◊u◊ = ac◊ccbac◊ccb ↑ ac◊ccbacc◊cb = xuy.

Theorem 5. Let u◊ and v◊ be non-empty rich partial
words. If u◊ and v◊ are conjugate, then a rich partial
word w◊ exists such that u◊w◊ ↑ w◊u◊. Also there exist
rich partial words p◊, q◊ such that u◊ ⊂ p◊q◊, v◊ ⊂ q◊p◊
and w◊ ⊂ p◊(q◊p◊)

m for some m ≥ 1.

Proof. Let u◊ and v◊ be non-empty rich partial words.
Suppose that u◊ and v◊ are conjugate and let p◊, q◊ be
rich partial words such that u◊ ⊂ p◊q◊ and v◊ ⊂ q◊p◊
. Then u◊p◊ ⊂ p◊q◊p◊ and p◊v◊ ⊂ p◊q◊p◊ and so for
w◊ = p◊ we have u◊w◊ ↑ w◊u◊.

Theorem 6. Let u◊ be a rich partial word over A◊ and
let x and y be two rich words over A. If u◊ ⊂ xy and
u◊ ⊂ yx then xy = yx.

Proof. To prove the theorem, we consider ∣x∣ ≤ ∣y∣. Let
y = x′y′ such that ∣x′∣ = ∣x∣ where x′ and y′ are rich words.
Also let u◊ = v◊w◊ with ∣x∣ = ∣v◊∣ where v◊,w◊ are rich
partial words. Since u◊ ⊂ xy, we have v◊w◊ ⊂ xy such
that we get v◊ ⊂ x and w◊ ⊂ y. Likewise u◊ ⊂ yx implies
that v◊w◊ ⊂ yx which further implies that v◊w◊ ⊂ x

′y′x
such that we get v◊ ⊂ x

′ and w◊ ⊂ y
′x. Since u◊ = v◊w◊

is a rich partial word, it has exactly one hole. Then the
following two cases arises:
Case(i): If v◊ is a rich partial word with zero hole and w◊
is a rich partial word with one hole. Then v◊ = x

′ = x and
w◊ ⊂ y

′x. Also w◊ ⊂ y = x
′y′ = xy′. Hence by induction

process, xy′ = y′x which follows that xy = yx.
Case(ii): If v◊ is a rich partial word with one hole and
w◊ is a rich partial word with zero hole. Then v◊ ⊂ x

′ = x
and w◊ = y

′x = x′y′ = y. Then there exists two rich words
p and q such that x = pq, x′ = qp and y′ = (qp)mq for m ≥ 0
where x and y′ are conjugates to each other. Hence by
induction process, pq = qp which follows that xy = yx
since v◊ ⊂ pq and v◊ ⊂ qp.

3.1 Rich Palindromic Partial Words

A rich partial word is closed by factors and also un-
der the operations of reversal and palindromic closures.
Palindromic partial words help in encoding and decoding
the information contained in DNA strands. The palin-
dromic defect of rich partial words is zero; Most of the
rich partial words are also palindromic which is not a
necessary condition. In this section, the rich palindromic
partial words are to be analyzed and examined to find
the periodicity of possible elements in the ◊ positions of
the partial word sequence.

Definition 3. Rich partial words that are also palin-
dromic are termed as rich palindromic partial words.

Example 7. Assume a partial word u◊ = aba◊aba with
∣u◊∣ = 5 over A◊ = {a, b}∪{◊} . Here u◊ ↑ u

R
◊ and so u◊ is

a palindromic partial word. The set of all distinct partial
palindromic proper factors of u◊ are

{ba◊ab, a◊aba, aba◊a, ba◊, a◊a, a◊,◊a,◊ab} .

Here the number of distinct partial palindromic proper
factors are more than ∣u◊∣. Hence u◊ is a rich palin-
dromic partial word.

Theorem 7. Let u◊ be a rich palindromic partial word.
Then u◊u

R
◊ and uR

◊u◊ are periodic partial words.

Proof. Let the rich partial word u◊ ∈ A
+
◊ be a palindrome.

We have u◊ ↑ u
R
◊ . By the notion of compatibility, a total

word x exists such that u◊ ⊂ x and uR
◊ ⊂ x. Hence by

the law of multiplication, u◊u
R
◊ ⊂ x.x = x2. Thus u◊u

R
◊

is periodic. Similarly it is easy to follow that uR
◊u◊ is a

periodic partial word.
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Theorem 8. For a rich partial word u◊ ∈ A◊, if u
m
◊ is a

rich palindromic partial word for m > 0 then u◊ is a rich
palindromic partial word.

Proof. We prove it by induction hypothesis. For m = 1,
the assertion is accurate.. Let us assume that it is true
for all l <m that is if ul

◊ is a palindrome for all l ≤m− 1,
then u◊ is a palindrome. Now to prove it for m, assume
that um

◊ is a palindrome. We can write

um
◊ = u

m−1
◊ u◊ = u

r
◊u

m−1
◊ .

Now

um
◊ = u◊u

m−1
◊ ↑ (um

◊ )
R = (uR

◊ )
m = (uR

◊ )(u
R
◊ )

m−1.

As ∣u◊∣ = ∣u
R
◊ ∣ and um−1

◊ ↑ (uR
◊ )

m−1, then by simplification

we have u◊ ↑ u
R
◊ . Hence u◊ is a palindrome.

4 Partial Palindromic Proper Subwords
of Rich Partial Words

The study of subsequences (or subwords) in partial words
involves a number of combinatorial complexities. One of
them is the detection of palindromes, or subwords that
are symmetric when reversed, in partial words. Since the
last two decades, there has been interest in researching
the characteristics of palindromes. In this section, we
prove that the maximum number of partial palindromic
perfect subwords in a partial word relies on both the
length and the number of distinct letters in the partial
word.

Definition 4. A partial palindromic proper subword (or
partial palindromic scattered proper subword) of a partial
word u◊ over the alphabet A◊ is a sequence that can be
derived by deleting zero or more letters from it without
altering the order of the remaining letters. The set of all
non-empty partial palindromic proper subwords of u◊ is
denoted by PPPS(u◊).

Example 8. Consider a partial word u◊ = aab◊ba over
A◊ = {a, b} ∪ {◊} . The set of all distinct palindromic
proper subwords of u◊ are

{aa, bb, a◊,◊a, b◊,◊b, aa◊, aaa, a◊a, ab◊, b◊b,◊ba, aa◊a,

abba, a◊ba, ab◊ba, aab◊a}.

Among the above set, the set of all distinct partial palin-
dromic proper subwords of u◊ are

{a◊,◊a, b◊,◊b, aa◊, a◊a, ab◊, b◊b,◊ba, aa◊a, a◊ba, ab◊ba,

aab◊a}.

Theorem 9. Any rich partial word of length n with no
three consecutive similar letters over A◊ = {a, b} ∪ {◊}
has a partial palindromic proper subword of length at least
2
3
(n − 2).

Proof. Consider a rich partial word u◊ = u◊[1 . . . t] with
no three consecutive similar letters over A◊ = {a, b}∪{◊} .
Let each u◊[i] be made up of only as or only bs and let
two consecutive partial words u◊[j] and u◊[j +1] consist
of different letters. Then we have length of each u◊[j] as
atmost 2. Now assume t to be even. Then at least one
letter from each pair u◊[j], u◊[t− j + 1] together with all
the letters from u◊[

t+1
2
] results in a partial palindromic

subword. Thus we get a partial palindromic subword of
length at least 2

3
(n − 2). Hence the proof.

Theorem 10. For a given rich partial word u◊, ∣u◊∣ ≤
∣PPPF (u◊)∣ ≤ ∣PPPS(u◊)∣.

Proof. It is clear from the notion of rich partial words
that ∣u◊∣ ≤ ∣PPPF (u◊∣. Let u◊ = u◊[1 . . . n] be a rich
partial word where u◊[i] ∈ A◊. Let the prefix of length
t of u◊ be v◊ = u◊[1 . . . t]. We observe that on the con-
catenation of each u◊[i] to v◊[i−1], an additional partial
palindromic perfect subword us

◊[i], where s = ∣v◊[i]∣u◊[i]
is formed. Hence, at least one partial palindromic perfect
subword is always formed on the concatenation of each
letter of u◊. Thus ∣PPPS(u◊)∣ ≥ ∣u◊∣. Also the set of all
partial palindromic perfect factors is a subset of the set of
all partial palindromic perfect subwords of u◊. Therefore
∣PPPF (u◊)∣ ≤ ∣PPPS(u◊)∣. Hence the result.

5 Conclusion

In this paper we introduced rich partial words and studied
the combinatorial properties. We also discussed the rela-
tion between partial palindromic perfect factors and par-
tial palindromic perfect subwords of rich partial words.
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