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Parameter Estimation for Ornstein-Uhlenbeck
Process Driven by Sub-fractional Brownian
Processes

Chao Wei and Fang Xu

Abstract—This paper is concerned with least squares estima-
tion for Ornstein-Uhlenbeck process driven by sub-fractional
Brownian processes from discrete observations. The contrast
function is given to obtain the least squares estimators. The
consistency and asymptotic distribution of two estimators are
derived. Some numerical simulations are made to verify the
effectiveness of the estimators.

Index Terms—Least squares estimation; Ornstein-Uhlenbeck
process; sub-fractional Brownian processes; consistency;
asymptotic distribution.

I. INTRODUCTION

Almost all systems are affected by noise and exhibit
certain random characteristics ( [6], [7], [9]). Therefore, it is
reasonable and interesting to use random systems to model
actual systems. When modeling or optimizing a stochastic
system, due to the complexity of the internal structure and
the uncertainty of the external environment, parameters of
the system are unknown. It is necessary to use theoretical
tools to estimate the parameters of the system. In the past
few decades, many authors studied the parameter estimation
problem for stochastic models driven by Brownian processes
( [17], [19]). For example, Hildebrandt and Trabs ( [3]) stud-
ied parameter estimation for stochastic partial differential e-
quations based on discrete observations in time and space. Li-
u ( [10]) used generalized moment method to estimation the
parameter for uncertain differential equations. Wei and Shu
( [15]) discussed the existence, consistency and asymptotic
normality of the maximum likelihood estimator for the non-
linear stochastic differential equations. When the system is
observed partially, Botha et al. ( [1]) applied particle methods
for stochastic differential equation mixed effects models. Wei
( [16]) analyzed state and parameter estimation for nonlinear
stochastic systems by extended Kalman filtering. The pa-
rameter estimation for stochastic models driven by fractional
Brownian processes is developed as well ( [4], [12], [13]).
Sometimes, the stochastic models are driven by some more
general fractional Gaussian processes such as sub-fractional
Brownian motion. Sub-fractional Brownian process has non
stationary increments, the increments over non overlapping
intervals are more weakly correlated and their covariance
decays polynomially at a higher rate, which makes the sub-
fractional Brownian process a possible candidate for models
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involving long-range dependence, self-similarity and non-
stationary. However, there are few literature about parameter
estimation for sub-fractional Brownian processes. Li and
Dong ( [8]) investigated parametric estimation in the Vasicek
model driven by sub-fractional Brownian motion. Prakasa
Rao ([11]) investigated the asymptotic properties of the max-
imum likelihood estimator and Bayes estimator of the drift
parameter for linear stochastic differential equations. Xiao
et al. ( [20]) provided least squares estimators for Vasicek
processes, derived the strong consistency and asymptotic
distribution of estimators.

The Ornstein-Uhlenbeck process is extensively used in
finance during the past few decades as the one-factor short-
term interest rate model. Therefore, statistical inference for
Ornstein-Uhlenbeck processes has been studied by many
authors. For example, Chen et al. ( [2]) showed the Berry-
Esseen bound of the least squares estimator for fraction-
al Ornstein-Uhlenbeck processes based on continuous-time
observation. Hu et al. ( [4]) studied parameter estimation
for fractional Ornstein-Uhlenbeck processes of general hurst
parameter. Voutilainen et al. ( [14]) considered estimation
of the unknown model parameter in the multidimensional
version of the Langevin equation. Wei et al. ( [18]) analyzed
the estimation for squared radial Ornstein-Uhlenbeck process
from discrete observation. However, the Ornstein-Uhlenbeck
processes discussed in above literature are not driven by sub-
fractional Brownian processes and a common denominator in
all these works is assumed that the equation admits only one
unknown parameter. In this paper, we consider the parameter
estimation problem for Ornstein-Uhlenbeck process with
two unknown parameters driven by sub-fractional Brownian
processes from discrete observations. The contrast function
is introduced to obtain the least squares estimators. The
consistency and asymptotic distribution of the estimators are
derived by Markov inequality, Cauchy-Schwarz inequality
and Gronwall’s inequality.

This paper is organized as follows. In Section 2, we give
the contrast function to obtain the least squares estimators.
In Section 3, we obtain the consistency and asymptotic
distribution of the estimators. In Section 4, some numerical

simulations are provided. The conclusion is given in Section
S.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, we study the parametric estimation prob-
lem for Ornstein-Uhlenbeck process driven by sub-fractional
Brownian processes described by the following stochastic
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differential equation:

{ dX;, =(a — BX,)dt +edBH, t >0, 0

Xo =20,

where o and 3 are unknown parameters, ¢ € (0,1], B
is a sub-fractional Brownian process with H € (1,1). It
is assumed that {X;,¢ > 0} is observed at n regular time
intervals {t; = %,i =1,2,--- ,n}.

The sub-fractional Brownian process B} is a mean zero
Gaussian process with B! = 0 and the covariance

1
E(BfBH) = s2H 4 2H _ §{|t7 s 4|t + 5|21},

where s,t > 0. When H = 1, Bf is the standard Brownian
motion.
Moreover, for all s < ¢,

(‘BH BH‘Q) 22H 1(t2H+ )+(t+8)2H—(t—S)2H,
and for m <n < s <t,

E(Bi' — BJ)(B; - By)
= %[(t +m)?H 4 (t —m)* 4 (s +n)?H + (s —n)*
—(t+n)* = (t =n)* = (s +m)*T — (s —m)*"].

Consider the following contrast function
Z|Xt — (= BXy, )AL, (2)

where Ati,1 = ti — tifl — %
It is easy to obtain the least square estimators

a :”Z;L:l(Xti — X0 )Xt 2 X
! (Z?:l Xti—l)Q - TLZ?:I thi—l
n o (Xe = Xeo ) Yoy Xﬁ .
(ZZ‘L:I X, ,)? *”Zz 1 X6
3, = 23 (X — X)X
(22;1 Xti—l)Q -n Z?:l X2_
i (X = X ) 2 X
iy Xe )2 —ny X2

3)

III. MAIN RESULTS AND PROOFS

Let X° = (X?,t > 0) be the solution to the underlying
ordinary differential equation under the true value of the
parameters:

dX? = (o — BX)dt, X = xo. “4)

Note that

1 ti t;
X, — Xy, ——a—B de+g/ dB”. (5

ti—1 ti—1

Then, we can give a more explicit decomposition for a,,

and f3,, as follows
Oy — @
nﬁzz 1];’ Xodsy | X2
IO EP LD DD
nBYi Xeiy fttj,l Nods 3001 Xe,
L X )P n, X
ne Yl Xo, [l dBEY T X,
(Z:‘L:I Xt 4 )2 —n Z;L:I Xt%-,l
ney iy ft:,l aBl i X7
- (27 1 X0)? = ”Z:L 1 X2
ﬁzllttideZ i
(n Ei:l Xtiq) - % Zi:l Xt%-fl
B i Xty ft;,l Xst% it Xty

(5 i Xeo )2 = 5 i X7
ey Xeoy fo dBE LY X
(% i X, )P - % S Xi,
€3 i ffl_l dBf% dic1 X7
BN )P - IY X

~

Bn
LB ) Xeds 1Xt1 !
(Zz 1 X )P-n i X
n?By> 0 Xy, fti—l Xsds
i X )? = n 3, X7,
n?ed> " X 1ft1 dBH
(ZZ 1 X )2 -nd X
ne i, j;fi_l aBl! > X
- i Xeo )2 —=n 3 X7P
L OBXLL S Xeds Y X
B (%L Z?:1 Xti—l)Q - %Z?:1 X2_
BY N X, [ Xods
(5 i Xe )P = 5 i X7
€3 i Xty ft:,l aBl
HES SISO S
€3 i tti dBHlZz 1Xt1 1
CY P AR VPl

Before giving the theorems, we need to establish some

preliminary results.
Lemma 1: When ¢ — 0 and n — oo, we have

sup |X; — X7 5o.
0<t<1

Proof: Observe that

t t
Xt—XtO:—B/ (XS—XS)ds—i—a/ dBH.
0 0
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By using the Cauchy-Schwarz inequality, we find
X: — X7

t t
267 / (X, — XO)ds]? + 267 / dBH?
0 0

IN

t
sup | dBf\Q.
o<t<1 Jo

IN

t
25%/ | X, — X0|2ds + 2¢2
0

According to the Gronwall’s inequality, we obtain
t
X, — X012 <2222 qup | [ dBH2. (D)
0<t<1 Jo
Since BgI =0, it follows that
) t
sup |X; — X0| < v2ee? sup | [ dBF|
0<t<1 0<t<1 Jo

= V2ee? sup |Bf|. 8)
0<t<1

Therefore, when ¢ — 0 and n — o0, it is easy to check
that

sup | X, — X% 5o. ©9)
0<t<1
The proof is complete. ]

Lemma 2: When ¢ — 0 and n — 0o, we have,
1 ¢ 2 P, ! 042
— E Xi |, — (Xy)“dt.
nia 0

Proof: Since

1 n 1 n 1 n
n ZXZ'—I = n Z(Xtoz'fl)Q + n Z(Xi—l o (X?'i—l)2)'
i=1 i=1 i=1
(10)
It is easy to check that
RS 0 \2 P ' 0y2
EZ(XM) 5 i (X0)2dt. (11)
i=1

According to Lemma 3.1, when ¢ — 0 and n — oo, we
obtain

1 n
o (XE L = (X))
i=1

1
= ‘ﬁ Z(Xti—l +Xt()i—1)(Xti_1 N X2_1)|

i=1

ti—1

1 n
<= X, . — X9 X, X9
n;I tia — X, 10X, o[+ ] )

IN

1 n
E Z(|Xti—] - Xg;,l |2 + 2|Xt073,1||Xti—1 - Xtoi,l D
=1

1 n
E Z |Xti—1 - Xt01,1 |2
=1

1 n
+2E Z |X1?i—1 1 Xty — Xtoif1|
=1
< (sup |X; - X7|)°
0<t<1

n

1
+2 sup |X; — X2=) X0
OS@I t t\nigl toa

£o.

Therefore, we obtain

1 < !
=3y x? 15/ (X0)2dt. (12)
n “ ‘T 0
i=1
The proof is complete. ]

In the following theorem, the consistency of the least
squares estimators are proved.

Theorem 1: When & — 0, n — oo and en'~# — 0, the
least squares estimators &, and (3, are consistent, namely

Proof: According to Lemmas 3.1 and 3.2, we have

1 n 1 n P 1 1
X o X, B ([ xpa- [ x0pan
=1 =1

(13)
With the results that £ Y7 X7 KR fol (X2)2dt and
T DD, O KR fol X?dt, when ¢ — 0 and n — oo, we

obtain

n t; n 1 1
' 1 2 P 042
521[ Xsdsﬁ;Xti_l aﬁ/o Xtdt/o (X9)2dt,

(14)
and
n ts 1 n
BZXtH/ Xods—> X,
i=1 ti—1 i
P 1 1
—>ﬁ/ XtXtOdt/ XPdt. (15)
0 0

Then, we have
52/ Xods=> X7 |
i=17ti-1 i
_52){&‘71
i=1

1 n
Xods S Xi, B0 (16)

ti-1 i=1

Since
n t;
|€ZX751‘—1 / dBfI
i=1 tim1
n t;
<Y X[ aslt
i=1 i1

n t;
<e SOOI+ 1%, - X0 / dBY|

i=1 i1
n t;

<o [ sl
i=1 i1

ti
+e sup |Xt—Xt0||/ dBH|.
0<t<L1 ti—1

By the Markov inequality, when ¢ — 0, n — oo and
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—H _ ), we obtain

n

P> X[ asti> o

i=1
<5 EXD e [ aBl)
i=1 tiz1
— 5 EZ EIX? B - B 1?)}

<6~ 52 Sup. XP|(t: — tima )2

— 0<t<

= (5_15711 H sup |X7|
0<t<1

— 0.

Thus, when € — 0, n — oo and en!~# — 0, we have

n t;
P
eZ|Xg_l||/t dBH| = 0. (17)
i=1 i1

When ¢ — 0 and n — oo, it is obvious that

e sup |X,— X% [ dBF| L. (18)
0<t<1 ti—1
Then, we obtain
n ts P
ey Xi, / dB % 0. (19)
i=1 ti—1

Thus, we have

EE:’L:I Xt'i—l j;stll dBH . Ez 1 th 1 5) 0 (20)
(% Z?:l Xt'i—l)Q - %Zi:l Xt%,l .

Moreover, when € — 0 and n — o0, it is easy to check

that

obtain

n t;
€ i1 ft, dBHl Zz 1 X L Py @1
(% Z?:I Xti*l) n Zi:l
Therefore, when ¢ — 0, n — oo and en!~H — 0, we
~ P
o, — Q.

Using the same methods, it can be easily to check that

S~ P
Bn = B.
The proof is complete. ]
Theorem 2: When ¢ — 0, n — oo, ent ™ — 0 and
ne — 00,
i fo X0dt [y X0dBE — [} (XP)2dtBf
e (an — )
(Jo X0dt)? — [(X0)2dt
1 1
5_1(3 ) q fo X0dBH — BH fo XPdt
(fy X0dt)2 — [ (XP)2dt

Proof: According to the explicit decomposition for @,

it is obvious that

e Ha, —a)
_15 i tt Xodsy YL X,
(n Zi:l Xtifl) - % ?:1 XtQ,-,l
e B Y X ftt;,l Xedsy 300y X,
- (%Z?:lXti 1)2_l2?:1X2_
+Z?:1 Xy [y dBE LY X
(% i1 Xei1)? — *Zi 1 Xt% 1
Yty dBIR YL X
- (% Z?:l Xtifl) - % Zi:l

From Lemma 3.1, when ¢ — 0, n — oo and ne — oo,

52)@ / 1de|

ti—

L) S / X,ds|
i=1 ti-1
5_1n_1/8 Z(lXti—l -
i=1

sup | Xy
ti—1<t<t;

Xp I+ 1XE D

o,

Then, it is easy to check that

6’162/ X,ds 5 0.
i=17ti—1
Thus, we have

_16221LLXdS Zzl 11P

and

B0, (2
(ﬁ Zi:l Xti—l) - %Zi:l

e8I Xy, [N Xedsk
Lioi Xe Jiy n i X 2o @3

(% Z:L:l Xt'i—l)Q -

Since

n Zi:l Xt21-71

ti

i Xi, / dB?

ti—1

t;
(Xe,, — X7+ X,?H)/ aBf

S
ti—1

T
M-

@
Il
-

I
NE

t;
(th‘—l - X?,_l)/ dBf
1 ) ti—a

ti
XP . / dBH.
ti—1

According to Theorem 3.3, we have

-
I

M:

+
1

<.
Il

n

> (X, fXg_l)/

i=1 ti—1

t

aB? 5 o. 24)
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Moreover,
n ti 1
| XO,_/ dBff/ X%dBH|
1
< [ . - xoas!
; :
1
< sup X0, - X2 [ aBl!
0<s<1 0
£o.
We have

(25)

n t; p 1
> X, / dBH = / X%BH.
i=1 ti-1 0

Then, we obtain
1 1 1
E—l(a _ Oé) i fO X?dtfo X?dBtH B fo (Xt0)2dtB{{
n 1 1 .
(fo Xtodt)z - fo (Xto)zdt

(26)
As
e (Bn - B)
eI f Xedsh 0 X,
G Xe P oL X,
e IBY T Xt 'f.tj—l Xqds o
- (% Z?:l Xti71)2 - % Z?:l Xt2i—1 o ﬁ
Z?:l Xty ftt,l dBf
(2 i X )P — 2 X XT
i fttl_l dBf% 2im1 Xt
(% Z?:l Xti71)2 - % Z?:l XtQi—l .
It is obvious that
e 1B, ftt_l Xodsyy iy Xo s
(5 i Xe )2 = s i X7,
e B X ftii,l Xsds
(% Z?:l Xti—l)z - % Z?:l Xt2i—1

—e715 L 0,

+

(27)
and

Z?:l Xty fttj_l dBf
(% Z?:l Xti71>2 - % Z?:1 XtQVL'fl
S fy dBILY X
(% Z?:l Xti—l)2 - % Z?:l XtQi—l
i Jo X0dBE — BF [ X0dt
(Jo XPdt)? — fy(X{)2dt

(28)

Then, we have

G b Jy X0dBH — B [ XPdt
! (fol *Xtodt)2 - fol (X?)%lt

(29)

The proof is complete. ]

TABLE 1
LEAST SQUARES ESTIMATOR SIMULATION RESULTS OF o AND 3

True Aver AE

(a,8)  Sizen @ Bn |@n—al  |Bn—Bl
10000 1.0539 07615  0.0539  0.0615

(LO7) 20000 10227 07329 00227  0.0329
50000  1.0083 07071  0.0083  0.0071
10000 15603 08723  0.0603  0.0723

(1.5.08) 20000 15368 08369  0.0368  0.0369
50000  1.5075 08104  0.0075  0.0104
10000 2.0617  1.0308  0.0617  0.0308

@1 20000  2.0468  1.0176  0.0468  0.0176
50000  2.0092  1.0085  0.0092  0.0085

IV. SIMULATION

In this experiment, we use iterative approach to generate a
discrete sample (X, ,);=1,..., and compute &, and 3,, from
the sample. We let o = 0.3. For every given true value of
the parameters-(«, 3), the size of the sample is represented
as“Size n”” and given in the first column of the table. In Table
1, H = 0.3, ¢ = 0.01, the size is increasing from 10000 to
50000. In Table 2, H = 0.65, € = 0.01, the size is increasing
from 10000 to 50000. In Table 3, H = 0.8, ¢ = 0.01, the
size is increasing from 10000 to 50000. In Table 4, H = 1.5,
e = 0.01, the size is increasing from 10000 to 50000. Ihe
tables list the value of least squares estimAators “ap”,“Bn”
and the absolute errors (AE) “|a, — a8, — 8

The tables illustrate that when n is large enough and ¢ is
small enough, the obtained estimators are very close to the
true parameter value. If we let n converge to the infinity and
€ converge to zero, the estimator will converge to the true
value.

2

V. CONCLUSIONS

The aim of this paper is to study the parameter estimation
problem for Ornstein-Uhlenbeck process driven by sub-
fractional Brownian processes from discrete observations.
The contrast function has been introduced to obtain the
explicit formula of two estimators. The consistency and
asymptotic distribution of the estimators have been derived
by Markov inequality, Cauchy-Schwarz inequality and Gron-
wall’s inequality. Further research topics will include pa-
rameter estimation for partially observed Ornstein-Uhlenbeck
process driven by sub-fractional Brownian processes.
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TABLE IV
LEAST SQUARES ESTIMATOR SIMULATION RESULTS OF a@ AND 3
TABLE II
LEAST SQUARES ESTIMATOR SIMULATION RESULTS OF @ AND 3
True Aver AE
True Aver AE (a, B) Size n Qn Bn | —af |Bn -8l
(a, B) Size n Gn Bn |&n—al |Bn e 10000 1.0214 0.7223 0.0214 0.0223
(LO7) 20000 10169 07094 00169  0.0094
10000 1.0246 0.7328 0.0246 0.0328 . : . .
(1,0.7) 20000 1.0118 0.7185 0.0118 0.0185 50000 1.0015 0.7010 0.0015 0.0010
50000 10032 07029  0.0032  0.0029 10000 15182 08207 00182 0.0207
(1.5.08) 20000 15091 08113 0.0091 00113
10000 1.5261 0.8273 0.0261 0.0273 . : . .
(1508) 20000 15127 08106 00127  0.0106 50000 15009 08012 0.0009 00012
50000 1.5039 0.8025 0.0039 0.0025 10000 2.0126 1.0156 0.0126 0.0156
10000 20055 10308 00255 00308 @1 20000  2.0035  1.0061  0.0035  0.0061
2,1) 20000 2.0183 1.0176 0.0183 0.0176 50000 2.0007 1.0003 0.0007 0.0003
50000 2.0019 1.0021 0.0019 0.0021
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